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It therefore suffices to prove that |λ| = β
α . Because the Mi are concyclic, we

deduce that ∆M3MM4 and ∆M2MM1 are inversely similar, as are ∆M1MM4

and ∆M2MM3. Consequently,
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As a result we have�
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;

that is,
�
β
α

�2
= λ2, and the desired equality |λ| = β

α follows.

Also solved by OLIVER GEUPEL, Brühl, NRW, Germany.

3624. [2011 : 114, 116] Proposed by Ovidiu Furdui, Campia Turzii, Cluj,
Romania.

Calculate the sum
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I. Solution based on the approach of AN-anduud Problem Solving Group,
Ulaanbaatar, Mongolia.

Let a0 = 0, and, for n ≥ 1, let
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,
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Therefore Sn = 1
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. The desired sum is equal to
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II. Solution following approach of Richard I. Hess, Rancho Palos Verdes, CA,
USA; Kee-Wai Lau, Hong Kong, China; the Missouri State University Problem
Solving Group, Springfield, MO; and the proposer.

For positive integer m, let
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Interchanging the order of summation and relabeling the indices yields
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Adding the two expressions for Sm yields that
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The required sum is
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III. Solution by Oliver Geupel, Brühl, NRW, Germany(abridged).

When an =
Pn
k=1(−1)k−1/k, bn =
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−2 and cn =
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it can be proved by induction that
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IV. Solution based on those of Anastasios Kotrononis, Athens, Greece; Paolo
Perfetti, Dipartimento di Matematica, Università degli studi di Tor Vergata Roma,
Rome, Italy; and Albert Stadler, Herrliberg, Switzerland.
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the proposed sum is equal to
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No other solutions were received.
Perfetti provided a justification for the interchange of summation and integration in (IV),

while Kotronis gave this determination of the final integral:
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3625. [2011 : 114, 116] Proposed by Pham Van Thuan, Hanoi University of
Science, Hanoi, Vietnam.

Let a, b, and c be positive real numbers. Prove thatÉ
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Solution by George Apostolopoulos, Messolonghi, Greece; Šefket Arslanagi ć,
University of Sarajevo, Sarajevo, Bosnia and Herzegovina; Oliver Geupel, Brühl,
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