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Exercise 1 Let B be a Brownian motion. Compute
a) |.imt—>+oo E[l{BtSa}]
b) lim; 00 E[B:1(B,<a)]

Exercise 2 Let B be a Brownian motion and léte R ando > 0. LetX, = e”'to8:
a) Investigate the existence and finiteness of the a.s. limit

lim X;
t——400

according to the possible valuesigfo for b # 0.
b) Investigate the existence and finiteness of

(1) lim E[X,]

t——+00

according to the possible valuesifo .

Exercise 3 Let B be a Brownian motion and Iétc R ando > O.
a) For which values ob, o, b # 0 is the integral

+00
/ ghutoBu gy
0

a.s. finite?
b1l) Prove that the r.v.

1
0

is> 0a.s.
b2) Prove that

t
lim /1{Bu>o}du:+oo a.s.
0

t——+00
b3) Deduce that
+00
f e B du = +00 a.s.
0



c) For which values ob, o is

400
E[/ ghutoBu du] < 400?
0

Exercise4 Let B = (2, #, (¥;):, (B;);, P) a Brownian motion. Compute

E(/Zdeu}%) and E(/ZBngBS)

Exercise5Let (2, &, (¥,);, (B;);, P) be a natural Brownian motion and, for0r < 1, let
X; - Bl‘ - tB]_

The process$X;),, defined for O< r < 1, is theBrownian bridge.
a) Show thatX;), is a centered Gaussian process independeBt.o€Compute EX, X).
b) Show that the r.v.
1—¢
1-5

Xt - Xs

is independent oK.
c) Compute EX, | X;) and show that, denotirt§g; = o (X,,, u < s),fors <t

E(X; [94) = E(X; | Xy) .
d) Compute EX; | ¥,). Do theo-algebras¥, and, coincide ?

e) Compute the finite dimensional distributions(af,); (0 < ¢ < 1) and show that they
coincide with the finite dimensional distributions @;); conditioned giverB; = 0.



Solutions

Exercise 1. a) We have

E[l{Btia}] =P(B; <a)= P(\/;B]_ <a)= P<Bl < %)

and therefore
lim E[1lp<q] =P(B1<0) = -
t——+400 -

b) We have

xe 2t dx =

N4 21t —00 2t

which, as¥ — —oo converges te-oo.

E[Bt 1{B[§a}]

Exercise 2. a) By the iterated Logarithm Law we hayB;| < (1 + ¢)/2t loglogz for ¢ large.
Therefore
lim X, =0
t—400
if b < 0, whatever the value af. The same arguments give lim; . X; = +ooif b > 0
(again for every). If b = 0 ando > 0 we know that, by the behavior of the Brownian motion,
im;_ 100 X; = 400, lim X, =0.
b) We have

——t—>400

52
E[X,] = 'E[e?] =Pt

so that the limit (1) is finite if and only i < —é. Remark that in the rangee] — % O[ we
have lim_, ;o X; = 0, but lim,_, ; o E[X;] = +00.

Exercise 3. a) By the iterated Logarithm Law we hay®;| < (1 + ¢)/2t loglogz for ¢ large.
Hence ifb > O itis easy to see (this is also Exercise 2 a) thatef« —,_, . ., +00, hencein
this case the integrand itself diverges and the integral divergés<ID conversely we have,

for ¢ large,
e toBu < exp(—bt + (1 + ¢)y/2tloglogr) < e7?'/2.

Hence the integral converges to a finite r.v.

b1l) The integral can vanish only if the integrand, which=i0, vanishes a.s. We know
however by the Iterated Logarithm Law that the Brownian path takes a.s. strictly positive
values in every neighborhood of 0. As the paths are continuous they are therefore strictly
positive on a set of times of strictly positive Lebesgue measure a.s.

b2) By a change of variable and using the scaling properties of the Brownian motion we

have
t 1 1 1
/ 1ig,~0ydu Zt/ 1{Btv>0}dU=f/ l 1p >0}d ’\'t/ 1p,~0 dv
0 0 0 «[ 0



ey

NG By, is again a Brownian motion. Now we have

asv —

1
lim t/ 1p,~0ydu = 400
0

t—+400

as we have seen in bl) that the I’j@f 15,~0y du is strictly positive a.s. Hence, as the 2 r.v.’s
5 LiB,~0; du andt fol 1;p,~0y du have the same distribution for everywe have

t——+00

t
lim / 1p,~0) du = +00 in probability .
0

In order to prove the a.s. convergence, it suffices to remark that the limit

t
lim / 1g,~0 du
t— 400 0

exists a.s. as the integral is an increasing function dflence we conclude because the a.s.
limit and the limit in probability necessarily must coincide.
b3) Leto > 0. It suffices to remark that

&5 > 15,20

and then to apply b2). & < 0, of course, just remark thatB; = —o (—B;), where(—B;); IS
again a Brownian motion and nowo > 0.

c) By Fubini’'s theorem and recalling the expression of the Laplace transform of the Gaus-
sian distributions, we have

+00 +00 o2
E[f ghutoBu du] = f bt gy
0 0

Then it is clear that the expectation is finite if and only ik —é. The integral is actually
easily computed giving, in conclusion

1

E[/(;+Ooebu+aBu du] _ { z, ifb < _0_22

2
+o00  otherwise.

Exercise 4. The idea is always to spliB, into the sum ofB; and of the incremenB,, — By.
As B2 = (B, — Bs + By)? = (B, — By)? + B2 + 2B,(B, — B), we have

t t t
f B2du = (1 — 5)B, +/ (B, — By)?du + 2135/ (B, — By) du
S S S



Now B; is already%;-measurable whereas we have

t 1t t 1
E(/ (By — By)2du | %) =f E((B. — By)?|F,) du :/ U —s)du == (1 — )2
S N S 2
the r.v. B, — B, being independent oF,. By the same argument
t t
E(ZBsf (B — By du|F,) = ZBS/ E(B. — By | %) du =0
S S
so that finally
! 2 1 2
E(/s Budu|%) = (1= 5B+ (1 —=)°.

As this quantity is already (B;)-measurable, we have

E(/t B2du|B,) = E[E(/t B2du|F,)| Bs| =t —)B + % (t — 5)2

N

Exercise 5. a) If 11, ..., 1, € R*, then, as(X,,, ..., X, ) is a linear function of the vector
(By., ..., B;,, By), itis jointly Gaussian. Moreover, if < 1,

E[X;B1] = E[(B; —tB1)B1] =t A1—t=0.

The two r.v.’sX; and B, being jointly Gaussian and uncorrelated, are independ&ntis
centered and, if > s,

E[X;X;] = E[(B; —tB1)(Bs —sB1)] =s —st —st+st =s(1—1t).

b) As X; and X; — % X, are jointly Gaussian, we need only show that they are not
correlated. We have

—1
E[(X: — =% X)X ] =51 —1) — [, sA-9=0.
— S
c) We have
1—t
(2) BIX | X] = B[X, — =50 X+ 15 X [ X ] = 7 X,

asX; — E X, isindependent oKy and centered. & | X;) = E(X; | %,) follows if we show

that X, — E X, is independent o and then repeat the argument of (2). In order to obtain



this we know that it is sufficient to show th&t — E X, isindependent ok, for everyu < s.
This is true as

tu(l—s)=0.

— S

1
E[(X, — = X)Xu] =u@—1) — .
d) We have, fos <t < 1,

This result is different from

1—s

obtained in c¢), as itis easy to see that(\{q% X,) = (1 —1)? 1= Whereas Vai(1 — 1) By) =
(1 — 1)2%s. Therefore the twe -algebrasF, and; are different.
e) LetO<#n < ... <1, < 1. Thenthe conditional law of the vect@,,, ..., B;,) given
By = 0 is Gaussian and can be computed as explained in 83.4. It has mean 0, as in (3.17) the
guantitiesnyx, my andy vanish. The covariance matrix is given by (3.18), where we identify

E[Xt | (g‘s] =

Xs

Cx = covariance matrix ofB;,, ..., B;,)
Cx.y = vector of the covariances &, andB;
Cy = covariance matrix oB; .

Therefore, denoting = (k;;);; the covariance matrix to be computed, we find
k,‘j =1 NTj — It

that coincides with the covariance matrix@{,,, ..., X;,), as obtained in the second part of
a).



