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Exercise 1 Let B = (�, ^, (^t )t , (Bt )t , P) be a Brownian motion.
a) Prove that there existsα ∈ R such that

Xt = B4
t − 6tB2

t + αt2

is a martingale. (Recall:(x+y)4 = x4+4x3y+6x2y2+4xy3+y4, E[Z4] = 3 if Z ∼ N(0, 1)).
b) Leta > 0 and letτ the exit time ofB from ] − a, a[. Recall that we know already that

τ is integrable and that E[τ ] = a2. Compute E[τ2] and Var(τ ).

Exercise 2 LetB = (�, ^, (^t )t , (Bt )t , P) be a Brownian motion. Recall that, for everyλ ∈ R,

Mt = eλBt−
1
2 λ2t

is a positive martingale with expectation equal to 1. ForT > 0 let us define on(�, ^) a
probability Q by, for everyA ∈ ^,

Q(A) = E[MT 1A] =

∫

A

MT dP .

Let us denote EQ the expectation with respect to Q.
a) Prove that ift ≤ T andA ∈ ^t

Q(A) = E[Mt1A] .

b1) Prove that, for everyz ∈ C,

Zt = ezBt−
1
2 z2t

is a complex martingale.
b2) Compute EQ[eiθBt ], for θ ∈ R. Is B a Brownian motion also with respect to Q?
b3) Prove that, with respect to Q,Xt = Bt − λt is a Brownian motion fort ∈ [0, T ].

Exercise 3 Let B = (�, ^, (^t )t , (Bt )t , P) be amdimensional Brownian motion and

Xt = Bg(t) .

whereg(t) = 1 − e−t .
a) Prove thatX is a Markov process and compute its transition function. Is it time homo-

geneous?
b) Let(�, ^, (^s)s, (Xt )t , (Px,s)x,s) a realization of the Markov process associated to the

transition function computed in a). Prove that, for every starting pointx and initial times, (Xt )t
converges ast → +∞ to a limit distribution to be determined, possibly depending onx, s.

c) Compute, for everyf ∈ #
2
K(Rm), the generatorAsf (x).



Solutions

Exercise 1. a) As the expectation of a martingale is constant, in order forM to be a martingale
we must have

E[B4
t ] + αt2 = 6tE[B2

t ] .

AsB4
t ∼ t2Z4 with Z ∼ N(0, 1), the previous relation becomes 3t2+αt2 = 6t2, henceα = 3.

Let us prove that with this choice ofα X is actually a martingale. We have, fors ≤ t ,

E[B4
t | ^s ] = E[(Bs + (Bt − Bs))

4
^s ] =

= B4
s +4E[B3

s (Bt−Bs)^s ]+6E[B2
s (Bt−Bs)

2
^s ]+4E[Bs(Bt−Bs)

3
^s ]+|E[(Bt−Bs)

4
^s ] =

= B4
s +4B3

s E[(Bt−Bs)^s ]+6B2
s E[(Bt−Bs)

2
^s ]+4BsE[(Bt−Bs)

3
^s ]+|E[(Bt−Bs)

4
^s ] =

= B4
s + 4B3

s E[(Bt − Bs)] + 6B2
s E[(Bt − Bs)

2] + 4BsE[(Bt − Bs)
3] + |E[(Bt − Bs)

4] =

= B4
s + 6B2

s (t − s) + 3(t − s)2

and also

E[tB2
t ^s ] = tE[(Bs + (Bt − Bs)

2
^s ] = t

(

B2
s + 2E[Bs(Bt − Bs)^s ] + E[(Bt − Bs)

2
^s ]

)

=

= t
(

B2
s + 2BsE[(Bt − Bs)^s ] + E[(Bt − Bs)

2]) = t (B2
s + (t − s)

)

.

Therefore

E[Xt | ^s ] = B4
s +6B2

s (t − s)+3(t − s)2 −6t (B2
s + (t − s))+3t2 = B4

s −6sB2
s +3s2 = Xs .

b) For everyt > 0 we have, thanks to the stopping theorem,

(1) 0 = E[Xt∧τ ] = E[B4
t∧τ ] − 6E[(t ∧ τ)B2

t∧τ ] + 3E[(t ∧ τ)2] .

We have
lim

t→+∞
E[(t ∧ τ)2] = E[τ2]

by Beppo Levi’s theorem. Also, by Lebesgue’s theorem,

lim
t→+∞

E[B4
t∧τ ] = E[B4

τ ] = a4

lim
t→+∞

E[(t ∧ τ)B2
t∧τ ] = E[τB2

τ ] = a2E[τ ] = a4 .

Actually we have|Bt∧τ | ≤ a, (t ∧ τ)B2
t∧τ ≤ τa and we know already thatτ is integrable.

Therefore, taking the limit ast → +∞ (1) gives

0 = a4 − 6a4 + 3E[τ2]

i.e.

E[τ2] =
5

3
a4



and Var(τ ) = E[τ2] − E[τ ]2 = 5
3 a4 − a4 = 2

3 a4.

Exercise 2. a) We have

Q(A) = E[MT 1A] = E
[

E[MT 1A | ^t ]
]

= E
[

1AE[MT | ^t ]
]

= E[Mt1A .]

b) We have

EQ[eiθBt ] = E[Mte
iθBt ] = e−

1
2 λ2tE

[

e(λ+iθ)Bt

]

= e−
1
2 (λ2−(λ+iθ)2)t

= e−
1
2 tθ2

e−iλθt .

We recognize the characteristic function of aN(λt, t) distributed r.v. ThereforeB is not a
Brownian motion with respect to Q (Bt is not centered).

c1) Very much similar to the casez ∈ R that we have seen in class: we have, fors ≤ t ,

E[Zt | ^s ] = e− 1
2 z2tE[ez(Bs+(Bt−Bs )) | ^s ] = ezBs−

1
2 z2tE[ez(Bt−Bs ) | ^s ] =

= ezBs−
1
2 z2tE[ez(Bt−Bs )] = ezBs−

1
2 z2t+ 1

2z2(t−s) = Zs .

c2) The simplest way of checking thatXt = Bt −λt is a Brownian motion is (recall Theorem
4.34) to verify that

Yt = eiθXt+
1
2 θ2t = eiθ(Bt−λt)+ 1

2 θ2t

is a Q-martingale for everyθ ∈ R. If s ≤ t ≤ T andA ∈ ^s , we have, again using a) and c1)
for z = λ + iθ ,

EQ[Yt1A] = E[Yt1AMt ] =

= E[eiθ(Bt−λt)+ 1
2 θ2teλBt−

1
2 λ2t1A] = E[e(λ+iθ)Bt−

1
2 t (λ+iθ)2

1A] =

= E[e(λ+iθ)Bs−
1
2 s(λ+iθ)2

1A] = E[YsMs1A] = E[YsMT 1A] = EQ[Ys1A] .

Exercise 3. a) There are (at least) two possible ways of reasoning. First remark thatX is
clearly a Gaussian process for which we know a Markovianity criterion. Let us compute first
the covariance function ofX: asg is an increasing function, fors ≤ t ,

Ks,t = Cov(Xs, Xt ) = E[Bg(s)Bg(t)] = g(s) ∧ g(t) = g(s) .

Therefore we have, foru ≤ s ≤ t ,

Ku,sK
−1
s,s Ks,t = g(u)

1

g(s)
g(s) = g(u) = Ku,t

which ensures thatX is a Markov processwith respect to its natural filtration. In order to
determine the transition functionp(s, t, x, dy), let us recall that this is simply the conditional



distribution ofXt givenXs = x. With the well-known formulas of the conditional distributions
of jointly Gaussian r.v.’sp(s, t, x, dy)is Gaussian with mean

E[Xt ] +
Ks,t

Ks,s

(x − E[Xs ]) = x

and variance

Kt,t −
K2

s,t

Ks,s

= g(t) − g(s) = e−s − e−t

i.e. p(s, t, x, dy) ∼ N(x, e−s − e−t ).
Second method. We can here check directly the Markov property with respect to the filtration

(^g(t))t . Actually, thanks to the freezing lemma and with the trick of decomposing into sum of
the actual position and of the increment, we have for every bounded measurable functionf

(2) E
[

f (Bg(t)) | ^g(s)

]

= E
[

f (Bg(t) − Bg(s) + Bg(s)) | ^g(s)

]

= 8(Bg(s))

where
8(x) = E

[

f (Bg(t) − Bg(s) + x
︸ ︷︷ ︸

)
]

.

Therefore (2) proves thatX is a Markov processwith respect to its natural filtration(^g(t))t
and, remarking that the r.v. indicated by the down brace isN(x, g(t) − g(s))-distributed, this
proves also that this is the transitions function.

b) The law ofXt starting at(s, x) isp(s, t, x, dy) ∼ N(x, e−s −e−t ), which, ast → +∞,
converges to aN(x, e−s) distribution.

c) If f ∈ #
2
K(Rm), the value ofAsf (x) is given by

lim
h→0

1

h

(

Ts,s+hf (x) − f (x)
)

(provided the limit exists) where

Ts,s+hf (x) =

∫

Rm

f (y) p(s, s + h, x, dy) .

The crucial remark is thatp(s, s + h, x, dy) is the distribution ofx + Bg(s+h) − Bg(s) ∼

x + Bg(s+h)−g(s), so that

Asf (x) = lim
h→0

1

h

(

E[f (x + Bg(s+h)−g(s)) − f (x)
)

=

= lim
h→0

1

h

g(s + h) − g(s)

g(s + h) − g(s)

(

E[f (x + Bg(s+h)−g(s)) − f (x)
)

.

As

lim
h→0

g(s + h) − g(s)

h
= lim

h→0

1 − e−(s+h) − 1 + e−s

h
= e−s lim

h→0

1 − e−h

h
= e−s



we have, going back to the generator of the Brownian motion that we already know,

Asf (x) = e−s lim
h→0

1

g(s + h) − g(s)

(

E[f (x + Bg(s+h)−g(s)) − f (x)
)

=

= e−s lim
t→0

1

t

(

E[f (x + Bt ) − f (x)
)

=
e−s

2
4f (x) .


