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1. abstract

This project deals with infinite networks, but an important part is devoted to
trees T. What is unique to this special environment is the existence of a large group
of isometries: the action of this group gives rise to convolutions and harmonic anal-
ysis. So, the first research line is aimed to study harmonic analysis on trees and
representation theory of their group of automorphisms via a geometric approach.
More than 35 years ago the P.I., jointly with A. Figa’-Talamanca, investigated
spherical representation theory of simply transitive subgroups of Aut T, like free
groups, by techniques based on analysis of Poisson kernels. The free group is a co-
compact subgroup of Aut T, hence relative large. But the revolutionary idea here,
in the spirit of Gelfand and helgason, is to look at functions on horospheres instead
of vertices. The automorphism group Aut H of the horospherical fiber bundle H is
much larger than Aut T, for instance it contains a “Cartan” subgroup A of parallel
shifts along the fibers. The Poisson kernel and its powers lift to functions on H, that
happen to be characters of A, and spherical representations are induced in the sense
of Mackey from these characters.This leads to a detailed study of spherical repre-
sentations of Aut H that extend the known representations of free groups. But at
the same time we can consider horospheres of edges, or of oriented edges (“flags”),
instead of vertices: we obtain a new theory of representations for each type of sim-
plex in the simplicial complex T. This will open the way to extensions to spherical
representations of higher rank buildings. At the same time, this allows us to study
two new subjects: Radon transforms on T and eigenspaces of its Laplace operator.
We shall obtain inversion formulas for all the Radon transforms (on vertices, edges
and flags), and as a consequence the corresponding Plancherel measures. The tool
is the spectral theory of the Laplacians, that will be computed by using the recur-
rence relations of its powers (hence the convolution product induced by the simply
transitive subgroup. i.e. harmonic analysis and Gelfand pairs).

If homogeneous trees are a typical example of Bruhat-Tits buildings of rank
1, also semi-homogeneous trees are combinatorial rank 1 buildings. But in this
context there are two dramatic differences. The first is that there is no transitive
group of automorphisms on vertices, hence no step-one recurrence relation (no step
2 difference equations for spherical functions): however, there is a simply transitive
subgroup on edges. The second is that the extremal eigenfunctios of the Laplacian
are not powers of the Poisson kernel, hence do not lift to the horospherical bundles
and cannot be computed via integral geometry: we shall need tools from potential
theory (the generating functions of the Markov chain induced by the Laplacians).
Nice Gelfand pairs will not exist any longer for the Laplace operator, although
they will for its square, because there is a step-2 transitive subgroup of Aut T: but
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the set of vertices at even distance is not a tree any longer (it is a network, more
precisely a polygonal graph, originally studied by the P.I. and A. Iozzi 35 years
ago for different goals). Still, we can study spectral theory of the Laplacian, and
this will be a completely new theory, with very different spectra and Lp spherical
functions.

On the other hand, using Markov chains to analyze eigenfunctions of the Lapla-
cian leads us to a new insight: boundary theory for normalized eigenfunctions.
The Poisson boundary representation is known for eigenfunctions of the Laplacian
(see results of the P.I. and A. Koranyi), and more recently by W. Woess), but
this opens a challenging new problem if the same techniques are used to deal with
polyharmonic functions. The boundary representation theorems of eigenfunctions
will be used as a tool to obtain the same for polyharmonic functions on any tree,
thereby bringing to trees a result of Almansi as old as 1898, and more recent ones
for the isotrpic case by Cohen, Colonna, Gowrysankharan and Singman. But the
new approach is that this can be done avoiding case by case detailed calculations
and using instead a clever differentiation method for generalized Poisson kernel.
Then this idea will hold much more generally, and we’ll be able to bring the result
to the hyperbolic disk and even to higher rank symmetric spaces: a nice outcome
for a theory originally based on discrete structures. Of course there is no interest in
boundary representations unless they are applied, and we shall apply them to find
the radial (and non-tangential) limit behavior of polyharmonic functions on trees
and on the hyperbolic disk.

The spherical representations that we are going to study will establish a sim-
ilarity between Aut H and SL(2,R). P. Cartier’s original approach to the theory
of representations of the 2x2 projective linear group over a p-adic field is based
on the realization of the group as a group of isometries of a homogeneous tree
of order p + 1. The interplay between PSL(2, R), PSL(2, Qp) and homogeneous
trees leads to an additional innovative idea (to be developed jointly with Florin
Radulescu), aimed to study the interplay between the representations of the Hecke
algebras on various vector spaces (e.g. automorphic forms or Maass forms) and
the unitary representation theory of the group G = PSL(2,Z[1/p]) ⊆ PSL(2, Qp).
Weak contaiment in the left regular representation of PSL(2, Qp) corresponds to
the validity of the Ramanujan–Petersson conjectures for the Hecke operators on
the vector spaces taken in consideration. In particular for automorphic forms this
would give a first harmonic analysis proof of the Ramanjan estimates for automor-
phic forms (proven before by Deligne [16] by an indirect method). In the case of
Maass forms this would allow to prove completely new estimates.
There are two interesting (exotic) topologies on the group algebra of G coming
from the restrictions of the left regular representations of PSL(2,R), respectively
PSL(2, Qp), to G. A method of passing from the restriction of a discrete series
unitary representation of PSL(2, R) to a unitary representation of PSL(2, Qp) is
available. This transfer of the unitary representations amounts to the calculation of
the structure of the corresponding representation of the Hecke operators, which are
”block” matrix coefficients of the new representation of PSL(2, Qp). The matrix
coefficients are spherical functions on SL(2, Qp) and their interpretation is related
to the eigenvalues of the Hecke operators (related to the Ramanujan–Petersson es-
timates of eigenvalues). We plan to establish an abstract and powerful formulation
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of this transfer of unitary representations. The tool is the fact that the matrix coef-
ficients of a discrete unitary representation of PSL(2,R) give an algebra-valued rep-
resentation of the eigenvalues of the Laplacian associated to the homogeneous tree
of degree p+1. Weak contaiment in the left regular representation of PSL(2, Qp)
corresponds to the validity of the Ramanujan–Petersson conjectures for the Hecke
operators on the vector spaces taken in consideration. In particular for automorphic
forms this would give a first harmonic analysis proof of the Ramanjan estimates
for automorphic forms (proven before by Deligne [16] by an indirect method). In
the case of Maass forms this would allow to prove completely new estimates. This
will give a new understanding of trace formulas for Hecke operators acting on au-
tomorphic forms.

So far we have dealt with homogeneous or semi-homogeneous trees or polygonal
graphs. But many previous papers of the P.I. and this team have dealt with the
spectral properties of the Laplacian (meant as the normalized adjacency operator)
on networks, and related properties in analysis and potential theory. Therefore we
complete our project with a research line that deals with graphs X that are not
homogeneous, but whose degree is bounded. We consider infinite graphs, but we
approximate them by a fixed exhaustion Xn made of finite subsets. We suppose
further that X is obtained by a density-zero perturbation of some “homogeneous”
network. As simple example we have density zero-perturbations of trees (i.e. non-
amenable graphs for which interior (volume) cardinalities are not negligible com-
pared with the boundary (surface) cardinalities). Let A be the adjacency operator
(that becomes a multiple of the Laplacian in the case of homogeneous graphs; it
is bounded and self-adjoint), and by An the adjacency operators associated to the
fixed exhaustion. We shall study of the spectral properties of A for eigenvalues
near its norm. This research line (main investigator Francesco Fidaleo) has natural
physical applications to the Bose–Einstein Condensation in statistical physics and
statistical mechanics.
The behavior of the resolvent of A when its eigenvalue lambda is near its norm
coincides with the behavior of the resolvent of the Hamiltonian H for eigenvalues
near zero: this shows the link between this line of research and the study of the
Laplacian on homogeneous or semi-homogeneous trees, but as already observed now
the graphs are not homogeneous.

Among the relevant properties to be studied (that depend on the chosen ex-
haustion which is however fixed), we mention: - The geometrical dimension of the
graph X - The Perron-Frobenius density of X, describing the L2-behaviour of the
Perron-Frobenius weight of A obtained as the limit of those of the An, provided the
limit is uniquely determined (this happens for all examples under consideration on
the basis of a natural choice of the exhaustion) - The recurrent/transient behav-
ior of the (adjacency operator of the) graph, given by the finiteness of the Green
kernel at the eigenvalue lambda in the limit when lambda tends to the norm of A
- The appearance of the hidden spectrum of H in the above mentioned limit for
the integrated density of states (the cumulative function describing the density of
eigenvalues of HXn

in the limit Xn ≈ X, provided it exists
These properties are not only intrinsically significant, but they all have nat-

ural applications to the study of the Bose–Einstein Condensation (BEC) of free
bosons associated to the so-called Pure Hopping Model on the graph X. In fact,
the appearance of the BEC of the free bosons is governed by the behaviour of the
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Planck distribution. This research line produces a significant result in physics: that
the transience/recurrence of the adjacency operator on the graph (that is a spec-
tral property) is equivalent to the occurrence/non-occurrence of the Bose–Einstein
condensation.

2. State of the art

This project deals with infinite networks, but an important part is devoted to
trees and polygonal graphs having uniformly spanning trees. What is unique to
this special environment is the existence of a large group of isometries: the action
of this group gives rise to convolutions and harmonic analysis. So, the first research
line is aimed to study harmonic analysis on trees and representation theory of their
group of automorphisms via a geometric approach. More generally, we can give up
the group of isometries and study in this wider context also the spectral properties
of nearest neighbors operators on general trees and graphs of bounded valency. The
research has to do with harmonic analysis, the Hecke algebra, the geometry of trees
(and graphs) given by the Laplace operator on homogeneous and semi-homogeneous
trees and the adjacency operator on graphs of bounded degree (i.e., valency). The
main tools are the horospherical fiber bundle and the Poisson kernel therein, and
the spectra of the discrete Laplacian and of the adjacency matrix.

Harmonic analysis and spectra of the Laplace operator on an infinite homoge-
neous tree T and representation theory of groups acting thereon have been studied
in many articles and books. In all these references and in our preceding works, we
have studied harmonic analysis on trees by looking at algebras of functions on the
set V of vertices of a homogeneous tree and the action of subgroups of the auto-
morphism group on V . One of the main goals of the present project is to give a
completely different and innovative approach to harmonic analysis on trees, start-
ing not from the set of vertices, but from horospheres on T and their fiber bundle
H, whose base is the boundary ot T (the set of tangency points of horospheres) and
whose fibers, isomorphic to Z, are given by the horospherical index. This mix of
analysis and geometry provides results not only in analysis and operator theory but
also in integral geometry (the horospherical fiber bundle and its automorphisms,
range and inversion of the various Radon transforms). A significant advantage of
this approach is that AutH is much larger than AutT , and in particular has a
non-trivial center, that contains a group A ≈ Z of parallel shifts along fibers. This
group can be used, in harmonic analysis on trees, much in the same way as the
Cartan subgroup of the Iwasawa decomposition for semi-simple groups and their
symmetric spaces. This fact will allow us to realize the spherical representations of
Aut T as induced representations from A, in the sense of Mackey.

A tree is a simplicial complex whose simplexes are vertices and edges (and also
flags, i.e. oriented edges). Then homogeneous and semi-homogeneous trees are the
lowest rank case of the simplicial complexes defined by the Bruhat–Tits buildings
[5, 51] in their combinatorial definition, whose groups of automorphism at rank n
is PSL(n,Qp). Therefore this project is a preliminary step towards a revision in
terms of integral geometry of the fundamental work of Macdonald on the spherical
Fourier transform on semisimple p-adic groups.
Let us denote by V and E the set of vertices and of edges. We shall consider
Radon transforms over horospheres RV , RE related to these simplexes. If f is
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a function on V or E, its Radon transform Rf is the sum of the values of f
on each horosphere. We shall obtain applications to harmonic analysis, like the
study of spherical functions on the edges of the tree and related new analytic
families of unitary and uniformly bounded representations of AutT , in the same
spirit of the representation theory for SL(2,R), and inversion formulas for RV
and RE . The main tool that links spherical functions ot integral geometry is the
Poisson transform, that is a boundary integral representation whose integral kernel,
the Poisson kernel, can be lifted to a function on the horospherical fiber bundle,
actually a character of A. The spherical representations will be realized as induced
representations from the characters of this group of dilations of the fiber bundle.

The setup becomes more intriguing in the framework of semi-homogeneous non-
homogeneous trees, where we shall still be able to describe spherical functions as
Poisson integrals, but they will not be induced from characters of A, and indeed,
integral geometry will not be adequate to produce them explicitly: we shall need
probability theory, namely the recurrence relations of the first visit probabilities of
the random walk generated by the Laplacian on the semi-homogeneous tree.

Long ago, P. Cartier’s followed a combinatorial approach to the theory of rep-
resentations of PGL2(Qp) (the two by two projective linear group over a p−adic
field Qp) by realizing this group as a group of isometries of a homogeneous tree
T of order p + 1. In this context, we shall study the interplay between the repre-
sentations of the Hecke algebras on various vector spaces (e.g. automorphic forms)
and the unitary representation theory of the group G = PSL(2,Z[(1/p)), where p
is a prime number. In preceding work we have exhibited a method of passing from
the restriction of a discrete series unitary representation of PSL(2,R) to a unitary
representation of PSL(2,Qp). This transfer of the unitary representations amounts
to the calculation of the structure of the corresponding representation of the Hecke
operators, that are related to spherical functions on SL(2,Qp) and the eigenvalues
of the Hecke operators. In this project we plan to establish an abstract formulation
of this passage from unitary representation of PSL(2,R) to PSL(2,Qp). This is
based on the fact that the matrix coefficients of a discrete unitary representation of
PSL(2,R) give an algebra valued representation of the eigenvalues of the Laplacian
associated to the homogeneous tree of degree p+ 1.

For general networks, we do not have groups of isometries and harmonic analysis,
but we still have adjacency operators and their spectral theory. In this environment,
our project aims to describe a classical phenomenon in statistical mechanics (the
Bose–Einstein condensation) in terms of the spectrum of the adjacency operator.
The main tools and properties are the geometric dimension of the network, the
Perron–Frobenius theorem, the recurrence or transience of the adjacency operator,
the Green kernel at the eigenvalue 1 (that is, again, potential theory) and the
hidden spectrum of the Hamiltonian operator.

3. The research lines of the project

3.1. Harmonic analysis on homogeneous trees via integral geometry. Har-
monic analysis on a tree T and representation theory of groups acting on it have
been studied in many articles and books: see, for instance, [7, 14, 17–20, 22] and
their bibliographies. In all these references, harmonic analysis was studied by look-
ing at algebras of functions on the set V of vertices of a homogeneous tree (or
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semi-homogeneous, in the last reference) and the action of subgroups of the auto-
morphism group on V . The goal of the first research line of the present project
(with main collaborators Simon Gindikin and Enrico Casadio–Tarabusi) is to give
a different approach to harmonic analysis on trees, inspired by [25], starting not
from the set of vertices, but from horospheres on T and their fiber bundle H, whose
base is the boundary ot T (the set of tangency points of horospheres) and whose
fibers, isomorphic to Z, are given by the horospherical index. Our motivation for
this approach is that AutH is much larger than AutT , and in particular has a
non-trivial center, that contains a group A ≈ Z of parallel shifts along fibers that
can be used, in harmonic analysis on trees, much in the same way as the Cartan
subgroup of the Iwasawa decomposition for semi-simple groups and their symmetric
spaces.

The horospherical transform, or Radon transform, introduced in [?Radon] for
Euclidean spaces, was later extended to complex classical groups [24,25] and sym-
metric spaces (see [29] for references). It has also been extended to trees, as the
summation over the vertices in each horosphere: it was introduced on homogeneous
trees in [7] and studied in [3];later on, it was extended to non-homogeneous trees
in [9, 11].

Our motivation to study Radon transforms and harmonic analysis based on
horospheres for functions defined not only on vertices of a tree, but also on edges
and flags, is the following. A tree is a simplicial complex whose simplexes are
vertices, edges and flags. Then homogeneous and semi-homogeneous trees are the
lowest rank case of the simplicial complexes defined by the Bruhat–Tits buildings
(in their combinatorial definition). Therefore this project is a preliminary step
towards a revision in terms of integral geometry of the fundamental work [35] on
the spherical Fourier transform on p-adic groups.
We shall consider Radon transforms over horospheres RV , RE , RF related to these
simplexes and derive applications to harmonic analysis, like the study of analytic
families of unitary and unitary bounded representations of AutT , in the same spirit
of the representation theory for SL(2,R).

Here is an outline of our approach. We start with the fiber bundle H. We could
even start with an abstract bundle H, not originating from a tree, since the tree
can be reconstructed from H and a choice of nested families of subsets of its base
H/A, and the boundary Ω can be obtained as H/A, but for simplicity we shall
introduce H as the bundle of horospheres in a homogeneous or semi-homogeneous
tree T ). Then we consider some space of functions U on H and decompose it as

direct integral over Â ≈ T of subspaces Uσ invariant under the action of the parallel
shift group A, where A acts via its characters σ. Since A commutes with AutT ,
the spaces Uσ are invariant under AutT , and the action of AutT (or its subgroups)
gives rise to representations πσ of AutT and its subgroups. These representations
can be naturally realized on the boundary Ω ≈ H/A, but for this goal it is more
appropriate to give a different model for Ω, by realizing it as any of the special
sections of H. The special sections are in one to one correspondence with the
vertices v: the special section Σv consists of all horospheres that pass through v
(although this definition is obviously based upon starting with the set of vertices,
these special sections can be also reconstructed if one starts with an abstract fiber
bundle H and not with a specific tree). The choice of a special section induces
a global chart on H, that is, it gives rise to specific choice of integer coordinates
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on the fibers: the special section is at level 0. This allows to write explicitly the
representations πσ in these coordinates. These representations, called spherical
representation of AutH, extend the spherical representations of AutT and of its
discrete subgroups acting simply transitively on T , studied in [19, 20] and more
generally in [22], that were proved in these references to be irreducible.

This setup gives a completely different and new flavor and insight to the theory
of spherical representations and Poisson transforms develeoped in [20]. Observe
that the special section Σv is endowed with a unique invariant normalized measure
νv0 under the action of the isotropy subgroup Kv ⊂ AutT of v. This allows us to
introduce a natural intertwining operator Rv from functions on H to functions on
V , given by integration with respect to νv on one side, and radialization around v
on the other side. When we choose a different special sectio Σv0 , the invariant prob-
ability measure νv turns out to be absolutely continuous with respect to νv0 . The
Radon–Nikodym derivative is homogeneous along the fibers, and all homogeneous
functions along the fibers are related to it: in the fiber coordinate n their values are
σ(n), where σ are the characters of A (let us write σ(n) = σz(n) = eizn for some
complez number z). Therefore, for each character σz of A, we obtain a Poisson
transform from functions on Σv0 to function on V , with integral kernel Kz, where
K(x, ω) is the usual Poisson kernel. The image of the Poisson transform consists of
eigenfunctions (with eigenvalues depending on σ) of the generator of the Hecke alge-
bra (the algebra under the convolution defined by AutT ) of functions radial around
v0). This operator is usually called the Laplace operator µv0 . It is known that this
map is surjective from finitely additive measures on Σv0 (sometimes called bound-
ary distributions in the literature) and eigenfunctions of µv0 . Some eigenvalues are
positive-definite with respect to AutT , and for their eigenvalues the representations
πσ are unitary.

In the direct integral decomposition of the function f ∈ U into the spaces Uσ,
the component fσ in Uσ defines the value of the vertex-spherical Fourier transform
GVv0f(σ, ω) at the character σ and the fiber ω. If the points of the horospherical fiber
bundle H are realized as sets of vertices (horospheres in V ), this allows to intro-
duce a horospherical transform (usually called Radon transform in the literature)
from functions on V to functions on H, given by summation over each horosphere.
The interplay between the spherical transform, the horospherical transform and

the Fourier series expansion in Â ≈ T leads to the Fourier slice theorem, that pro-
vides a Plancherel formula for the spherical transform over T. The integral weight
that appears in the Plancherel formula is related to a function that has an im-
portant analogue in harmonic analysis on semisimple groups, the Harish-Chandra
c−function, that was originally computed on trees in [17,20].

Following [3] and introducing a suitable space of test functions S(V ) on V
(Schwartz class, small enough that its dual S ′ (space of distributions on V ) con-
tains all eigenfunctions of the Laplace operators corresponding to unitary represen-
tations, we shall extend the horospherical transform to distributions and show that
the c−function is an eigenvalue. By the same token we also prove a Paley–Wiener
theorem for the spherical Fourier transform. We define a Schwartz class S(H) also
on the horospherical fiber bundle, and show that the Radon transform maps S(V )
to H. Then we consider the geometric back-projection R∗ from function on H
to functions on V and show that R∗R is a convolution operator, we compute its
symbol and use it to provide an inversion formula for R.
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Spherical representations of a free group or free product (regarded as a subgroup
of AutT ) on functions on vertices were studied on the basis of an analogy between
the homogeneous tree of degree p + 1 and the representation theory of SL(2,R)
as follows. P. Cartier’s combinatorial approach to the theory of representations
of PGL2(Qp) (the two by two projective linear group over a p−adic field Qp) is
based on the realization of the group as a group of isometries of a homogeneous
tree T of order p+ 1 [7]: indeed, this tree is obtained by an explicit combinatorial
constructions that defines as vertices the lattices of Q2

p mod its ring of integers Z2
p

(see also [52]). In the case of edges, on the boundary Ω of T we can consider the
hitting probability measure ν by means of the simple random walk. The action of
PGL(2,Qp) on T induces an action on Ω, and the measure ν is quasi-invariant with
respect to the action of PGL(2,Qp). That is, letting νg(E) = ν(gE), the measure
νg is absolutely continuous with respect to ν, and one may define a Poisson kernel
as the Radon-Nikodym derivative K(g, ω) = dνg/dν(ω), for ω ∈ Ω. Finally, if
z ∈ C, one defines the spherical representations of PGL2(Qp), on the space of
simple functions on Ω, by the formula

(πVg (ξ))(ω) = Kz(g, ω)ξ(g−1ω).

Spherical functions are then obtained integrating Kz(gi, ω) over the boundary.
These representations are called spherical representations, introduced, in the case
of spaces of functions on vertices, in [19] and studied in [20, 22] and many other
papers. It was shown in [19, 19] that, if 0 6 Re z 6 1, they are an analytic fam-
ily of uniformly bounded representations of the free group, unitary if Re z = 1

2 or
unitarizible if Im z = kπ/ ln q (principal and complementary series), and that the
principal and complementary series are irreducible. A discrete series of AutT was
studied by Olchanskyi (see also [18]).

All of this will also be done for edges. In particular, this will yield a Plancherel
formula also for harmonic analysis on edges, hence a decomposition of the regular
representation of AutT also in terms of edge-spherical functions. We have already
seen that the construction of spherical representations πz starting with the horo-
spherical fiber bundles requires not only a character σz(n) = qnz of the Cartan
subgroup A and a group of automorphisms acting on the bundles, but also the
choice of a special section in the fiber bundle, that is, a choice of reference vertex v0
or reference edge e0. We shall prove that the vertex-horospherical bundle HV and
the edge-horospherical bundle HE are isomorphic. However, we shall also prove
that there exists no automorphism from one to the other that maps special sections
to special sections. Therefore, in principle, the vertex-spherical representations and
the edge-spherical representations induced by the same character of A might be
inequivalent. We plan to show that these representations actually do not depend
on the choice of reference vertex or edge, and therefore from the choice of special
section. But in order to prove that they are equivalent, a sufficient condition would
be to reformulate these representations not as based on a special section, but on a
general section: that is, to reformulate them in terms of a global chart but not on
an individal reference point, so that the character σz(n) would have to be parame-
terized as σz(nω), depending on the fiber. This means to exprss the representations
purely on the basis of elements of the horospherical fiber bundle, not on the choice
of a vertex or edge. If this challenging step can be completed, then πEz would be
equivalent to πVz . In particular, the edge-spherical representations of the princi-
pal and complementary serieswould be topologically irreducible, because so are the
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vertex-spherical representation when restricted to a simply transitive subgroup of
AutT , as proved in [19,20].
Moreover, the spectrum of the Laplace operator on `p(E) can be completely de-
scribed in the same way as it was done on `p(V ) in the references mentioned above,
except for a shift due to the fact that the recurrence relation for edge-spherical func-
tions will still be a second order difference equation but with three terms instead
of two.

3.2. Representations of p-adic semisimple groups arising from the ge-
ometry of trees and the Ramanujan–Petersson conjectures. The interplay
between PSL(2,R), PSL(2,Qp) and homogeneous trees leads to the second re-
search line of the project (main investigator Florin Radulescu), aimed to study the
interplay between the representations of the Hecke algebras on various vector spaces
(e.g. automorphic forms or Maass forms) and the unitary representation theory of
the group G = PSL(2,Z[1/p]) ⊆ PSL(2, Qp), where p is a prime number.
There are two interesting C∗-algebra (exotic) topologies on the group algebra of G
coming from the restrictions of the left regular representations of PSL(2,R) respec-
tively PSL(2,Qp) to G. In preceding work we have exhibited a method of passing
from the restriction of a discrete series unitary representation of PSL(2,R) to a
unitary representation of PSL(2,Qp). This transfer of the unitary representations
amounts to the calculation of the structure of the corresponding representation of
the Hecke operators, which are a ”block” matrix coefficient of the new representa-
tion of PSL(2,Qp). The matrix coefficients are spherical functions on SL(2,Qp)
and their interpretation is related to the eigenvalues of the Hecke operators (related
to the Ramanujan–Petersson estimates of eigenvalues). In this project we plan to
establish an abstract formulation of this passage from unitary representation of
PSL(2,R) to PSL(2,Qp). This is based on the fact that the matrix coefficients
of a discrete unitary representation of PSL(2,R) give an algebra valued represen-
tation of the eigenvalues of the Laplacian associated to the homogeneous tree of
degree p+ 1.

More precisely, in previous research [56] we analized the unitary representations
of PSL(2,Qp) that are obtained, through the process described above, starting with
unitary representations in the (analytic) discrete series of PSL(2,R). We were able
to identify the character [8, formula 13] of the unitary representation obtained this
way. This computation was independently confirmed by number-theoretic methods
in [59]. This gives a better understanding of trace formulas for Hecke operators
acting on automorphic forms.

In this project we expect to further extend this interplay between operator alge-
bras representations of the Hecke operators and the corresponding number-theoretic
statements. Weak contaiment in the left regular representation of PSL(2, Qp) cor-
responds to the validity of the Ramanujan–Petersson conjectures for the Hecke op-
erators on the vector spaces taken in consideration. In particular for automorphic
forms this would give a first harmonic analysis proof of the Ramanjan estimates for
automorphic forms (proven before by Deligne [16] by an indirect method). In the
case of Maass forms this would allow to prove completely new estimates.
Analyizing the characters of the transferred representation allows (as in the proof
of the Plancherel formula for p-adic groups) to determine the expression of the
character of the transferred representations as a limit of convex combinations of
characters of irreducible representations and hence this gives a method to decide if
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the transferred representation is tempered (which corresponds to the validity of the
Ramanujan–Petersson estimates for the initial vector space). In certain cases the
calculations of the characters were independently confirmed by number theoretic
methods, involving traces of Hecke operators in [59] (based on methods previously
considered by D. Zagier).

A second research goal is the following. Let B be the boundary of the tree
associated to PSL(2,Z) and let Ω the boundary associated to the homogenuous
tree of degree p+ 1, p a prime number. Jointly with F. Radulescu e J. Bassi, we’ll
analyze the reduced crossed product algebra C∗(B × Ω) o PSL(2,Z[1/p]) and its
relation to the Hamana boundary ([Ha]). The goal is to find a concrete realization of
the nuclear envelope of the exact reduced group algebra of PSL(2,Z[1/p]), and its
action on its Furstenberg boundary. The tools will be the techniques developed in
[4,37], Also, by a well known result, probably first noticed by Ihara, PSL(2,Z[1/p])
is a lattice in PSL(2, R)× PSL(2, Qp) and hence we can use the properties of the
boundaries of PSL(2, R) and PSL(2, Qp).

3.3. Semi-homogeneous trees, Poisson kernels, potential theory and Pois-
son representation of λ-polyharmonic functions. Most of the results can be
also considered in the setting of semi-homogeneous trees. In this setting, however,
the Poisson kernel K(x, ω) will still be a functions on horospheres (that is, con-
stant on each horosphere tangent at ω), but the kernel for the Poisson transform
at the eigenvalues different from 1 may not necessarily be of the type Kz. Then
this kernel may be hard to compute with techniques of integral geometry or har-
monic analysis, but can be computed with probabilistic techniques (the study of
the random walk induced by the Laplacian given by the adjacency operator on the
semi-homogeneous tree). This fact is likely to yield a new spectral theory for this
Laplacian, and different spherical functions and representations, perhaps reducible.

Here we have another intriguing set-up, where networks different from trees
start appearing. For simplicity, in this discussion we focus attention on vertex-
spherical representations. The group AutT is not transitive on the vertices of a
semi-homogeneous tree, since there are two alternating homogeneity degrees that
must be preserved by automorphisms. So a natural notion of convolution, defined
by the choice of a simply transitive group of isometries, is not available, and we
only have convolution in G = AutT expressible as convolution of functions on
the tree regarded as G/K where K is the stability subgroup of a vertex, hence of
right-K-invariant functions, but only if one of the two functions is bi-K-invariant,
i.e. radial. This would indeed be enough to study the spectrum of the isotropic
Laplacian, that is radial, but not the spherical representations, that require the
action of a group of isometries from a reference vertex to any other vertex.

But then, let us restrict attention for the moment to functions in V : the Lapla-
cian is the operator µ1 of average on neighbors, but the significant operator is the
two-step average µ2, that is essentially µ2

1 (up to a linear combination with the
identity operator µ0 and is based on jumps of length 2. Now, µ2 has non-zero
jumps of length 2, but the set S2 of vertices of distance 2 from a reference vertex
v0, regarded as vertices in a new graph, has loops: there are pairs (v1, v2) in S2

such that d(v1, v2) = 2. Therefore the Cayley graph of the group generated by µ2 is
not a tree. This graph, for a semi-homogeneous tree of degrees q0, q1, is a polygonal
graph having a spanning tree made of complete polygons of cardinalities q0 and q1
in an alternating way. Harmonic analysis on these graphs was studied in [31]. A



GEOMETRY, ANALYSIS, POTENTIAL THEORY AND STATISTICAL MECHANICS ON NETWORKS11

simply transitive subgroup on this Cayley graph is Γ = Zq0 ∗ Zq1 . The convolution
defined by this group gives rise to spherical representations of Γ. The spectral the-
ory of µ2 is similar to the spectral theory of µ1 on a homogeneous tree, because
the actions of these two operators have similar recurrence relations. However, the
spectral theory of µ1 on Tq0,q1 can be quite different: we plan to unveil it in full.
We expect that the spectrum on `1 (or equivalently `∞) will still be an ellipse as
in the homogeneous environment, but that the shape of spectrum on the other `p

spaces will be considerably different. Here neither convexity of the spectrum nor
connectedness is granted: it will be interesting to find a critical index p at which
the spectrum becomes disconnected. Even more intriguing may be the study of the
spectra of the Laplacian on functions on the set E of edges of semi-homogeneous
trees, because on edges the group AutT is transitive on semi-homogeneous non-
homogeneous trees. Hence in this environment we cannot reduce attention to a
step-2 Laplacian whose spectral theory is the same as in the usual homogeneous
setup: yet the set E, regarded as a Cayley graph, is a polygonal graph but not
a tree, because all edges joining at a vertex touch one another, hence the Cayley
graph must contain complete polygons (note that this is already so for E(T ) of a
homogeneous tree T ).
This part of the project will be done by the principal investigator jointly with E.
Casadio Tarabusi.

This, in turn, leads us to consider the interplay between spectral theory of the
Laplacian and the Poisson kernel. This was done for general trees in [7], but only
for positive eigenvalues. Then it was done for the isotropic nearest neighbor Lapla-
cian invariant under AutT on a homogeneous tree in [36], and for non-isotropic but
invariant Laplacians in [22]. The book [53] gives an excellent account of the general
case of Laplacians on not homogeneous trees, and in the recent paper [49] the Pois-
son representation of eigenfunctions of the Laplacian was extended to trees not even
locally finite and to all eigenfunctions. At the same time, the last reference proves
a similar Poisson representation for the space of polyharmonic functions, that is
the kernel of (∆−λI)n for an arbitrary integer n. In order to pass from the Poisson
representation theorem for harmonic functions and λ-eigenfunctions of ∆ to the
representation of λ-polyharmonic functions, what was used is the existing Poisson
representation of λ-eigenfunctions and a clever differentiation with respect to λ.
These methods can be used also in a smooth, non-discrete environment. We plan
to obtain the same Poisson representation theorem for polyharmonic functions of
the Laplace–Beltrami operator in a (rank one) hyperbolic space, and possibly also
for the algebra of invariant differential operators on higher rank symmetric spaces,
since in these domains a Poisson representation of λ-eigenfunctions of invariant
differential operators is available [29,32]. This results is particularly attractive be-
cause it completes a classical problems: the Poisson representation of polyharmonic
functions (only for the eigenvalue 0 and on Rk) have been proved very long ago, by
Almansi, in 1898 [1].
Once a Poisson boundary representation is achieved, its natural use is to prove a
boundary limit theory, let us say a radial limit theory for functions with continuous
boundary data. This is well known in the case of harmonic functions on the hy-
perbolic disc. Since the Laplace–Beltrami operator in the hyperbolic disc coincides
with the Euclidean Laplacian, this goes back to the classical Fatou’ convergence
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theorem for harmonic continuation inside the disc of continuous boundary func-
tions. However, for eigenvalues λ different from 0, the hyperbolic λ-Poisson kernel
is a complex power of the usual Poisson kernel, but the Euclidean counterpart is
not known. For λ-polyharmonic functions of order n > 1, no limit theorem is avail-
able directly, even for the eigenvalue 0, because the Poisson representation has an
additional polynomial factor that diverges at the boundary. In the case of a homo-
geneous tree and the isotropic Laplacian, the right limit theorem was proved many
years ago in [15], by means of a suitable normalization. More recently, W. Woess
handled this problems for homogeneous trees and the invariant isotropic Laplacian,
by showing that the correct normalization is given by dividing by the n-th derivative
with respect to λ of the spherical function φλ corresponding to the eigenvalue λ.
We plan to prove this result for λ-polyharmonic functions of the Laplace–Beltrami
operator on the hyperbolic disc, and possibly for invariant differential operators in
higher rank symmetric spaces. The normalization factor should be the derivative
with respect to λ of the spherical function φλ, as on a homogeneous tree, but in the
smooth case it is much harder to compute: the derivative is not known and even
its asymptotic behavior is unknown, and depends on complicated estimates on the
rate of growth of the hypergeometric function.

The part of our project presented in this Subsection proposes (and hopefully
solves) several problems of potential theory on smooth classical domain (hyperbolic
spaces and higher rank symmetric spaces) by the inspiration coming from trees (and
occasionally graphs): this way of proceding is innovative, because normally results
on trees are proved by analogy with already known results on the disc, and not the
other way around.

SubS:Bose-Einstein

3.4. Spectral properties of graphs, statistical mechanics and the Bose–
Einstein condensation. So far we have dealt with homogeneous or semi-homogeneous
trees. But many previous papers of members of this team have dealt with the spec-
tral properties of the Laplacian (meant as the normalized adjacency operator) on
non-homogeneous trees or graphs and related properties in analysis and potential
theory: see the papers of M.Picardello [17, 30, 31, 38–50] and, for the adjacency
operator (un-normalized Laplacian) those by F. Fidaleo [61–65]. Therefore we
complete our project with a research line that deals with graphs X that are not
homogeneous, but whose degree is bounded. We consider infinite graphs, but we
approximate them by a fixed exhaustion {Xn}n∈N ⊂ 2X made of finite subsets.
Suppose further that X is obtained by a density zero perturbation of some “ho-
mogeneous” network. As a simple example we have the so-called comb graphs (cf.
[64, ?Fifaleo&Guido&Isola]), but also density zero perturbations of the Cayley
trees (i.e. non-amenable graphs for which interior (volume) effects are not negligi-
ble compared with the boundary (surface) effects (cf. [61, 63])).

Let V as usual be the set of vertices of X and A be the adjacency operator
A ∈ B(`2(V )) (that becomes the Laplacian in the case of homogeneous graphs; it is
bounded and self-adjoint). Denote by {An}n∈N the adjacency operators associated
to the fixed exhaustion. We shall study of the spectral properties of the adjacency
operator A for eigenvalues near its norm. This research line (main investigator
Francesco Fidaleo) has natural physical applications to the Bose–Einstein Conden-
sation.
Consider the operator ∆ = I− A

‖A‖ , closely related to the usual Laplacian (indeed,

this is the definition of Laplacian on a graph as given in [53] and numerous other
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references below). Then the behavior of the resolvent of A when its eigenvalue λ
is near ‖A‖ coincide with the behavior of the resolvent of H := ‖A‖∆ for eigen-
values near zero: this shows the link between this line of research and the study of
the Laplacian on homogeneous or semi-homogeneous trees, but as already observed
now the graphs are not homogeneous.

Among the relevant properties to be studied (that depend on the chosen exhaus-
tion which is however fixed), we mention:

(i) The geometrical dimension dG(X) of the graph X (cf. [64]).
(ii) The Perron-Frobenius density dPF (X) of X, describing the `2-behaviour of

the Perron-Frobenius weight of A obtained by the limit of those of the An,
provided the limit is uniquely determined (this happens for all examples
under consideration after a natural choice of the exhaustion, see [63,64]).

(iii) The recurrent/transient behavior of the (adjacency operator of the) graph,
given by the finiteness of the Green kernel at the eigenvalue λ in the limit
λ ↓ ‖A‖ [53] (see also [61,63–65]

(iv) The appearance of the hidden spectrum of H for λ < ‖A‖, λ ≈ ‖A‖) for the
integrated density of states (the cumulative function describing the density
of eigenvalues of HXn in the limit Xn ↑ X, provided it exists (see [62]).

These properties are not only intrinsically significant, but they all have natural
applications to the study of the Bose–Einstein Condensation (BEC) (BEC for short)
of free bosons made of the so-called Bardeen-Cooper pairs, associated to the so-
called Pure Hopping Model on the graph X whose dynamics, and therefore the
statistical properties, is described by the Pure-Hopping Hamiltonian

HPH := −Jo
∑

x,y∈V X
Ax,ya

†
xay .

(here, a†x denotes the boson creator corresponding to the place x on the graph and
Jo > 0 is a coupling constant describing the mobility of the bosons on the lattices).

In fact, the appearance of the BEC of the free bosons is governed by the behaviour
of the Planck distribution

n(ε) =
1

eβ(ε−µ) − 1
.

It naturally involves the operator
(
eβ(H−µ1I) − 1I

)−1
, where H = ‖A‖1I − A is the

one particle pure-hopping hamiltonian. For small energies and after using Taylor
expansion, one heuristically gets

1

eβ(H−µ1I) − 1I
≈ 1

β(H − µ1I)
=

1

β((‖A‖ − µ)1I−A)
≡ 1

β
RA(‖A‖ − µ) .

Here, µ < 0 is the chemical potential, and we can recognise that everything is
therefore governed by the behaviour of the resolvent of A for ‖A‖ − µ =: l ≈ ‖A‖.

In previous work we have studied the spectral properties of the adjacency oper-
ator and proved the deep connection of these properties with te appearance of the
BEC for a wide class of networks. It is significant that the ideas that we have previ-
ously developed in this area of geometric spectral theory on networks have already
been applied to physical experiments concerning the Bose–Einstein condensation,
in particular in the nearby Department of Physics of the University of Rome Tor
Vergata condicted by M. Cirillo et al. [68, 69]. In our project we shall also be
involved in some of the related numerical simulations.
In this project we aim to provide the most general conditions on a general graph
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to assure the appearance of such very surprising spectral properties, and therefore
the BEC.

Due to the non homogeneity, particles condensate even in configuration space.
Therefore, by the presence of a huge amount of particles in very particular regions
(i.e. those supporting the perturbation) of the space, the Coulomb interaction
cannot be neglected. We than can argue that the a more realistic model cannot
be described by the Pure-Hopping Hamiltonian (3.4) but by the so-called (non-
quadratic) Bose-Hubbard Hamiltonian

HBH = −J
∑

x,y∈V X
Ax,ya

†
xay +

V

2

∑
x∈V X

a†xax(a†xax − 1)− µ
∑
x∈V X

a†xax.

Here, J > 0 describes the mobility of particles as before, V > 0 the Coulomb
repulsion, and finally the chemical potential µ ≤ 0 fixes the density of the Bardeen-
Cooper pairs of the model. Notice that, the Pure-Hopping model is recovered by
putting V = 0.

Our challenging program is to connect the spectral properties of (the adjacency
operator of) the network with the appearance of the BEC, even for the more realistic
Bose-Hubbard model. This might provide a fundamental step concerning the long-
standing problem in arguing that the appearance of the BEC is connected ONLY
with the statistics and not with the strength/kind (repulsive or attractive) of the
interaction occurring between the particles of the model.

We have already mentioned the fact that this research line on Bose–Einstein
condensation based on spectral theory involves the adjacency operator, that is a
constant multiple of the Laplacian only on graphs with constant degree. However,
the arguments have a geometric nature, based on the geometry of the graph. This
leads to an additional development: the computation of the perturbation of the
spectrum of the Laplace operator on a homogeneous graph under small perturba-
tions of the geometry of the graph. This subject is of interest for the geometry of
graphs and for physical applications. It leads to the following new problems in our
project:

(1) Although in this setup the hidden spectrum cannot appear, how does the
perturbation change the integrated density of states in the limit of infinite
volume (that is, the limit under the exhaustion)?

(2) What is, in the limit, the effect of the perturbation on the `2 behavior of
the wave function (that is, the weight of the fundamental state)? What is
the effect on the problem of transience vs. recurrence?

(3) How do these perturbational effects change if, instead than studying the
spectrum of the adjacency operator, we consider the spectrum of the dis-
crete Laplacian on the graph?

4. Tools for the expected results

We make here a summary of the various results expected, step by step, and the
tools that will be used to prove them. Several of the contents of this part were
stetted or hinted above: we make a list for the sake of clarity.

(1) Explicit computation of the spherical Fourier transform and the spherical
functions for edges of a homogeneous tree Tq+1 of valency q + 1. This
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preliminary step, known for vertices, is not difficult but necessary. Tool:
the recurrence relation for the powers of the Laplace operator on edges.

(2) Realization of the spherical representations on vertices and on edges of a
homogeneous tree as induced representations from the dilation subgroup A
of AutH (Cartan subgroup): this makes use of the fact that the Poisson
kernel is a nontrivial character of A, hence a generator for its dual group.
Idea to prove the irreducibility of the spherical representations for the edges
(for the vertices is already known):
since the edge-horospherical and edge-horospherical fiber bundles are iso-
morphic and the vertex-spherical representations are irreducible, the irre-
ducibility of the edge-spherical representations might be proved in a nice
elegant way (instead than by brute force) if we could show that it does not
depend on the choice of section in the bundle used to define it, that is, on
the global chart in the bundle. A preliminary step is to show that it does
not depend on the choice of a special section. A direct computation could
also be attempted, using methods of [20] or [22] transported to the simply
transitive subgroup of AutT acting on edges, that is Zq+1 ∗ Zq+1, but it
would be considerably lengthy and painful, because the recurrence relation
for edges has an extra term that complicates the combinatorics of words.

(3) Computing the spectrum of the Laplace operators for vertices and for edges
via spherical functions (tat are their radial eigenfunctions). We shall show
the the `p-spectrum is related to the belonging to `p of spherical functions
( for p > 2), and then we’ll determine the `p space to which a spherical
function belongs by computing its asymptotic behaviour.

(4) Interplay between the Radon transforms and the spherical Fourier trans-
form: the Fourier slice theorems. This step presents no difficulty, but is
necessary for completeness of the results.

(5) Inversion formulas for the Radon transforms R on vertices and on edges in
three ways:
• directly;
• via the Fourier slice theorem;
• computing the back-projection R∗, proving that R∗R is a convolution

operator, computing its spherical Fourier transform, i.e. its symbol,
showing that it only vanishes at the boundary of the spectrum with a
controlled rate of decay, and finally showing that its reciprocal gives
rise to a bounded operator, hence to the inverse of R.

Tools: for the direct computation, we shall first obtain the inversion at the
reference edge and then translate. Now, inversion at the referent edge is
equivalent to inversion for radial functions. But for a radial function the
problem requires only one parameter (the distance dorm the reference ver-
tex, regarded as the horospherical index) hence we can provide solutions of
a linear system by choosing sequence of coefficients iteratively. This leads
to a continuum of inversion formulas that must all coincide on the image of
the Radon transform (thereby providing uniqueness). Therefore the prob-
lem becomes the characterisation of the image of the edge-Radon transform.
This will be done via Cavalieri conditions, similarly to the characterisation
given for the image of the vertex-Radon transform in [9]. This method is
a bit clumsy because it proceeds with linear systems and provides a set of
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inversion formulas that become unique only upon restriction to the image
of R,. But it is very interesting because it is specific to trees, and could
not even be formulated in a continuous setup.
Using the Fourier slice theorem is relatively obvious, but the computation
for the inversion can be tricky.
Using the back-projection is more elegant. It will be easy to prove that
R∗R is a convolution operator on edges with respect to the convolution
induced by the simply transitive subgroup Zq+1 ∗ Zq+1, and we foresee no
difficulties in computing this convolutor explicitly. Therefore the task is to
use the edge-spherical Fourier transform to invert this convolutor. We shall
introduce a Schwarz class and a distribution space on the edges E(T ) and
show that R∗R maps the Schwartz class to distributions. The spherical
Fourier transform gives the symbol of R∗R: we shall need to compute it
explicitly, by making use of the spectral theory of the edge-Laplacian (that
has to be described in detail: a tool for this is to compute the asymptotic
of spherical functions and to prove Haagerup convolution estimate for func-
tions on E(T ). Then we shall obtain the symbol of the inverse operator by
showing that the order of zero of the symbol of R∗R at the extreme points
of the `2-spectrum is sufficient to provide invertibility in the distribution
sense.

(6) The Poisson kernel at the eigenvalue λ of the Laplacians of a semi-homogeneous
tree: proof of the fact that it is not a character of the Cartan subgroup A
and cannot be computed via the horospherical fiber bundle. This will be
done by making use of the recurrence relations given by the generating
functions of the first visit probability of the random walk induced by the
Laplacian on E(T ) regarded as a nearest neighbor isotropic transition op-
erator.

(7) Computation of the Poisson kernel on semi-homogeneous trees via the re-
currence relation of the Markov chains generated by the Laplacians. Same
tools as in the previous point.

(8) Computation of the spherical functions on semi-homogeneous trees and the
spectra of the Laplacians on `p. Tool: once the Poisson kernel has been
computed in the previous point, we use it to integrate constants on the
boundary. This yields the spherical functions. The computation will be
lengthy but we do not expect problems.

(9) Analysis of the reducibility of the semi-homogeneous spherical representa-
tions. Tool: we shall try to adapt the methods of point 2 above.

(10) Statement and proof of the Poisson representation theorem for λ-polyharmonic
functions of the Laplace–Beltrami operator on hyperbolic spaces, and of all
invariant differential operators on higher rank symmetric spaces. Tool:
we cannot use direct computation (like those for homogeneous trees and
isotropic operators in [15]. We shall make use of a brilliant idea that can
work on trees as well as hyperbolic spaces: a typical lambda-polyharmonic
function of order m will be shown to be representable as a linear combina-
tion of the first m derivatives with respect to λ of the Poisson kernel at the
eigenvalue λ.
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(11) Statement and proof of boundary convergence theorems for n-polyharmonic
functions for each eigenvalue of the Laplace–Beltrami operator on the hy-
perbolic space and of invariant differential operators on higher rank sym-
metric spaces, by choosing an appropriate normalization factor (it will con-
sist of the n-th derivative of the spherical functions with respect to their
eigenvalue, but their asymptotic behavior has to be computed). We shall
bypass this computation by using the same clever differentiation trick as in
the previous point. As a by-product, this will also yield an interesting corol-

lary: the asymptotic behavior (when r 7→ 1) of F
′

F , where F = F (λ, λ, 1, r2)
is Gauss’ hypergeometric function and the derivative is with respect to λ.

(12) Transfer from unitary representations of PSL(2, R) to the group PSL(2, Qp)
(isomorphic to the automorphism group of the homogeneous tree with de-
gree p+ 1).
We shall consider the character of the transferred representation and to
find its decomposition over the characters of the irreducible representa-
tions of PSL(2, Qp). The table of these characters is well known (see
e.g [26, 60]): we shall proceed as in the determination of the decomposi-
tion involved in the Plancherel formula for PSL(2, Qp). Temperedness of
the transferred unitary representation corresponds to the validity of the
Ramanujan–Petersson estimates for the Hecke operators.

(13) Construction of separable, nuclear C∗-envelopes for gropus generalizing
PSL(2, Z[1/p]) and their C∗-simplicity.
As in the theory of sofic groups representations we shall use methods from
non-standard analysis (Loeb spaces) to determine the dynamics of the ac-
tion of the groups. It can be proved that in the space of states one obtains
by this construction the Maharam extension corresponding to the quasi-
invariant measure on the boundary, and using this tool we expect to ob-
tain the corresponding estimates, which then give information about the
temperedness of the representation or estimates for the eigenvalues for the
Hecke operators. We shall also use another recent result by L.Paunescu and
F.Radulescu [54] , who have obtained as a corollary, a method to describe
the action of Hecke operators in terms of countable, measurable equivalence
relation,

(14) Spectral properties of the adjacency operator on bounded networks for
eigenvalues near its norm.
It was show that, for the one-particle Hamiltonian consisting by (the oppo-
site of) the discrete Laplacian of of a network obtained by additive, negligi-
ble perturbation of a standard one (i.e. periodic, as well as a Cayley tree),
the hidden spectrum cannot appear, even if it this does not exclude the ap-
pearance of the BEC. However, we shall investigate the spectral properties
of such a perturbed Laplacian. We shall study the Bose-Hubbard Hamil-
tonian by means of techniques recently developed by D. Buchholz [66, 67],
with the aim of systematically handling non-quadratic hamiltonians by re-
placing the Weil algebra with the “Resolvent Algebra” in the context of the
Canonical Commutation Relations.
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