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Exercise 1 Let (B1(t), B2(t)) a two-dimensional Brownian motion and let

Zt =
∫ t

0

1

1 + 4s
dB1(s)

∫ s

0
e−B1(u)2

dB2(u) .

a) IsZ a martingale? Determine the processes(〈Z, B1〉t )t and(〈Z, B2〉t )t .
b) Prove that the limitZ∞ = lim t→+∞ Zt exists a.s and inL2 and compute E[Z∞] and

Var(Z∞).

Exercise 2 Let, for α > 0,

Xt =
√

α + 1
∫ t

0
uα/2 dBu .

a) Compute P(sups≤2 Xs ≥ 1).
b) Let τ = inf {t > 0; Xt ≥ 1}. Compute the density of the r.v.τ . For which values ofα

doesτ have finite expectation?

Exercise 3 Let B = (B1, B2) a 2-dimensional Brownian motions.
a) Which one of the following is a Brownian motion?

W1(t) =
∫ t

0
sinB2(s) dB1(s) +

∫ t

0
cosB2(s) dB1(s)

W2(t) =
∫ t

0
sinB2(s) dB1(s) +

∫ t

0
cosB2(s) dB2(s)

W3(t) =
∫ t

0
cosB2(s) dB1(s) −

∫ t

0
sinB2(s) dB2(s) .

b) Is t 7→ Wt := (W2(t), W3(t)) a 2- dimensional Brownian motion?

Exercise 4 Let B = (�, ^, (^t )t , (Bt )t , P) be a Brownian motion,θ ∈ R, T > 0.
a) Lett ≤ T . Which is the value of E[eiθBT | ^t ]? And of E[sin(θBT ) | ^t ]?
b) Determine a processX ∈ M2([0, T ]) such that

sin(θBT ) =
∫ T

0
Xs dBs



c) Compute
∫ 1

0
e− 1

2 (1−s) sinBs dBs

∫ 1

0
e− 1

2 (1−s) cosBs dBs .



Solutions

Exercise 1. a) Let

Xs =
∫ s

0
e−B1(u)2

dB2(s) .

We have, for everyt ≥ 0,

E[X2
t ] = E

[∫ t

0
e−2B2

s ds
]

=
∫ t

0

1√
1 + 4s

ds = 1

2

(√
1 + 4t − 1

)

.

As we can write

(1) Zt =
∫ t

0

Xs

1 + 4s
dB1(s)

and

E
[ X2

s

(1 + 4s)2

]

= 1

2

√
1 + 4s − 1

(1 + 4s)2

the integrands 7→ Xs

1+4s
is in M2 andZ is a martingale.

From the notation (1) we have easily

〈Z, B2〉t = 0, 〈Z, B1〉t =
∫ t

0

Xs

1 + 4s
ds .

b) It is sufficient (and also necessary. . . ) to prove thatZ is bounded inL2. Now

E[Z2
t ] =

∫ t

0

E[X2
s ]

(1 + 4s)2 ds = 1

2

∫ t

0

( 1

(1 + 4s)3/2 − 1

(1 + 4s)2

)

ds .

The left most integral being convergent ast → +∞, theL2 norm ofZ is bounded, so thatZ
converges a.s. and inL2. As L2 convergence implies the convergence of the expectations we
have immediately E[Z∞] = 0. Also L2 convergence implies the convergence of the second
order moment, so that

E[Z2
∞] = lim

t→+∞
E[Z2

t ] = 1

2

∫ +∞

0

1

(1 + 4s)3/2 − 1

(1 + 4s)2 ds =

= −2(1 + 4s)−1/2
∣
∣
∣

+∞

0
− 4(1 + 4s)−1

∣
∣
∣

+∞

0
= 6 .

Exercise 2. a) We know already thatX is a time changed Brownian motion, more precisely

Xt = WAt



where

At = (α + 1)

∫ t

0
uα du = tα+1 .

Therefore

P
(

sup
s≤2

Xs ≥ 1
)

= P
(

sup
s≤2

WAs ≥ 1
)

= P
(

sup
t≤A(2)

Wt ≥ 1
)

= 2P(WA(2) ≥ 1) =

= 2P(
√

A(2) W1 ≥ 1) = 2P(W1 ≥ 2− 1
2 (α+1)) =

= 2√
2π

∫ ∞

2− 1
2 (α+1)

e−t2/2 dt .

b) The previous computation witht instead of 2 gives

P(τ ≤ t) = P
(

sup
s≤t

Xs ≥ 1
)

= 2√
2π

∫ ∞

t
− 1

2 (α+1)
e−s2/2 ds

and taking the derivative we find the density ofτ :

fτ (t) = 2√
2π

1

2
(α + 1)t−

1
2 (α+1)−1e−1/(2tα+1) = (α + 1)√

2πtα+3
e−1/(2tα+1) .

In order forτ to have finite mathematical expectationt 7→ tfτ (t) must be integrable. Now
at zero the integrand tends to 0 fast enough because of the exponential whereas at infinity

tfτ (t) ∼ t1− 1
2 (α+3). It is therefore necessary (and sufficient) that 1− 1

2 (α + 3) < −1, i.e.
α > 1.

Exercise 3. a) We have

〈W1〉t =
∫ t

0
(cosB2(s)+sinB2(s))

2 ds =
∫ t

0
1+sin(2B2(s)) ds = t+

∫ t

0
sin(2B2(s)) ds 6= t

so thatW1 is not a Brownian motion. Conversely,H(s) = (sinB2(s), cosB2(s)) is a 2-
dimensional process having modulus equal to 1 and we can write

W2(t) =
∫ t

0
H(s) dBs

so thatW2 turns out to be a Brownian motion, thanks to Corollary 7.24 of class notes. The same
argument gives that alsoW3 is a Brownian motion.

b) We can write

d

(

W2(t)

W3(t)

)

=
(

sinB2(t) cosB2(t)

cosB2(t) − sinB2(t)

)

︸ ︷︷ ︸

=A

(

dB1(t)

dB2(t)

)

.



As the matrixA above is orthogonal,W = (W1, W2) is a Brownian motion thanks to Proposition
7.26 of class notes.

Exercise 4. a) Recalling thatt 7→ eiθBt+ 1
2 θ2t is a martingale, we have

E[eiθBT | ^t ] = E[eiθBT + 1
2 θ2T | ^t ] e− 1

2 θ2T = eiθBt+ 1
2 θ2te− 1

2 θ2T = eiθBt− 1
2 θ2(T −t) .

We have

E[sin(θBT ) | ^t ] = E[Im(eiθBT ) | ^t ] = Im(eiθBt− 1
2 θ2(T −t)) = e− 1

2 θ2(T −t) sin(θBt ) .

b) Let us compute the stochastic differential ofZt = e− 1
2 θ2(T −t) sin(θBt ). We can write

Zt = f (Bt , t) with f (x, t) = e− 1
2 θ2(T −t) sin(θx). We have

∂f

∂t
(x, t) = 1

2
θ2 e− 1

2 θ2(T −t) cos(θx)

∂f

∂x
(x, t) = θe− 1

2 θ2(T −t) cos(θx)

∂2f

∂x2 (x, t) = −θ2e− 1
2 θ2(T −t) sin(θx) .

and plugging these values into Ito’s formula we find

dZt = θe− 1
2 θ2(T −t) cos(θBt ) dBt

and therefore

sin(θBT ) = ZT − Z0 = θ

∫ T

0
e− 1

2 θ2(T −t) cos(θBt ) dBt

i.e. Xt = θe− 1
2 θ2(T −t) cos(θBt ).

c) Form the computation of b) we have, with the choiceT = 1, θ = 1,
∫ 1

0
e− 1

2 (1−s) cosBs dBs = sinB1 .

For the other integral we can repeat the argument above or apply Ito’s formula in the following,

equivalent, way, consideringt 7→ e− 1
2 (1−t) cosBt as the product oft 7→ e− 1

2 (1−t) and of
t 7→ cosBt . We have then

d(e− 1
2 (1−t) cosBt ) = e− 1

2 (1−t)
(

− sinBt dBt − 1

2
cosBt dt

)

+ 1

2
e− 1

2 (1−t) cosBt dt

i.e.
d(e− 1

2 (1−t) cosBt ) = −e− 1
2 (1−t) sinBt dBt

which gives
∫ 1

0
e− 1

2 (1−t) sinBt dBt = −e− 1
2 (1−t) cosBt

∣
∣
∣

1

0
= e− 1

2 − cosB1 .


