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Exercise 1 Let B be a Brownian motion (with respect to a filtration(^t )t ).
a) Prove that, for everyλ ∈ R,

Yt = eiλBt+
1
2 λ2t

is a martingale.
b) Prove that, for everyλ ∈ R,

Xt = cos(λBt ) e
1
2λ2t

is a(^t )t -martingale. Is it uniformly integrable?

Exercise 2 a) LetB = (�, ^, (^t )t , (Bt )t , P) be am-dimensional Brownian motion. Prove
that, if i 6= j , the process(Bi(t)Bj (t))t is a(^t )t -martingale.

b) Let(Mt )t , (Nt )t be martingales on the same probability space(�, ^, P), with respect to
the filtrations(}t )t , (1t )t respectively. Let us assume moreover that the filtrations(}t )t and
(1t )t are independent. Then the product(MtNt )t is a martingale of the filtration*t = }t ∨1t .

Exercise 3 Let B be am-dimensional Brownian motion.
a) Prove that

Xt = |Bt |
2 − mt

is a martingale.
b) Let us denote byτ the exit time ofB from the unit ball ofRm. Compute E[τ ].

Exercise 4 Let B a Brownian motion. Recall that the process

(1) Xt = Bt − tB1, 0 ≤ t ≤ 1

is called a Brownian bridge and that, for 0≤ s ≤ t ≤ 1, E(XsXt ) = s(1 − t).
a) Let, for 0≤ t ≤ 1,

Zt =

{

(1 − t)B t
1−t

0 ≤ t < 1

0 if t = 1

Prove thatZ is also a Brownian bridge, i.e. that it is equivalent toX. Is it continuous att = 1?



c) Prove that there exists a Brownian motionW such that the processX of (1) is, for
0 ≤ t < 1, of the form

(2) Xt = (1 − t)W t
1−t

b) Prove that, for everya > 0,

P
(

sup
0≤t≤1

Xt > a
)

= P
(

sup
s>0

Bs − as > a
)

and deduce partition function and density of the r.v. sup0≤t≤1 Xt . [Remember Exercise 4.13]



Solutions

Exercise 1. a) In way similar to what already seen in class, we can show thatY is a (complex)
(^t )t -martingale:

E(Yt | ^s) = e
1
2λ2tE(eiλBs eiλ(Bt−Bs ) | ^s) = e

1
2λ2teiλBs E(eiλ(Bt−Bs )) =

= e
1
2λ2teiλBs e− 1

2λ2(t−s) = Ys .

b) The result of a) implies that the real part ofY is itself a martingale and remark now that

ReYt = cos(λBt ) e
1
2λ2t .

In order to investigate uniform integrability, remark that there exists a sequence of times

(tn)n such thattn → +∞ andBtn = 0. HenceYtn = e
1
2λ2tn → +∞. If Y was uniformly

integrable, then it would converge a.s. and inL1, but this is impossible as we have just seen
that the limit, if it existed, would be equal to+∞, whereas E[Yt ] = E[Y0] = 1.

Exercise 3. a) The simplest way is to remark that we already know that, ifW is a real Brownian
motion thent 7→ W2

t − t is a martingale. Then just remark that

Xt = B1(t)
2 − t + B2(t)

2 − t + . . . + Bm(t)2 − t

so thatX appears to be a sum of martingales.
b) If we could apply the stopping theorem to the processX and to the stopping timeτ ,

which unfortunately is not known to be bounded (and it is not) we would have

(3) 0 = E[Xτ ] = E[|Bτ |
2] − mE[τ ] .

Now obviously|Bτ | = 1 a.s. so that from (3) we deduce

E[τ ] =
1

m

Let us prove (3). We have, for everyt ≥ 0, 0 = E[Xt∧τ ] = E[|Bt∧τ |
2] − mE[t ∧ τ ] by the

stopping theorem applied to the stopping timet ∧ τ . Hence

E[|Bt∧τ |
2] = mE[t ∧ τ ]

Now we can just take the limit ast → +∞. The left-hand term converges to E[|Bτ |
2] by

Lebesgue’s theorem (we have obviously|Bt∧τ |
2 ≤ 1, whereas the right-hand one increases to

E[τ ] by Beppo Levi’s theorem.

Exercise 2. a)Using the usual method of factoring out the increment, we have fors ≤ t

E
[

Bi(t)Bj (t) | ^s

]

= E
[

(Bi(s) + (Bi(t) − Bi(s))(Bj (s) + (Bj (t) − Bj (s)) | ^s

]

=

= E
[

Bi(s)Bj (s)+Bi(s)(Bj (t)−Bj (s))+Bj (s)(Bi(t)−Bi(s))+(Bi(t)−Bi(s))(Bj (t)−Bj (s)) | ^s

]



Now just remark that, the increments being independent of^s ,

E
[

Bi(s)(Bj (t) − Bj (s)) | ^s

]

= Bi(s)E
[

Bj (t) − Bj (s) | ^s

]

= 0

E
[

Bj (s)(Bi(t) − Bi(s)) | ^s

]

= Bj (s)E
[

Bi(t) − Bi(s) | ^s

]

= 0

E
[

(Bi(t) − Bi(s))(Bj (t) − Bj (s)) | ^s

]

= E
[

(Bi(t) − Bi(s))(Bj (t) − Bj (s))
]

= 0

and therefore E[Bi(t)Bj (t) | ^s ] = Bi(s)Bj (s).
b) We must prove that, ifs ≤ t ,

E[MtNt1A] = E[MsNs1A]

for everyA ∈ *s or at least for everyA in a subclass#s ⊂ *s , which generates*s and is
stable with respect to finite intersections (this is Remark ‘cap3-rem31’). One can consider
the class of the events of the formA1 ∩ A2 with A1 ∈ }s , A2 ∈ 1s . Actually this class is
stable with respect to finite intersections and contains both}s (choosingA2 = �) and1s

(with A1 = �). We have then, as the r.v.’sMt1A1 andNt1A2 are independent (the first one is
}t -measurable whereas the second one is1t -measurable)

E[MtNt1A1∩A2] = E[Mt1A1Nt1A2] = E[Mt1A1]E[Nt1A2] = E[Ms1A1]E[Ns1A2] =

= E[Ms1A1Ns1A2] = E[MsNs1A1∩A2] .

Exercise 4. a) Recall that the Brownian bridgeX is a process that is centered, Gaussian and
with covariance Cov(Xs, Xt ) = s(1 − t) for 0 ≤ s ≤ t ≤ 1. In order to prove thatZ is
equivalent toX it is therefore sufficient to verify that it also enjoys these properties. Actually
it is immediate that it is Gaussian (the joint distributions are linear combinations of the joint
distributions ofB) and centered. Lets ≤ t , then

Cov(Zs, Zt ) = E[ZsZt ] = (1 − s)(1 − t)E
[

B t
1−t

B s
1−s

]

.

The functiont → t
1−t

being increasing, the smallest betweent1−t
and s

1−s
is the last one, so

that
Cov(Zs, Zt ) = (1 − s)(1 − t)

s

1 − s
= s(1 − t) .

The processZ having the same covariance function asX has also the same finite dimensional
distributions and is therefore equivalent to it.

We still have to prove the continuity att = 1. Is it true that

lim
t→1−

Zt = 0?

As t → 1 t
1−t

→ +∞ and by the iterated logarithm law we know that

∣

∣

∣
(1 − t)B t

1−t

∣

∣

∣
≤ (1 − t)

√

(2 + ε)
t

1 − t
log log

t

1 − t



and it is now easy to see that the left-hand side goes to 0 ast → 1−.
b) If a processW satisfying (2) existed then, substitutingu = t

1−t
, i.e. t = u

u+1, we would
have

(4) Wu = (1 + u)X u
u+1

We therefore have only to check that ifX is a Brownian bridge, thenW defined in (4) is a
Brownian motion. It is clearly centered, Gaussian and continuous. We have also, fors ≤ t ,

E[WsWt ] = (1 + s)(1 + t)E
[

X s
s+1

X t
t+1

]

.

Now the smallest betweens
s+1 and t

t+1 is the first one, so that, recalling the covariance function
of the Brownian bridge,

E[WsWt ] = (1 + s)(1 + t)
s

s + 1

(

1 −
t

t + 1

)

= s

i.e. W is a Brownian motion.
b) We have

P
(

sup
0≤t≤1

Xt > a
)

= P
(

sup
0≤t<1

(1 − t)B t
1−t

> a
)

= P
(

sup
s>0

1

s + 1
Bs > a

)

=

= P
(

sup
s>0

1

s + 1
(Bs − (s + 1)a) > 0

)

= P
(

sup
s>0

Bs − sa > a
)

.

In Exercise 4.13 we have seen that the r.v. sups>0 Bs − sa has an exponential law of parameter
2a. Therefore

P
(

sup
0≤t≤1

Xt > a
)

= e−2a2

and the partition function of the r.v. sup0≤t≤1 Xt is F(x) = 1 − e−2x2
for x > 0. Taking the

derivative, the corresponding density isf (x) = 4xe−2x2
, still for x ≥ 0.


