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Solution 3 by Radouan Boukharfane.
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The first inequality is the AM-GM inequality; the second is Nesbitt’s inequality.

Solution 4 by Phil McCartney.

Without loss of generality, we may assume that a+b+c = 1, so that, for example,
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Thus the claimed inequality is equivalent to∑
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so that g is convex there. By Jensen’s inequality,∑
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Editor’s note: notice the following
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3764. [2012 : 285, 286] Proposed by D. M. Bătineţu-Giurgiu and N. Stanciu.

Let (an)n≥1 be a positive real sequence such that lim
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where a1! = a1 and an! = an · an−1! for n > 1.

Solved by A. Alt; D. Koukakis; P. Perfetti; D. Vǎcaru; and the proposer. One
other solution arrived at the correct answer via a step that the author did not
clarify and the editor was unable to justify. We present the solution by Paolo
Perfetti and the proposer (done independently).
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We exploit the Cesaro-Stolz Theorem, which states the following: let {an} and
{bn} be real sequences such that {bn} is strictly increasing and unbounded and
limn→∞(an+1 − an)/(bn+1 − bn) = L, then limn→∞ an/bn = L. Applying this
theorem, we find that
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Observe that
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By the equality of the limits in the ratio and root tests,
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It follows that the desired limit is equal to a/2e2.

3765. [2012 : 285, 287] Proposed by M. Bataille.

Let ABC be a triangle with circumcircle Γ and orthocentre H and let the circle
with diameter AH intersect Γ again at K. Prove that

(a) KB ·HC = KC ·HB.

(b) lines KB, HC meet on the circle tangent to Γ at K and passing through H.
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