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Part (a) was also solved by AN-ANDUUD Problem Solving Group, Ulaanbaatar, Mon-

golia ; ŠEFKET ARSLANAGIĆ, University of Sarajevo, Sarajevo, Bosnia and Herzegovina ;
CHARLES DIMINNIE and ROGER ZARNOWSKI, Angelo State University, San Angelo,
TX, USA ; KATHLEEN E. LEWIS, University of the Gambia, Brikama, Gambia ; OLIVER
GEUPEL, Brühl, NRW, Germany ; RICHARD I. HESS, Rancho Palos Verdes, CA, USA ; SA-
LEM MALIKIĆ, student, Simon Fraser University, Burnaby, BC ; MADHAV R. MODAK, for-
merly of Sir Parashurambhau College, Pune, India ; EDMUND SWYLAN, Riga, Latvia ; PAUL
YIU, Florida Atlantic University, Boca Raton, FL, USA ; and the proposer.

Solvers used many strategies to narrow down the field, as exemplified in the featured
solution. In particular, Hess and Yiu looked at the equation modulo 100. For r ≥ 2, (3n)2 ≡
33k − 24 ; it can be checked that the right member is a quadratic residue (modulo 100) only if
k = 1 or k = 5. The case r = 2 is quickly disposed of. When r ≥ 3 and k = 1, then 3n2 ≡ 111 ≡ 7
(mod 8), which is impossible. There was one incomplete solution.

Part (b) was solved only by Yiu.

3663. [2011 : 320, 322] Proposed by Pedro Henrique O. Pantoja, student,
UFRN, Brazil.

Let a, b, c be positive real numbers. Prove that
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4b+ 4c+ a
+ 3

r
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4c+ 4a+ b
< 2 .

I. Solution by the proposer, modified slightly by the editor.

We first establish the following lemma :

Lemma 1 If x and y are positive real numbers, then

3

È
4(x+ y) ≥ 3

√
x+ 3
√
y

with equality if and only if x = y.

Proof. Since 4(x3 + y3)− (x+ y)3 = 3(x3 − x2y− xy2 + y3) = 3(x− y)(x2 − y2) =

3(x − y)2(x + y) ≥ 0, we have 4(x3 + y3) ≥ (x + y)3 or 3

È
4(x3 + y3) ≥ x + y.

Replacing x and y with 3
√
x and 3

√
y, respectively, the lemma follows.

The given inequality is equivalent to
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< 1. (1)

Using the lemma twice we have
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Hence, X
cyclic
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√
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= 1.

If equality holds, then we must have 4a+4b = c, 4b+4c = a, and 4c+4a = b
which imply that 8(a+ b+ c) = a+ b+ c, so a+ b+ c = 0, a contradiction.
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Hence (1) holds and our proof is complete.

II. Solution by Paolo Perfetti, Dipartimento di Matematica, Università degli studi
di Tor Vergata Roma, Rome, Italy, modified slightly by the editor.

We prove the stronger inequality thatX
cyclic
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4a+ 4b+ c
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1
3 .

Let S denote the summation on the left side of the given inequality. By the
power-mean-inequality, we have, for xi ≥ 0, i = 1, 2, 3, that P3
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which implies that

S ≤ 3
1
3

�X
cyclic
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= 6
1
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X
cyclic

É
a

4a+ 4b+ c
.

We need to prove that X
cyclic

3

É
a

4a+ 4b+ c
≤ 1. (2)

Since the function
√
x is concave on [0,∞), Jensen’s Inequality implies thatX

cyclic

É
a

4a+ 4b+ c
=
X
cyclic

4a+ 4c+ b

9(a+ b+ c)

Ê
92a(a+ b+ c)2

(4a+ 4b+ c)(4a+ 4c+ b)2

≤

ÌX
cyclic

81a(4a+ 4c+ b)(a+ b+ c)2

9(a+ b+ c)(4a+ 4b+ c)(4a+ 4c+ b)2

=

ÌX
cyclic

9a(a+ b+ c)

(4a+ 4b+ c)(4a+ 4c+ b)
.

Hence (2) would follow if we show thatX
cyclic

9a(a+ b+ c)

(4a+ 4b+ c)(4a+ 4c+ b)
≤ 1. (3)
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By homogeneity, we may assume that a+ b+ c = 1. Then (3) reduces toX
cyclic

9a

(4a− 3b)(4− 3c)
≤ 1

which is equivalent, in succession, to

9
X
cyclic

a(4− 3a) ≤ (4− 3a)(4− 3b)(4− 3c)

36− 27(a2 + b2 + c2) ≤ 64− 48 + 36(ab+ bc+ ca)− 27abc

27(a2 + b2 + c2) + 36(ab+ bc+ ca) ≥ 27abc+ 20. (4)

We now define x ≥ 0 by 3(ab + bc + ca) = 1 − x2. Then x < 1, ab + bc + ca ≤ 1
3

and a2 + b2 + c2 = 1 − 2
3 (1 − x2) = 1+2x2

3 . We employ the following reslt in the
paper “On a Class of Three Variable Inequalities” by Vo Quoc Ba Can in the book
Mathematical Reflection, the first two years, by Titu Andreescu, XYZ press, p. 480

(1 + x)2

27
≤ abc ≤ (1− x)2(1 + 2x)

27
.

In particular, 27abc ≤ (1− x)2(1 + 2x). Hence to prove (4) it suffices to show that

9(1 + 2x2) + 12(1− x2) ≥ (1− x)2(1 + 2x) + 20

which upon simplifications, reduces to 21 + 6x2 ≥ 21− 3x2 + 2x3 or 2x3− 9x2 ≤ 0
or x2(2x− 9) ≤ 0 which is clearly true and the proof is complete.

[Ed : By examining the above proof for equality cases, it is easy to see that equality
holds if and only if a = b = c.]

Also solved by AN-ANDUUD Problem Solving Group, Ulaanbaatar, Mongolia ;
ŠEFKET ARSLANAGIĆ, University of Sarajevo, Sarajevo, Bosnia and Herzegovina ;
DIONNE BAILEY, ELSIE CAMPBELL, and CHARLES R. DIMINNIE, Angelo State
University, San Angelo, TX, USA ; MICHEL BATAILLE, Rouen, France ; OLIVER
GEUPEL, Brühl, NRW, Germany ; SALEM MALIKIĆ, student, Simon Fraser University, Bur-
naby, BC ; ALBERT STADLER, Herrliberg, Switzerland ; and HAOHAO WANG and JERZY
WOJDYLO, Southeast Missouri State University, Cape Girardeau, Missouri, USA.

Stadler used Hölder’s Inequality together with some result which appeared in Crux in the
past. He also obtained the sharper upper bound and pointed out the equality case.

3664. Proposed by Hung Pham Kim, student, Stanford University, Palo Alto,
CA, USA.

Let a, b, and c be nonnegative real numbers such that a+ b+ c = 3. Prove
that

|(1− a2b)(1− b2c)(1− c2a)| ≤ 3|1− abc| .

[Ed. : The proposer’s solution was flawed. STAN WAGON, Macalester College,
St. Paul, MN, USA showed using Mathematica that the inequality is most likely
true. Thus the problem remains open.]
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