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Exercise 1 Let B be a Brownian motion. Compute
a) limt→+∞ E[1{Bt≤a}]
b) limt→+∞ E[Bt1{Bt≤a}]

Exercise 2 Let B be a Brownian motion and letb ∈ R andσ > 0. LetXt = ebt+σBt .
a) Investigate the existence and finiteness of the a.s. limit

lim
t→+∞

Xt

according to the possible values ofb, σ for b 6= 0.
b) Investigate the existence and finiteness of

(1) lim
t→+∞

E[Xt ]

according to the possible values ofb, σ .

Exercise 3 Let B be a Brownian motion and letb ∈ R andσ > 0.
a) For which values ofb, σ , b 6= 0 is the integral

∫ +∞

0
ebu+σBu du

a.s. finite?
b1) Prove that the r.v.

∫ 1

0
1{Bu>0} du

is > 0 a.s.
b2) Prove that

lim
t→+∞

∫ t

0
1{Bu>0} du = +∞ a.s.

b3) Deduce that
∫ +∞

0
eσBu du = +∞ a.s.



c) For which values ofb, σ is

E
[

∫ +∞

0
ebu+σBu du

]

< +∞?

Exercise 4 Let B = (�, ^, (^t )t , (Bt )t , P) a Brownian motion. Compute

E
(

∫ t

s

B2
u du

∣

∣ ^s

)

and E
(

∫ t

s

B2
u du | Bs

)

Exercise 5 Let (�, ^, (^t )t , (Bt )t , P) be a natural Brownian motion and, for 0≤ t ≤ 1, let

Xt = Bt − tB1

The process(Xt )t , defined for 0≤ t ≤ 1, is theBrownian bridge.
a) Show that(Xt )t is a centered Gaussian process independent ofB1. Compute E(XtXs).
b) Show that the r.v.

Xt − 1 − t

1 − s
Xs

is independent ofXs .
c) Compute E(Xt | Xs) and show that, denoting&s = σ(Xu, u ≤ s), for s ≤ t

E(Xt | &s) = E(Xt | Xs) .

d) Compute E(Xt | ^s). Do theσ -algebraŝ s and&s coincide?
e) Compute the finite dimensional distributions of(Xt )t (0 ≤ t ≤ 1) and show that they

coincide with the finite dimensional distributions of(Bt )t conditioned givenB1 = 0.



Solutions

Exercise 1. a) We have

E[1{Bt≤a}] = P(Bt ≤ a) = P(
√

tB1 ≤ a) = P
(

B1 ≤ a√
t

)

and therefore

lim
t→+∞

E[1{Bt≤a}] = P(B1 ≤ 0) = 1

2
·

b) We have

E[Bt1{Bt≤a}] = 1√
2πt

∫ a

−∞
xe− x2

2t dx = − t√
2πt

e− x2

2t

∣

∣

∣

a

−∞
= − t√

2πt
e− a2

2t

which, ast → −∞ converges to−∞.

Exercise 2. a) By the iterated Logarithm Law we have|Bt | ≤ (1 + ε)
√

2t log logt for t large.
Therefore

lim
t→+∞

Xt = 0

if b < 0, whatever the value ofσ . The same arguments give limt→+∞ Xt = +∞ if b > 0
(again for everyσ ). If b = 0 andσ > 0 we know that, by the behavior of the Brownian motion,
lim t→+∞ Xt = +∞, limt→+∞ Xt = 0.

b) We have

E[Xt ] = ebtE[eσBt ] = e(b+ σ2
2 )t

so that the limit (1) is finite if and only ifb ≤ −σ2

2 . Remark that in the rangeb ∈] − σ2

2 , 0[ we
have limt→+∞ Xt = 0, but limt→+∞ E[Xt ] = +∞.

Exercise 3. a) By the iterated Logarithm Law we have|Bt | ≤ (1 + ε)
√

2t log logt for t large.
Hence ifb > 0 it is easy to see (this is also Exercise 2 a) that ebu+σBu →u→+∞ +∞, hence in
this case the integrand itself diverges and the integral diverges. Ifb < 0 conversely we have,
for t large,

ebu+σBu ≤ exp
(

−bt + (1 + ε)
√

2t log logt
)

≤ e−bt/2 .

Hence the integral converges to a finite r.v.
b1) The integral can vanish only if the integrand, which is≥ 0, vanishes a.s. We know

however by the Iterated Logarithm Law that the Brownian path takes a.s. strictly positive
values in every neighborhood of 0. As the paths are continuous they are therefore strictly
positive on a set of times of strictly positive Lebesgue measure a.s.

b2) By a change of variable and using the scaling properties of the Brownian motion we
have

∫ t

0
1{Bu>0} du = t

∫ 1

0
1{Btv>0} dv = t

∫ 1

0
1{ 1√

t
Btv>0} dv ∼ t

∫ 1

0
1{Bv>0} dv



asv 7→ 1√
t
Btv is again a Brownian motion. Now we have

lim
t→+∞

t

∫ 1

0
1{Bu>0} du = +∞

as we have seen in b1) that the r.v.
∫ 1

0 1{Bu>0} du is strictly positive a.s. Hence, as the 2 r.v.’s
∫ t

0 1{Bu>0} du andt
∫ 1

0 1{Bu>0} du have the same distribution for everyt , we have

lim
t→+∞

∫ t

0
1{Bu>0} du = +∞ in probability.

In order to prove the a.s. convergence, it suffices to remark that the limit

lim
t→+∞

∫ t

0
1{Bu>0} du

exists a.s. as the integral is an increasing function oft . Hence we conclude because the a.s.
limit and the limit in probability necessarily must coincide.

b3) Letσ > 0. It suffices to remark that

eσBt ≥ 1{Bt≥0}

and then to apply b2). Ifσ < 0, of course, just remark thatσBt = −σ(−Bt ), where(−Bt )t is
again a Brownian motion and now−σ > 0.

c) By Fubini’s theorem and recalling the expression of the Laplace transform of the Gaus-
sian distributions, we have

E
[

∫ +∞

0
ebu+σBu du

]

=
∫ +∞

0
e(b+ σ2

2 )u du .

Then it is clear that the expectation is finite if and only ifb < −σ2

2 . The integral is actually
easily computed giving, in conclusion

E
[

∫ +∞

0
ebu+σBu du

]

=
{

1
σ2
2 −b

if b < −σ2

2

+∞ otherwise.

Exercise 4. The idea is always to splitBu into the sum ofBs and of the incrementBu − Bs .
As B2

u = (Bu − Bs + Bs)
2 = (Bu − Bs)

2 + B2
s + 2Bs(Bu − Bs), we have

∫ t

s

B2
u du = (t − s)Bs +

∫ t

s

(Bu − Bs)
2 du + 2Bs

∫ t

s

(Bu − Bs) du



Now Bs is alreadŷ s-measurable whereas we have

E
(

∫ t

s

(Bu − Bs)
2 du

∣

∣ ^s

)

=
∫ t

s

E
(

(Bu − Bs)
2
∣

∣ ^s

)

du =
∫ t

s

(u − s) du = 1

2
(t − s)2

the r.v.Bu − Bs being independent of̂ s . By the same argument

E
(

2Bs

∫ t

s

(Bu − Bs) du
∣

∣ ^s

)

= 2Bs

∫ t

s

E
(

Bu − Bs

∣

∣ ^s

)

du = 0

so that finally

E
(

∫ t

s

B2
u du

∣

∣ ^s

)

= (t − s)Bs + 1

2
(t − s)2 .

As this quantity is alreadyσ(Bs)-measurable, we have

E
(

∫ t

s

B2
u du | Bs

)

= E
[

E
(

∫ t

s

B2
u du

∣

∣ ^s

)

∣

∣ Bs

]

= (t − s)Bs + 1

2
(t − s)2

Exercise 5. a) If t1, . . . , tn ∈ R
+, then, as(Xt1, . . . , Xtn) is a linear function of the vector

(Bt1, . . . , Btn , B1), it is jointly Gaussian. Moreover, ift ≤ 1,

E[XtB1] = E[(Bt − tB1)B1] = t ∧ 1 − t = 0 .

The two r.v.’sXt andB1, being jointly Gaussian and uncorrelated, are independent.Xt is
centered and, ift > s,

E[XtXs ] = E[(Bt − tB1)(Bs − sB1)] = s − st − st + st = s(1 − t) .

b) As Xs andXt − 1−t
1−s

Xs are jointly Gaussian, we need only show that they are not
correlated. We have

E
[(

Xt − 1−t
1−s

Xs

)

Xs

]

= s(1 − t) − 1 − t

1 − s
s(1 − s) = 0 .

c) We have

(2) E[Xt | Xs ] = E
[

Xt − 1−t
1−s

Xs + 1−t
1−s

Xs

∣

∣ Xs

]

= 1 − t

1 − s
Xs

asXt − 1−t
1−s

Xs is independent ofXs and centered. E(Xt | Xs) = E(Xt | &s) follows if we show

thatXt − 1−t
1−s

Xs is independent of&s and then repeat the argument of (2). In order to obtain



this we know that it is sufficient to show thatXt − 1−t
1−s

Xs is independent ofXu for everyu ≤ s.
This is true as

E
[(

Xt − 1−t
1−s

Xs

)

Xu

]

= u(1 − t) − 1 − t

1 − s
u(1 − s) = 0 .

d) We have, fors ≤ t ≤ 1,

E[Xt | ^s ] = E[Bt − tB1 | ^s ] = Bs − tBs = (1 − t)Bs .

This result is different from

E[Xt | &s ] = 1 − t

1 − s
Xs

obtained in c), as it is easy to see that Var( 1−t
1−s

Xs) = (1 − t)2 s
1−s

whereas Var((1 − t)Bs) =
(1 − t)2s. Therefore the twoσ -algebraŝ s and&s are different.

e) Let 0≤ t1 < . . . < tm ≤ 1. Then the conditional law of the vector(Bt1, . . . , Btm) given
B1 = 0 is Gaussian and can be computed as explained in §3.4. It has mean 0, as in (3.17) the
quantitiesmX, mY andy vanish. The covariance matrix is given by (3.18), where we identify

CX = covariance matrix of(Bt1, . . . , Btm)

CX,Y = vector of the covariances ofBti andB1

CY = covariance matrix ofB1 .

Therefore, denotingK = (kij )ij the covariance matrix to be computed, we find

kij = ti ∧ tj − ti tj

that coincides with the covariance matrix of(Xt1, . . . , Xtm), as obtained in the second part of
a).


