Solution to problem U614

Statement

Let a;, > 0, k =1,2,... and r,s > 0. Prove that for s > r if S; converges,
also Sy converges
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Solution It suffices to prove the s = r case.

Let ¢, > 0 and di > 0 be two sequences such that > ¢x < 400 and > dj =
+oo. It follows limsup dy/c, = oo because otherwise dy/cy < A definitively
for a certain positive number A and then > d; also would converge.

Let’s apply this result to our case supposing by contradiction that
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contradicting that K is the largest set.

but this would mean

If s < r the result is untrue. Let’s take a; = kInk(In(ln k)= 6 > 0
Inlna, = Inln(kInk(n(Ink))*=") > Inln k
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This may be seen by the Cauchy—condensation—test
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By applying Cauchy’s test again
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and this is true because the general term of the last series goes to zero as
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On the other hand Inlnay < C'lnlnk for any k£ > 3 if C' is large enough.
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