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Analogously,
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∆, ∆3 =
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∆,

hence the result.

3809. Proposed by Michel Bataille.

For positive real numbers x, y, let

G(x, y) =
√
xy, A(x, y) =

x+ y

2
, Q(x, y) =

…
x2 + y2

2
.

Prove that
G(xx, yy) ≥ (Q(x, y))A(x,y) .

Solved by AN-anduud Problem Solving Group ; R. Boukharfane ; C. Curtis ; P. Deier-
mann and H. Wang ; O. Kouba ; K. W. Lau ; P. Perfetti ; D. Smith ; and the
proposer. One incorrect solution was received. We present the solution by Paolo
Perfetti.

The given inequality is equivalent to
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which upon being divided by x2 becomes
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Without loss of generality, we assume that x ≤ y. Let t = y
x . Then t ≥ 1, 2y

x+y = 2t
1+t

and (1) becomes
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To prove (2), let f(t) = 2t
1+t ln t− ln 1+t2

2 , t ≥ 1. Then by routine calculations, we
find :

f ′(t) = 2

Å
1− t2 + (1 + t2) ln t

(1 + t)2(1 + t2)

ã
.

We claim that
1− t2 + (1 + t2) ln t ≥ 0 for all t ≥ 1. (3)

Let h(t) = ln t− t2 − 1

1 + t2
= ln t− 1 +

2

1 + t2
. Then

h′(t) =
1
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=

(1− t2)2

t(1 + t2)2
≥ 0,
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so h(t) is an increasing function.

Since h(1) = 0, we have h(t) ≥ 0, from which (3) follows. Hence, f ′(t) ≥ 0,
which implies that f(t) is an increasing function. Since f(1) = 0, we conclude that
f(t) ≥ 0 for all t ≥ 1, which establishes (2) and completes the proof.

3810. Proposed by Ovidiu Furdui.

Let k > 0 be a positive real number. Find the value of∫ 1

0

∫ 1

0

®
xk

y

´
dxdy,

where {a} = a− bac denotes the fractional part of a.

Solved by Š. Arslanagić ; R. Boukharfane ; C. Curtis ; O. Geupel ; R. I. Hess ;
O. Kouba ; J. Ling ; D. Stone and J. Hawkins ; and the proposer. One incorrect
solution was received, although the error was of a purely algebraic variety. We
present two solutions.

Solution 1, by Oliver Geupel.

For 0 ≤ x ≤ 1, let f(x) =
1∫
0
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™
dy. Let y =

x

t
, then dy = − x

t2
dt and we obtain :
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∫ ∞
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= −x log x+ x(1− γ).

Hence, f(xk) = xk(1− γ)− kxk log x.

Let I be the integral to be evaluated. Then we have :
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=
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