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Exercise 1 Let (B1, B2, B3) be a 3-dimensional Brownian motion and

t t
X, = / Sin(Ba(s)) d Bu(s) + / COS(B3(s)) d Ba(s)
(1) 0 0

t

t
Y; =/ cos(Bg(s))dBl(s)+f Sin(Bz(s)) dBa(s) .
0 0

a) Prove thatX,); and(Y;), are Brownian motions.
bl) Compute, fos,r > 0, E[X,Y;].
b2) Is(X;, Y;), a 2-dimensional Brownian motion?
c) Assume instead that

t t
Y = — / COS(Ba(s)) dBi(s) + / Sin(Ba(s)) d Ba(s) .
0 0

Is now (X;, Y;); a 2-dimensional Brownian motion?

Exercise 2 Let (B1, B2) a two-dimensional Brownian motion and let us consider the two pro-
cesses
dS1(t) = r181(t) dt + 0151(t) d B1(¢)

dSo(t) = r2S2(t)dt + 0252(t) dBo(t)
wherery, rp, 01, o2 are real numbers and with the initial conditiafis= sg, S1 = s1.
a) Provethatthe proce&s = S1(¢)S2(¢) is the solution of a stochastic differential equation

with respect to a new linear Brownian motion to be determined.
b1l) Answer the same questions as in a) if we had;Hfbr< p < 1,

dS1(t) = r181(t) dt + 0151(t) d B1(1)
dSo(t) = raS2(t) dt 4+ 02v/1 — p? So(t) d Ba(t) + 02pS2(1) d B1(t)
b2) Compute the expectation &f, = S1(¢)S2(¢) and also E;[(tz]. For which values ofp

each of these quantities is maximum ?
b3) Which is the generator @b, S2) ?



Exercise 3 Let us consider the equation

t
@ dstz—y(/o bods)di+odB, fo=x

whereo, y are real numbergy; > 0. In some sense this is a stochastic equation whose drift
coefficient does not depend only on the position of the process at timiealso on its past.
a) Let us consider the 2-dimensional SDE

dé‘t = —VYN: dt +UdB[

3
© dny = ¢ dt
with the initial conditionstg = x, no = 0. Check carefully that if¢;, n;); is a solution of
(3) then¢ is a solution of (2) and prove that for equation (2) existence and uniqueness of the
solution hold.
b) Prove that is a Gaussian process.
c) Assumey = 1. Which is the value of Ef]?



Solutions

Exercise 1. a) We can write

t
Xl‘ :/ stBs
0

with Z; = (sin(B3(s)), co9B3(s))). As |Z;| = 1 for everys, X is a Brownian motion by
Corollary 7.24. Same argument fr
bl) Letus assume< t. As (B1, B2); = 0, we have
E[XIYS] -

= E[/Otsin(Bg(u))dBl(u) /OSCOS(Bg(v))dBl(v)—l—
+ fo ' cost Baw)) d Ba(u) /0 ssin(Bg(v))de(v)] =
= E[ fo sin(Ba(u)) d By(u) fo cos(Ba(v)) d By(v)+
+ /0 SCO&Bg(u))de(u) /O ssin(B3(v)) de(v)] =
=g /O " Sin(Ba(u)) cost Ba(u)) du + /0 " cosBs(w) sin(Ba(u)) du | =
= /Os E[sin(2B3(u))] du = 0
as the r.v. sif2B3(s)) has the same distribution as 6#2B3(s)) = — sin(2B3(s)), and has
therefore mathematical expectation that is equal to 0.
b2) We have easily
d(X,Y);, = 2sin(Bz(t)) cogB3(t))dt £ 0.

hencer — (X;, Y;) cannot be a Brownian motion.
c) With the new definition we can write

t
(Xt> :/ Osst
Y; 0

where we denote b® the 2-dimensional Brownian motiqiB1, B») and

0 :< Sin(Bs(s)) cos{Bs(s)))
’ —Cog(B3(s)) sin(Bs(s)) ) °

It is immediate that +— O, is an orthogonal-matrix-valued process. Hence the required
statement follows from Proposition 7.26 of the class notes.



Exercise 2. a) The clever reader has certainly remarked that the two procéss8s are
geometric Brownian motions for which an explicit solution is known, which allows to come
correctly to the right answer. Let us however work otherwise. Remark that the associated
increasing processs1, S2); = 010281(¢)S2(t)(B1, B2); vanishes so that

dS1(2)S2(t) = S1(¢) dSa2(t) + S2(1) dS1(t) =
= S1(t)(r282(t) dt + 0282(t) d Ba(1)) + S2(t) (r1S1(¢t) dt + 0151(t) d B1(t))

so that, ifX; = S1(¢)S2(?),
dX; = (r1+r2)X,dt + X;(o1dB1(t) + 02d Ba(1))

Now, if we define

~

1
B = ——
1/(712—|—022

this is a Brownian motion and the above relationddf; becomes

dXt = (7’]_+7’2)Xtdt+\10'f+022Xtd§t

X is therefore also a geometric Brownian motion and

1,2, 2 2, 2%
@ X, = xgelr-d ofrad)+ /o o2

(01B1(1) + 02B2(1))

bl) Inorder to simplify the formulas let us deng@te= \/1 — p2. We can repeat the previous
arguments, but nowsSy, S2); = 010251(t)S2(t)(B1, pB1 + pB2); = 010251(1)S2(t)p dt.
Therefore

dS81(2)S2(t) = S1(¢) dS2(1) + S2(¢) d$1(t) + 010281(2) S2(H) p dt =
= 81(t)(r282(t) dt + 02p S2(t) d Bo(t) + 020 S2(t) d B1(1) )+
+82(1) (r1S1(r) dt + 0181(t) d B1(1)) + 010251(1) S2(1) p dt

so that, as{; = S1(¢)S2(¢),
dX; = (r1+r2 + 01020) X, dt + X;((01 4 po2) dB1(1) + 02p d Bo(t))
Now, as(o1 + po2)2+ (02p)% = 012 + 022 + 2po102 we have a new Brownian motion by letting

~ 1
B, = ((01 + po2) Bi(t) + 02p Ba2(1))

\/012 + 022 + 2po102




and we find again that is a geometric Brownian motion with stochastic differential

dX; = (r1+ 2+ 0102p) X, di +\Jo? + 03 + 200102 X, d B, .

b2) We know thatX; = S1(¢)S2(¢) is a geometric Brownian motion and that, setting=

\/012 + 02 + 2pa102, we have
X, = xge\"1tr2to1020=3 0f)i+0, B

Recalling the expression of the Laplace transforms of the Gaussian distributions

E[X,] = er(r1+r2+0102p—%03)te% 03 _ xoe(r1+r2+alaz,o)t

which is maximum forp = 1 if o102 > 0 and forp = —1 otherwise. Similarly we have

2 2 2 2 2
E[th] — xgeZ(rl—l—rz—i-olazp)t—apteZ(rpt — xgeZ(rl—i-rz—i-alogp)t—i—apt — xge(Z(rl—i-rz)—i-ol +o5+40102p0)t

which is maximum foro = 1 orp = —1 as above.
b3) The process+— (S1(1), S2(¢) has diffusion matrix

o(x) = ( o1%1 0 ) .
020X2 020X2

Therefore
2.2
o (N0 (x)* = ( o1 O ) ("1’“1 "Zﬁxz) _ ( T 4 x21x2>
020X2  020X2 0 o2px2 01020X1X2 05x5
and therefore the requested generator is
. 1<2232+2232+2 92 >+ o, d
= |01 X7 —>5 Oy Xy ——5 01020X1X rixX1— rgxg—m:
AN 18x% 2 28)6% 192051 28x18x2 1 1ax1 2 28x2

Exercise3. a) If (¢, n;), is a solution of (3) then clearly, = fé s ds and replacing in the first
equation we have

dg = —y(/otgsds)dt—l—adB,

i.e. ¢ is a solution of (2). This proves existence of the solutions for (2). Conversélisit
solution of (2), then it is immediate that#f = fé & ds then(&, n;), is a solution of (3) and
this proves uniqueness.



b) Remark that (3) can be written

(5)-(2 3o (5)om

This is a SDE with a drift that is linear in the state variable and a diffusion coefficient that is
constant, i.e. a multidimensional Ornstein-Uhlenbeck process which we know to be Gaussian.

c) From the formulas of the Ornstein-Uhlenbeck processes we know that the p(cf?ée)ss
t

has mean

G X
()
whereG is the matrix
G- 0 -1
~\1 O

Let us compute’®. Taking the powers of; we have

G:=-1, G®*=-G, G*=1,...

m __ (_1)1’)11’ G2m+l — (_1)mG

Therefore

_ - _ > 1 _1ym2m+1
gl _Z (tG) 12—(2 )I( 1) +GmZ:‘6—(2m+l)!( 1)"¢ _

= I cost + G sint = (C(.)St B SW)
sint  cost
This and (5) give
E[&/] = x cost

and, by the way, Ej;] = x sint, which was not required. In particular the vector of the 2
expectationsE[&;], E[n;]) uniformly moves on the circle of radius

The computation of the exponential off would be simplified by the remark that is
antisymmetric so that’€ is orthogonal. The computation above can be performed also for
y # 1 with a few additional difficulties.



