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Exercise 1 Let B be a Brownian motion (with respect to a filtratig; ), ).
a) Prove that, for every € R,

. 1,2
Yt — el)\.Bt-i-?)\ t

is a martingale.
b) Prove that, for every € R,

X, = cogAB,) e2*!

is a(%,;);-martingale. Is it uniformly integrable ?

Exercise2 a) LetB = (2, %, (%), (By);, P) be am-dimensional Brownian motion. Prove
that, ifi # j, the processB;(¢)B;(t)); is a(¥;);-martingale.

b) Let(M,);, (N;); be martingales on the same probability spaee%, P), with respect to
the filtrations(t,),, (N;); respectively. Let us assume moreover that the filtratidhs, and
(N;); areindependent. Then the produkf; N, ), is a martingale of the filtratiott; = A, v N;.

Exercise 3 Let B be am-dimensional Brownian motion.
a) Prove that
X = |Bi|? — mt

is a martingale.
b) Let us denote by the exit time ofB from the unit ball ofR™. Compute Ef].

Exercise 4 Let B a Brownian motion. Recall that the process
(1) Xt:B[—ZB]_, Oftfl

is called a Brownian bridge and that, for0Os <t < 1, E(X;X;) = s(1 —t).
a) Let,forO<r <1,

{(1—t)B; O0<r<l1
Zz: 11— .
ifr=1

Prove thatZ is also a Brownian bridge, i.e. that it is equivalenitols it continuous at = 1?



c) Prove that there exists a Brownian motiéh such that the proces¥ of (1) is, for
0 <t <1, ofthe form

t
-1
b) Prove that, for every > 0,

P( sup X; > a) = P(susz —as > a)

O<t<1 s>0

and deduce partition function and density of the r.v.qsyp, X;. [Remember Exercise 4.13]



Solutions

Exercise 1. a) In way similar to what already seen in class, we can showitlsa (complex)
(%;),-martingale:

EY; | F,) = e%AZtE(eiABsei)»(Bz—Bs) | Fy) = e%)LZzei)\Bs E(eiA(B,—BS)) _

1,2, 1,20
— ezk tel)\.BSe S5A°(t—s) — Ys )

b) The result of a) implies that the real partlofs itself a martingale and remark now that
1
ReY, = cogAB,) ez’
In order to investigate uniform integrability, remark that there exists a sequence of times

(tn)n Such that,, — +oo andB,, = 0. HenceY;, = e%sz" — +o0. If Y was uniformly
integrable, then it would converge a.s. and.ih but this is impossible as we have just seen
that the limit, if it existed, would be equal tboo, whereas BY;] = E[Yo] = 1.

Exercise3. a) The simplest way is to remark that we already know tha, i§ a real Brownian
motion thery — Wt2 — t is a martingale. Then just remark that

X, =B1(t)2 —t+Bo(t)°—t+ ...+ By()° —t

so thatX appears to be a sum of martingales.
b) If we could apply the stopping theorem to the procEsand to the stopping time,
which unfortunately is not known to be bounded (and it is not) we would have

3) 0 = E[X.] = E[|B:|"] — mE[1] .
Now obviously|B;| = 1 a.s. so that from (3) we deduce

E[z] = %

Let us prove (3). We have, for every> 0, 0 = E[X;r:] = E[|B/r:|%] — mE[r A ] by the
stopping theorem applied to the stopping time . Hence

El|B/nc 2] = mE[t A 7]

Now we can just take the limit as — +occ. The left-hand term converges to|Bf|4] by
Lebesgue’s theorem (we have obvioudly.. |2 < 1, whereas the right-hand one increases to
E[z] by Beppo Levi’'s theorem.

Exercise 2. a)Using the usual method of factoring out the increment, we hawe for

E[Bi(1)B; (1) | Fs] = E[(Bi(s) + (Bi(1) — Bi(s))(Bj(s) + (B;(t) — Bj(s)) | Fs]| =
= E[Bi(5)B;(s)+Bi (s)(B; (1)—B; (s))+B; (s)(B; (1)~ B; (s)+(Bi (1) —Bi (s)) (B (1) B; (s)) | F; |1



Now just remark that, the increments being independefit;of

E[Bi(s)(B;j(t) — Bj(s)) | Fs] = Bi(s)E[B;j(t) — Bj(s) | F5] =0
E[B;(s)(B;i(t) — Bi(s)) | Fs] = Bj(s)E[B;(t) — Bi(s) | Fs] =0
E[(Bi(1) — Bi(s))(Bj(1) — Bj(s)) | Fs] = E[(Bi(1) — Bi(s))(Bj(1) — Bj(s))] =0

and therefore B; (1) B; (t) | #5] = Bi(s)B;(s).
b) We must prove that, i < 1,

E[M;N;14] = E[M;Ny14]

for every A € % or at least for every in a subclas&, C %, which generate%(, and is
stable with respect to finite intersections (this is Remagg'3- r en81’). One can consider
the class of the events of the forAy N A2 with Ay € Jl;, A2 € N. Actually this class is
stable with respect to finite intersections and contains dat{choosingd, = ) and N
(with A1 = 2). We have then, as the r.v.M;14, andN,;14, are independent (the first one is
J;-measurable whereas the second oné imneasurable)

E[MlNllAlﬂAz] - E[MI]-A]_N[]-AZ] = E[Ml‘lA]_]E[N[lAz] == E[MslAl]E[NslAz] -
= E[MslAlelAz] = E[MstlAlﬂAz] .

Exercise 4. a) Recall that the Brownian bridge is a process that is centered, Gaussian and
with covariance CoWX;, X;) = s(1—t)for0 < s < r < 1. In order to prove tha is
equivalent toX it is therefore sufficient to verify that it also enjoys these properties. Actually
it is immediate that it is Gaussian (the joint distributions are linear combinations of the joint
distributions ofB) and centered. Let < ¢, then

Cov(Z, Z) =E[Z,Z] = (1—s5)(1—E[B_+_ B%] .
1—¢ —s
The functionr — 7 being increasing, the smallest betwegn and - is the last one, so
that
Cov(Zy, Z)) = (1 — s)(L— 1) % —s(L—1).
— S

The proces¥ having the same covariance functionX$as also the same finite dimensional
distributions and is therefore equivalent to it.
We still have to prove the continuity at= 1. Is it true that

r—1—

Ast — 1 1= — oo and by the iterated logarithm law we know that

t
11t

)(1—03

<@A- t)\/(z +¢) log log ﬁ

_t
1-¢



and it is now easy to see that the left-hand side goes ta G-ad —.
b) If a procesdV satisfying (2) existed then, substituting= -, i.e.r = 71 We would
have

(4) Wy=QA+uwX u_
u+1

We therefore have only to check thatXfis a Brownian bridge, the defined in (4) is a
Brownian motion. It is clearly centered, Gaussian and continuous. We have alsacs for

E[W,W,] = L1+ 5)(1+ ’)E[Xsi—l Xﬁ] .

Now the smallest betweef; andtJrL1 is the first one, so that, recalling the covariance function
of the Brownian bridge,

S t
E[W: W] = (L+ )1+ 1) +1(1— t+1) =5

i.e. W is a Brownian motion.

b) We have
1
P( sup X,>a)=P< sup(1—1)B ¢ >a):P(sup Bs>a)=
O<r<1 O<r<1 1—t =05+ 1

1 1(Bs — (s + Da) > O) = P(Susz —sa > a) )

s>0

= P(sup

s>0 98

In Exercise 4.13 we have seen that the r.v.,;syB; — sa has an exponential law of parameter
2a. Therefore ,
P( sup X; > a) —e X

O<r<1

and the partition function of the r.v. sglp_; X; is F(x) = 1 — e 2 forx > 0. Taking the
derivative, the corresponding densityfigx) = 4xe—2"2, still for x > 0.



