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Exercise 1 Let (B1, B2, B3) be a 3-dimensional Brownian motion and

(1)

Xt =

∫ t

0
sin(B3(s)) dB1(s) +

∫ t

0
cos(B3(s)) dB2(s)

Yt =

∫ t

0
cos(B3(s)) dB1(s) +

∫ t

0
sin(B3(s)) dB2(s) .

a) Prove that(Xt )t and(Yt )t are Brownian motions.
b1) Compute, fors, t > 0, E[XtYs ].
b2) Is(Xt , Yt )t a 2-dimensional Brownian motion?

c) Assume instead that

Yt = −

∫ t

0
cos(B3(s)) dB1(s) +

∫ t

0
sin(B3(s)) dB2(s) .

Is now(Xt , Yt )t a 2-dimensional Brownian motion?

Exercise 2 Let (B1, B2) a two-dimensional Brownian motion and let us consider the two pro-
cesses

dS1(t) = r1S1(t) dt + σ1S1(t) dB1(t)

dS2(t) = r2S2(t) dt + σ2S2(t) dB2(t)

wherer1, r2, σ1, σ2 are real numbers and with the initial conditionsS0 = s0, S1 = s1.
a) Prove that the processXt = S1(t)S2(t) is the solution of a stochastic differential equation

with respect to a new linear Brownian motion to be determined.
b1) Answer the same questions as in a) if we had, for−1 ≤ ρ ≤ 1,

dS1(t) = r1S1(t) dt + σ1S1(t) dB1(t)

dS2(t) = r2S2(t) dt + σ2

√
1 − ρ2 S2(t) dB2(t) + σ2ρS2(t) dB1(t)

b2) Compute the expectation ofXt = S1(t)S2(t) and also E[X2
t ]. For which values ofρ

each of these quantities is maximum?
b3) Which is the generator of(S1, S2)?



Exercise 3 Let us consider the equation

(2) dξt = −γ
(∫ t

0
ξs ds

)
dt + σ dBt , ξ0 = x

whereσ, γ are real numbers,σ > 0. In some sense this is a stochastic equation whose drift
coefficient does not depend only on the position of the process at timet but also on its past.

a) Let us consider the 2-dimensional SDE

(3)
dζt = −γ ηt dt + σ dBt

dηt = ζt dt

with the initial conditionsζ0 = x, η0 = 0. Check carefully that if(ζt , ηt )t is a solution of
(3) thenζ is a solution of (2) and prove that for equation (2) existence and uniqueness of the
solution hold.

b) Prove thatξ is a Gaussian process.
c) Assumeγ = 1. Which is the value of E[ξt ]?



Solutions

Exercise 1. a) We can write

Xt =

∫ t

0
Zs dBs

with Zs = (sin(B3(s)), cos(B3(s))). As |Zs | = 1 for everys, X is a Brownian motion by
Corollary 7.24. Same argument forY .

b1) Let us assumes ≤ t . As 〈B1, B2〉t ≡ 0, we have

E[XtYs ] =

= E
[∫ t

0
sin(B3(u)) dB1(u)

∫ s

0
cos(B3(v)) dB1(v)+

+

∫ t

0
cos(B3(u)) dB2(u)

∫ s

0
sin(B3(v)) dB2(v)

]
=

= E
[∫ s

0
sin(B3(u)) dB1(u)

∫ s

0
cos(B3(v)) dB1(v)+

+

∫ s

0
cos(B3(u)) dB2(u)

∫ s

0
sin(B3(v)) dB2(v)

]
=

= E
[∫ s

0
sin(B3(u)) cos(B3(u)) du +

∫ s

0
cos(B3(u)) sin(B3(u)) du

]
=

=

∫ s

0
E[sin(2B3(u))] du = 0

as the r.v. sin(2B3(s)) has the same distribution as sin(−2B3(s)) = − sin(2B3(s)), and has
therefore mathematical expectation that is equal to 0.

b2) We have easily

d〈X, Y 〉t = 2 sin(B3(t)) cos(B3(t)) dt 6≡ 0 .

hencet 7→ (Xt , Yt ) cannot be a Brownian motion.
c) With the new definition we can write

(
Xt

Yt

)
=

∫ t

0
Os dBs

where we denote byB the 2-dimensional Brownian motion(B1, B2) and

Os =

(
sin(B3(s)) cos(B3(s))

− cos(B3(s)) sin(B3(s))

)
.

It is immediate thats 7→ Os is an orthogonal-matrix-valued process. Hence the required
statement follows from Proposition 7.26 of the class notes.



Exercise 2. a) The clever reader has certainly remarked that the two processesS1, S2 are
geometric Brownian motions for which an explicit solution is known, which allows to come
correctly to the right answer. Let us however work otherwise. Remark that the associated
increasing process〈S1, S2〉t = σ1σ2S1(t)S2(t)〈B1, B2〉t vanishes so that

dS1(t)S2(t) = S1(t) dS2(t) + S2(t) dS1(t) =

= S1(t)
(
r2S2(t) dt + σ2S2(t) dB2(t)

)
+ S2(t)

(
r1S1(t) dt + σ1S1(t) dB1(t)

)

so that, ifXt = S1(t)S2(t),

dXt = (r1 + r2)Xt dt + Xt

(
σ1 dB1(t) + σ2 dB2(t)

)

Now, if we define

B̃t =
1√

σ 2
1 + σ 2

2

(
σ1B1(t) + σ2B2(t)

)

this is a Brownian motion and the above relation fordXt becomes

dXt = (r1 + r2)Xt dt +

√
σ 2

1 + σ 2
2 Xt dB̃t

X is therefore also a geometric Brownian motion and

(4) Xt = x0e
(
r1+r2−

1
2 (σ2

1 +σ2
1 )

)
+
√

σ2
1 +σ2

2 B̃t

b1) In order to simplify the formulas let us denoteρ =
√

1 − ρ2. We can repeat the previous
arguments, but now〈S1, S2〉t = σ1σ2S1(t)S2(t)〈B1, ρB1 + ρB2〉t = σ1σ2S1(t)S2(t)ρ dt .
Therefore

dS1(t)S2(t) = S1(t) dS2(t) + S2(t) dS1(t) + σ1σ2S1(t)S2(t)ρ dt =

= S1(t)
(
r2S2(t) dt + σ2ρ S2(t) dB2(t) + σ2ρS2(t) dB1(t)

)
+

+S2(t)
(
r1S1(t) dt + σ1S1(t) dB1(t)

)
+ σ1σ2S1(t)S2(t)ρ dt

so that, asXt = S1(t)S2(t),

dXt = (r1 + r2 + σ1σ2ρ)Xt dt + Xt

(
(σ1 + ρσ2) dB1(t) + σ2ρ dB2(t)

)

Now, as(σ1+ρσ2)
2 + (σ2ρ)2 = σ 2

1 +σ 2
2 +2ρσ1σ2 we have a new Brownian motion by letting

B̃t =
1√

σ 2
1 + σ 2

2 + 2ρσ1σ2

(
(σ1 + ρσ2) B1(t) + σ2ρ B2(t)

)



and we find again thatX is a geometric Brownian motion with stochastic differential

dXt = (r1 + r2 + σ1σ2ρ)Xt dt +

√
σ 2

1 + σ 2
2 + 2ρσ1σ2 Xt dB̃t .

b2) We know thatXt = S1(t)S2(t) is a geometric Brownian motion and that, settingσρ =√
σ 2

1 + σ 2
2 + 2ρσ1σ2, we have

Xt = x0e(r1+r2+σ1σ2ρ− 1
2 σ2

ρ )t+σρBt

Recalling the expression of the Laplace transforms of the Gaussian distributions

E[Xt ] = x0e(r1+r2+σ1σ2ρ− 1
2 σ2

ρ )te
1
2 σ2

ρ = x0e(r1+r2+σ1σ2ρ)t

which is maximum forρ = 1 if σ1σ2 > 0 and forρ = −1 otherwise. Similarly we have

E[X2
t ] = x2

0e2(r1+r2+σ1σ2ρ)t−σ2
ρ te2σ2

ρ t = x2
0e2(r1+r2+σ1σ2ρ)t+σ2

ρ t = x2
0e(2(r1+r2)+σ2

1 +σ2
2 +4σ1σ2ρ)t

which is maximum forρ = 1 orρ = −1 as above.
b3) The processt 7→ (S1(t), S2(t) has diffusion matrix

σ(x) =

(
σ1x1 0
σ2ρx2 σ2ρx2

)
.

Therefore

σ(x)σ (x)∗ =

(
σ1x1 0
σ2ρx2 σ2ρx2

) (
σ1x1 σ2ρx2

0 σ2ρx2

)
=

(
σ 2

1 x2
1 σ1σ2ρx1x2

σ1σ2ρx1x2 σ 2
2 x2

2

)

and therefore the requested generator is

L =
1

2

(
σ 2

1 x2
1

∂2

∂x2
1

+ σ 2
2 x2

2
∂2

∂x2
2

+ 2σ1σ2ρx1x2
∂2

∂x1∂x2

)
+ r1x1

∂

∂x1
+ r2x2

∂

∂x2
·

Exercise 3. a) If (ζt , ηt )t is a solution of (3) then clearlyηt =
∫ t

0 ζs ds and replacing in the first
equation we have

dζt = −γ
(∫ t

0
ζs ds

)
dt + σ dBt

i.e. ζ is a solution of (2). This proves existence of the solutions for (2). Conversely ifξ is a
solution of (2), then it is immediate that ifηt =

∫ t

0 ξs ds then(ξt , ηt )t is a solution of (3) and
this proves uniqueness.



b) Remark that (3) can be written

d

(
ζt

ηt

)
=

(
0 −γ

1 0

)
dt +

(
σ

0

)
dBt

This is a SDE with a drift that is linear in the state variable and a diffusion coefficient that is
constant, i.e. a multidimensional Ornstein-Uhlenbeck process which we know to be Gaussian.

c) From the formulas of the Ornstein-Uhlenbeck processes we know that the process

(
ζt

ηt

)

has mean

(5) etG

(
x

0

)

whereG is the matrix

G =

(
0 −1
1 0

)

Let us compute etG. Taking the powers ofG we have

G2 = −I, G3 = −G, G4 = I, . . .

i.e.
G2m = (−1)mI, G2m+1 = (−1)mG

Therefore

etG =

∞∑

n=0

1

n!
(tG)n = I

∞∑

m=0

1

(2m)!
(−1)mt2m + G

∞∑

m=0

1

(2m + 1)!
(−1)mt2m+1 =

= I cost + G sint =

(
cost − sint

sint cost

)
.

This and (5) give
E[ξt ] = x cost

and, by the way, E[ηt ] = x sint , which was not required. In particular the vector of the 2
expectations(E[ξt ], E[ηt ]) uniformly moves on the circle of radiusx.

The computation of the exponential oftG would be simplified by the remark thatG is
antisymmetric so that etG is orthogonal. The computation above can be performed also for
γ 6= 1 with a few additional difficulties.


