IV EDITION OF THE CONFERENCE

 

INVITO ALLA FINANZA MATEMATICA

and

LECTURES ON MATHEMATICAL FINANCE

                                                                                                             

 

ROME, JUNE 4, 2004

 

Dipartimento di Matematica

Università di Roma “Tor Vergata”

 

 

 

 

 

 

 

 

 

 

 

Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×Ø×

 

 

The conference will take place on June 4, 2004, at the Department of Mathematics of the Università di Roma-Tor Vergata, supported by the MURST PRIN project “Processi Stocastici, Calcolo Stocastico e Applicazioni” and by the Department of Mathematics.

 

The conference is divided in two parts:

 

·        Invito alla Finanza Matematica, especially addressed to students (e.g. laurea, master, PhD ones-in italian)

·        Lectures on Mathematical Finance, for researchers already interested in finance problems

 

and  will include invited talks on

 

·        finance economics

·        risk modeling

·        interest rate models

·        stochastic algorithms in finance

 

 

The following invited speakers will participate:

 

Invito alla Finanza Matematica - June 4, morning session

 

Dott. Giovanni Andrea Adragna, TradingLab, Unicredito Italiano, Milano: Modelli di finanza quantitativa nella pratica operativa di un desk (abstract)

 

Prof. Emilio Barucci, Dip. di Statistica e Matematica applicata all’Economia, Università di Pisa: The informational role of prices: theory and empirical implications (abstract)

 

Prof. Paolo Guasoni, Dip. di Matematica, Università di Pisa: Investire in un mercato inefficiente (abstract)

 

Lectures on Mathematical Finance - June 4, afternoon session

 

Prof. Tomas Björk, Dept. of Finance, Stockholm School of Economics: Towards a General Theory of Good Deal Bounds (abstract)

 

Prof. Damien Lamberton, Lab. d’Analyse et Mathematiques Appliquees, Université de Marne-la-Vallée, Paris: The two armed bandid in finance (abstract)

 

Prof. Claudia Klüppelberg, Center for Mathematical Sciences, Munich University of Technology: A Continuous Time GARCH Process Driven by a Lévy Process: Stationarity and Second Order Behaviour (abstract)

 

Prof. Arturo Kohatsu Higa, Dept.of Economics and Business, Universitat Paompeu Fabra, Barcelona: Examples of insider models (abstract)

 

You can find available online: the program [click HERE] and the (preliminary) list of participants [click HERE].

 

No registration fee is requested but, please, register your participation by sending an e-mail including name, affiliation and e-mail address to

processi@mat.uniroma2.it

 

If you like, you can visit the web pages of the past three editions: l’Aquila in 2003, Pescara in 2002 and Roma Tre in 2001.

 

For information about:

               hotels in Rome: see the website http://www.venere.com/it/roma/index.html.en;

               how to reach the department: visit its website http://www.mat.uniroma2.it/

                                                            (in particular, see http://www.mat.uniroma2.it/e-coord.htm)

 

For futher information, please contact the organizers:

 

                        Fabio Antonelli (antonf@univaq.it)

              Paolo Baldi (baldi@mat.uniroma2.it)

              Sergio Scarlatti (scarlatt@sci.unich.it)

 

 

 


 

Giovanni Andrea Adragna

Modelli di finanza quantitativa nella pratica operativa di un desk

 

TradingLab, Unicredito Italiano, Milano

mailto:GiovanniAndrea.Adragna@tradinglab.unicredit.it

 

Verranno descritti i 4 principali apparati della banca ai quali trovano accesso laureati/dottorati nelle discipline Matematica-Fisica-Ingegneria. Questi sono: Front Office, Risk Management, Financial Modeling, Information Technology. Per ciascuna delle aree esaminate verranno esposte attività quotidiane e straordinarie, livelli di responsabilità, requisiti tecnici e possibili carriere.

 

(back)

 


 

Tomas Björk

Towards a General Theory of Good Deal Bounds

 

Dept. of Finance, Stockholm School of Economics

mailto:Tomas.Bjork@hhs.se

 

We consider a Markovian factor model consisting of a vector price process for traded assets as well as a multidimensional random process for non traded factors.  All processes are allowed to be driven by a general marked point process (representing discrete jump  events) as well as by a standard multidimensional standard Wiener process. Within this framework we provide the following results.

 

1. We extend the Hansen-Jagannathan bounds for the Sharpe Ratio to the point process setting.

 

2. We study arbitrage free good deal pricing bounds for derivative assets along the lines of Cochrane and Saa-Requejo. Using martingale techniques we derive the relevant Hamilton-Jacobi-Bellman equation for the upper and lower good deal bound functions, thus extending the results from Cochrane and Saa-Requejo to the point process case.

 

3.  In particular we study the case of a single price process driven by a scalar Wiener process as well as by  a marked point process. For this case we provide a detailed analysis of the dynamic programming equation and the optimal market prices of risk. As a concrete application we present numerical results for the classic Merton jump-diffusion model.

 

(back)

 


 

Paolo Guasoni

Investire in un mercato inefficiente

 

Dipartimento di Matematica, Università di Pisa

mailto:guasoni@dm.unipi.it

 

In genere un mercato viene definito efficiente quando "i prezzi riflettono pienamente l'informazione disponibile" (Fama, 1970) e i rendimenti attesi sono costanti. Gli esempi piu' tipici di mercati efficienti sono i modelli basati su passeggiate aleatorie e moto Browniano. Se si lascia cadere l'ipotesi di rendimenti attesi costanti, si ottengono modelli in cui gli agenti hanno la possibilita' di prevedere in modo non banale i rendimenti futuri, pur non potendo realizzare arbitraggi.

In questo seminario verra' studiato un modello introdotto da Shiller (1984) e Summers (1986), in cui le variazioni dei prezzi includono sia una componente persistente (razionale) che una temporanea (irrazionale). Verra' studiato il problema di investimento ottimale prima per un agente economico informato, che osserva sia il valore di mercato che il valore fondamentale, poi per un agente disinformato, che osserva solo il valore di mercato. Per l'agente informato il processo dei prezzi e' Markoviano, quindi le decisioni di investimento richiedono solo la conoscenza dei valori odierni, mentre per l'agente disinformato la strategia ottimale richiede l'utilizzo di tutta la storia passata dei prezzi.

 

(back)

 


 

                                                                      Claudia Klüppelberg                      

A Continuous Time GARCH Process Driven by a Lévy Process: Stationarity and Second Order Behaviour

 

Center for Mathematical Sciences, Munich University of Technology

mailto:cklu@ma.tum.de

 

We use a discrete time analysis, giving necessary and sufficient conditions for the almost sure convergence of ARCH(1) and GARCH(1,1) discrete time models, to suggest an extension of the (G)ARCH concept to continuous time processes. Our ``COGARCH" (continuous time GARCH) model, based on a single background driving L\'evy process, is different from, though related to, other continuous time stochastic volatility models that have been proposed. The model generalises the essential features of discrete time GARCH processes, and is amenable to further analysis, possessing useful Markovian and stationarity properties.

This is joint work with Alexander Lindner and Ross Maller.

(back)

 


 

Arturo Kohatsu Higa

Examples of insider models

 

Dept.of Economics and Business, Universitat Paompeu Fabra, Barcelona

mailto:kohatsu@upf.es

 

In this talk mostly directed to young researchers and PhD students we will introduce the most significative examples in models for insider trading. We will consider various issues time permitting. We will consider:

1. Insider trading in Brownian environment. This is the most considered model which postulates that stock prices are determined  by small investors and the insider has future information not available to the small investors.

2. Insider trading in markets with jumps. One drawback of the model(s) in 1. is that optimal trades of insiders are highly oscillating. One way of solving this problem is to consider markets with jumps.

3. Models of the stock price for the insider. Here we consider an insider that has an effect of the stock price as regarded by the small investor. This uses anticipating calculus techniques.

 

(back)

 


 

Damien Lamberton

The two armed bandid in finance

Lab. d’Analyse et Mathematiques Appliquees, Université de Marne-la-Vallée, Paris

mailto:dlamb@math.univ-mlv.fr

 

This talk is based on joint work with Gilles Pagès and Pierre Tarrèes. We investigate the asymptotic behaviour of the so-called two-armed bandit algorithm and describe en application to asset allocation. We show that the convergence of the algorithm to the desired limit may fail to occur for some values of the parameters. We also give a sufficient condition for convergence to the good limit.

 

(back)