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PROBLEMS

11397. Proposed by Grahame Bennett, Indiana University, Bloomington, IN. Let
a, b, c, x, y, z be positive numbers such that a + b + c = x + y + z and abc = xyz.
Show that if max{x, y, z} ≥ max{a, b, c}, then min{x, y, z} ≥ min{a, b, c}.
11398. Proposed by Stanley Huang, Jiangzhen Middle School, Huaining, China. Sup-
pose that acute triangle ABC has its middle-sized angle at A. Suppose further that the
incenter I is equidistant from the circumcenter O and the orthocenter H . Show that
angle A has measure 60 degrees and that the circumradius of I BC is the same as that
of ABC .

11399. Proposed by Biaggi Ricceri, University of Catania, Catania, Italy. Let
(�,F , μ) be a measure space with finite nonzero measure M , and let p > 0. Let
f be a lower semicontinuous function on R with the property that f has no global
minimum, but for each λ > 0, the function t �→ f (t) + λ|t |p does have a unique
global minimum. Show that exactly one of the two following assertions holds:
(a) For every u ∈ L p(�) that is not essentially constant,

M f

((
1

M

∫
�

|u(x)|p dμ

)1/p
)

<

∫
�

f (u(x)) dμ,

and f (t) < f (s) whenever t > 0 and −t ≤ s < t .
(b) For every u ∈ L p(�) that is not essentially constant,

M f

(
−

(
1

M

∫
�

|u(x)|p dμ

)1/p
)

<

∫
�

f (u(x)) dμ,

and f (−t) < f (s) whenever t > 0 and −t < s ≤ t .

11400. Proposed by Paul Bracken, University of Texas-Pan American, Edinburg, TX.
Let ζ be the Riemann zeta function. Evaluate

∑∞
n=1 ζ(2n)/(n(n + 1)) in closed form.
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11401. Proposed by Marius Cavachi, “Ovidius” University of Constanţa, Constanţa,
Romania. Let A be a nonsingular square matrix with integer entries. Suppose that for
every positive integer k, there is a matrix X with integer entries such that X k = A.
Show that A must be the identity matrix.

11402. Proposed by Catalin Barboianu, Infarom Publishing, Craiova, Romania. Let
f : [0, 1] → [0, ∞) be a continuous function such that f (0) = f (1) = 0 and f (x) >

0 for 0 < x < 1. Show that there exists a square with two vertices in the interval (0,1)
on the x-axis and the other two vertices on the graph of f .

11403. Proposed by Yaming Yu, University of California Irvine, Irvine, CA. Let n be
an integer greater than 1, and let fn be the polynomial given by

fn(x) =
n∑

i=0

(
n

i

)
(−x)n−i

i−1∏
j=0

(x + j).

Find the degree of fn .

SOLUTIONS

A Telescoping Fibonacci Sum

11258 [2006, 939]. Proposed by Manuel Kauers, Research Institute for Symbolic Com-
putation, Johannes Kepler University, Linz, Austria. Let Fn denote the nth Fibonacci
number, and let i denote

√−1. Prove that

∞∑
k=0

F3k − 2F1+3k

F3k + i F2·3k
= i + 1

2

(
1 − √

5
)

.

Solution by Richard Stong, Rice University, Houston, TX. Let φ denote the golden
ratio (1 + √

5)/2, and recall the Binet formula for the Fibonacci numbers:

Fn = (
φn + (−1)n−1φ−n

)
/
√

5.

For odd m,
√

5(Fm + i F2m) = iφ2m + φm + φ−m − iφ−2m = −iφ−2m(iφm + 1)(iφ3m + 1)

and

Fm − 2F1+m = 1 − 2φ√
5

φm + 1 + 2φ−1

√
5

φ−m = −φm + φ−m .

Hence

Fm − 2F1+m

Fm + i F2m
= √

5
−iφ3m + iφm

(iφm + 1)(iφ3m + 1)
=

( √
5

iφ3m + 1
−

√
5

iφm + 1

)
.

Thus the desired sum telescopes as

∞∑
k=0

F3k − 2F1+3k

F3k + i F2·3k
=

∞∑
k=0

( √
5

iφ3k+1 + 1
−

√
5

iφ3k + 1

)
= −

√
5

iφ + 1
= i − φ−1.
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Also solved by S. Amghibech (Canada), M. R. Avidon, M. Bataille (France), R. Chapman (U. K.), C. K. Cook,
M. Goldenberg & M. Kaplan, C. C. Heckman, G. C. Greubel, D. E. Iannucci, H. Kwong, O. P. Lossers (Nether-
lands), K. McInturff, C. R. Pranesachar (India), H. Roelants (Belgium), H.-J. Seiffert (Germany), A. Stadler
(Switzerland), GCHQ Problem Solving Group (U. K.), Microsoft Research Problems Group, and the proposer.

3-D Rotations and Translations

11276 [2007, 165]. Proposed by Eugene Herman, Grinnell College, Grinnell, IA. Let
T1, . . . , Tn be translations in R

3 with translation vectors t1, . . . , tn , and let R be a
rotational linear transformation on R

3 that rotates space through an angle of π/n about
an axis parallel to a vector r. Define a transformation C by C = (RTn · · · RT2 RT1)

2.
Prove that C is a translation, find an explicit formula for its translation vector in terms
of r, n, and t1, . . . , tn , and prove that there is a line � in R

3, independent of t1, . . . , tn ,
such that C translates space parallel to �.

Solution by Mark D. Meyerson, US Naval Academy, Annapolis, MD. If Tv denotes
translation by vector v, then RTv = TRv R. Now R is a rotation through π/n, so Rn

is a half turn about the axis of R and R2n is the identity. If v is orthogonal to r, then
Rnv = −v and Tv+Rn v is the identity.

Let pk be the vector projection of tk onto r, and let ok be the orthogonal component,
so that tk = pk + ok . Now Tk = Tpk Tok . Furthermore, R takes pk to itself, R and Tpk

commute, and any two translations commute.
Let p = 2(pn + · · · + p2 + p1). We compute

C = (RTn · · · RT2 RT1)
2 = (RTon · · · RTo2 RTo1)

2(Tpn · · · Tp2 Tp1)
2.

The second factor reduces to Tp. In the first factor, move the rotations to the right:

(RTon · · · RTo2 RTo1)
2

= TRon RTRon−1 R · · · TRo2 RTRo1 RTRon RTRon−1 R · · · TRo2 RTRo1 R

= TRon TR2on−1
R · · · RTR2o2

RTR2o1
RTR2on

RTR2on−1
R · · · RTR2o2

RTR2o1
R2

= · · · = TRon+Rn+1on
TR2on−1+Rn+2on−1

· · · TRn−1o2+R2n−1o2
TRn o1+R2n o1

R2n;
the last expression is the identity. Hence C = Tp, translation through twice the sum of
the projections of the tk onto r, and � can be any line parallel to r.

Also solved by R. Bagby, M. Bataille (France), D. R. Bridges, R. Chapman (U. K.), K. Claassen, K. Dale
(Norway), M. Englefield (Australia), A. Fok (Hong Kong), J.-P. Grivaux (France), J. A. Grzesik, G. Janusz,
J. H. Lindsey II, O. P. Lossers (Netherlands), R. Stong, T. Tam, E. I. Verriest, Szeged Problem Solving Group
“Fejéntaláltuka” (Hungary), GCHQ Problem Solving Group (U. K.), Hofstra University Problem Solvers, and
the proposer.

A Sinh of a Series

11286 [2007, 78]. Proposed by M. L. Glasser, Clarkson University, Potsdam, NY. Show
that

∞∑
n=0

(
eπ/4 − (−1)n sinh(n + 1/2)π

)
e−n(n+1)π = 0.

Solution by O. P. Lossers, Eindhoven University of Technology, The Netherlands. The
C∞ function

F(x, y) =
∞∑

k=−∞
e−(k+x)2 y, y > 0, (1)
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is even and periodic in x with period 1. Therefore it is the sum of a cosine series

F(x, y) = 1

2
A0 +

∞∑
n=1

An cos(2nπx),

with An = 2
∫ ∞

−∞ e−x2 y cos(2πnx) dx . It follows that

F(x, y) =
√

π

y

(
1 + 2

∞∑
n=1

e−π2n2/y cos(2πnx)

)
. (2)

Substituting x = 1/2 and y = π into the expression for F(x, y) given in (1) leads to

F(1/2, π) =
∞∑

k=−∞
e−(k+1/2)2π =

−1∑
k=−∞

e−(k+1/2)2π + e−π/4 +
∞∑

k=1

e−(k+1/2)2π

=
∞∑

k=2

e−(k−1/2)2π + 2e−π/4 +
∞∑

k=1

e−(k+1/2)2π = 2
∞∑

k=0

e−(k+1/2)2π .

Substituting into (2), we obtain

F(1/2, π) = 1 + 2
∞∑

n=1

(−1)ne−πn2 =
∞∑

n=0

(−1)ne−πn2 +
∞∑

n=1

(−1)ne−πn2

=
∞∑

n=0

(−1)ne−πn2 +
∞∑

n=0

(−1)n+1e−π(n+1)2
.

Equating these two expressions for F , we find that

2
∞∑

k=0

e−(k+1/2)2π =
∞∑

n=0

(−1)ne−πn2 +
∞∑

n=0

(−1)n+1e−π(n+1)2
.

Multiplication of both sides by eπ/2 leads to

2
∞∑

k=0

eπ/4e−k(k+1)π =
∞∑

n=0

(−1)ne−πn(n+1)
(
enπ+π/2 − e−nπ−π/2

)
.

Applying the definition of the hyperbolic sine, we obtain the desired equation.

Also solved by R. Chapman (U.K.), J. Grivaux (France), O. Kouba (Syria), G. Lamb, M. A. Prasad (India),
O. G. Ruehr, A. Stadler (Switzerland), R. Stong, J. Sun, FAU Problem Solving Group, GCHQ Problem Solving
Group, and the proposer.

A Variant Intermediate Value

11290 [2007, 359]. Proposed by Cezar Lupu, student, University of Bucharest,
Bucharest, Romania, and Tudorel Lupu, Decebal Highschool, Constanza, Roma-
nia. Let f and g be continuous real-valued functions on [0, 1]. Prove that there exists
c in (0, 1) such that

∫ 1

x=0
f (x) dx

∫ c

x=0
xg(x) dx =

∫ 1

x=0
g(x) dx

∫ c

x=0
x f (x) dx .
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Solution by Kenneth F. Andersen, University of Alberta, Edmonton, AB, Canada. Ob-
serve first that if h(x) is continouous on [0, 1] and H(x) = ∫ x

0 yh(y) dy, then H(x) is
continuous on [0, 1] with limx→0+ H(x)/x = 0, so an integration by parts yields∫ 1

0
h(x) dx =

∫ 1

0

xh(x)

x
dx = H(x)

x

∣∣∣∣
1

0

+
∫ 1

0

H(x) dx

x2

= H(1) +
∫ 1

0

H(x) dx

x2
= lim

x→1− H(x) +
∫ 1

0

H(x) dx

x2
. (1)

Now suppose in addition that
∫ 1

0 h(x) = 0. By (1), H(x) cannot be positive for all
x in (0, 1), nor can it be negative for all x in (0, 1). Thus by the Intermediate Value
Theorem there is a ch ∈ (0, 1) such that H(ch) = 0. Now the required result may be
deduced: if

∫ 1
0 f (x) dx = 0, then the result holds with c = c f ; if

∫ 1
0 g(x) dx = 0, then

the result holds with c = cg. Otherwise the result holds with c = ch , where

h(x) = f (x)∫ 1
0 f (y) dy

− g(x)∫ 1
0 g(y) dy

.

Editorial comment. (i) The functions f and g need not be continuous—it is sufficient
that they be integrable. This was observed by Botsko, Pinelis, Schilling, and Schmu-
land. (ii) Keselman, Martin, and Pinelis noted that

∫ 1
0 x f (x) dx and

∫ 1
0 xg(x) dx can

be replaced with
∫ 1

0 φ(x) f (x) dx and
∫ 1

0 φ(x)g(x) dx , where φ(x) satisfies suitable
conditions—roughly speaking, that φ is differentiable and strictly monotonic, although
the specific conditions vary from one of these solvers to another.

Also solved by U. Abel (Germany), S. Amghibech (Canada), M. W. Botsko & L. Mismas, R. Chapman (U. K.),
J. G. Conlon & W. C. Troy, P. P. Dályay (Hungary), J. W. Hagood, E. A. Herman, S. J. Herschkorn, E. J.
Ionascu, G. L. Isaacs, G. Keselman, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), G. Martin
(Canada), J. Metzger & T. Richards, M. D. Meyerson, A. B. Mingarelli & J. M. Pacheco & A. Plaza (Spain), E.
Mouroukos (Greece), P. Perfetti (Italy), I. Pinelis, M. A. Prasad (India), K. Schilling, B. Schmuland (Canada),
H.-J. Seiffert (Germany), J. Sun, R. Tauraso (Italy), M. Tetiva (Romania), L. Zhou, GCHQ Problem Solving
Group (U. K.), Microsoft Research Problems Group, NSA Problems Group, and the proposer.

Double Integral

11295 [2007, 452]. Proposed by Stefano Siboni, University of Trento, Trento, Italy.
For positive real numbers ε and ω, let M be the mapping of [0, 1) × [0, 1) into itself
defined by M(x, y) = ({2x}, {y + ω + εx}), where {u} denotes u − 
u�, the fractional
part of u. For integers a and b, let ea,b(x, y) = e2π i(ax+by). Let

Cn(a, b; p, q) =
∫ 1

y=0

∫ 1

x=0
ea,b(Mn(x, y))ep,q(x, y) dx dy.

Show that Cn(a, b; p, q) = 0 if q �= b, while Cn(a, b; p, b) is given by

(−1)aeb,b(ωn, εn/2)
sin

[
π(a + εb − 2−n(p + εb))

]
π (a + εb − 2−n(p + εb))

n∏
j=0

cos
[
π(εb − 2− j (p + εb)

]
.

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The
Netherlands. Let e(z) = e2π i z . For n ≥ 1 we have

Mn(x, y) =
({

2n x
}
,
{

y + nω + ε({x} + {2x} + · · · + {2n−1x})}).
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Since a and b are integers, the outer braces do not matter for Cn(a, b; p, q) =∫ 1

0

∫ 1

0
e
(
(2na − p)x + (b − q)y + bnω + bε({x} + {2x} + · · · + {2n−1x})) dx dy.

Interchanging the order of integration shows that Cn(a, b; p, q) = 0 if q �= b and that

Cn(a, b; p, b) = e(bωn)

∫ 1

0
e
(
(2na − p)x + bε({x} + {2x} + · · · + {2n−1x})) dx .

For n ≥ 1 define

Fn(α, β) =
∫ 1

0
exp

(
iαx + 2iβx + iβ({2x} + · · · + {2n−1x})) dx,

so that Cn(a, b; p, b) = e(bωn)Fn(2π(2na − p − εb), 2πεb). Now

F1(α, β) = ei(α+2β) − 1

i(α + 2β)
= ei(β+α/2)

β/2 + α/4
cos

(
β

2
+ α

4

)
sin

(
β

2
+ α

4

)
.

For n > 1, the last term in the exponent has period 1/2, so we split the integral into
two parts to obtain

Fn(α, β) = (
ei(α/2+β) + 1

) ∫ 1/2

0
exp

(
i(α + 4β)x + iβ({4x} + · · · + {2n−1x})) dx,

which gives the recurrence

Fn(α, β) = ei(β/2+α/4) cos

(
β

2
+ α

4

)
Fn−1

(α

2
, β

)
.

Repeated use of this, together with the formula for F1, leads to

Fn(α, β) = eiβ(n+1/2)+iα/2

β/2 + α/2n+1
sin

(
β

2
+ α

2n+1

) n∏
j=1

cos

(
β

2
+ α

2 j+1

)
.

Finally, Cn(a, b; p, b) = e2π ibωn Fn(2π(2na − p − εb), 2πεb) yields the required re-
sult after some simplifications based on the assumption that a and b are integers.

Also solved by R. Chapman (U. K.), D. Fleischman, GCHQ Problem Solving Group, and the proposer.

A Tricky Minimum

11297 [2007, 452]. Proposed by Marian Tetiva, Bı̂rlad, Romania. For positive a, b,
and c, let

E(a, b, c) = a2b2c2 − 64

(a + 1)(b + 1)(c + 1) − 27
.

Find the minimum value of E(a, b, c) on the set D consisting of all positive triples
(a, b, c) such that abc = a + b + c + 2, other than (2, 2, 2).

Solution by John H. Lindsey II, Cambridge, MA. Let m be the geometric mean, de-
fined by m = (abc)1/3. By the arithmetic-geometric mean inequality, a + b + c ≥ 3m,
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with equality if and only if a = b = c. Thus m3 = a + b + c + 2 ≥ 3m + 2, or
(m − 2)(m + 1)2 = m3 − 3m − 2 ≥ 0 and hence m ≥ 2. Equality forces a = b =
c = 2, so in fact m > 2. Using the arithmetic-geometric mean inequality again to ob-
tain ab + bc + ca ≥ 3((ab)(bc)(ca))1/3 = 3m2, we see that (a + 1)(b + 1)(c + 1) >

m3 + 3m2 + 3m + 1 > 27. Thus the numerator and denominator of E are always pos-
itive on D.

For fixed (a, b, c) ∈ D, consider all triples (a′, b′, c′) ∈ D with a′b′c′ = abc. For
such triples the numerator of E is fixed and the denominator will be maximized (hence
E minimized) if we maximize a′b′ + b′c′ + c′a′. Since a′ + b′ + c′ = a + b + c is
fixed (at abc − 2), a′, b′, and c′ are bounded above; since also a′b′c′ is fixed and
positive, they are bounded away from zero. Thus they form a closed bounded set.
Hence we may choose a′, b′, c′ to maximize a′b′ + b′c′ + c′a′.

Suppose this maximum occurs for a′, b′, c′ distinct. By symmetry we may assume
that a′ < b′ < c′. Let f (x) = (x − a′)(x − b′)(x − c′). When ε is positive and suf-
ficiently small, f (x) + εx has three distinct positive roots with the same sum and
product as a, b, c (since f is a cubic polynomial), but this contradicts maximality of
the denominator. Thus two of a′, b′, c′ must be equal. Hence it suffices to minimize E
under the additional constraint a = b. In this case the condition abc = a + b + c + 2
gives c = 2

a−1 and we compute

E

(
a, a,

2

a − 1

)
= 4(a2 + 4a − 4)

(a + 7)(a − 1)
= 4 − 17

2(a + 7)
+ 1

2(a − 1)

and

d

da
E

(
a, a,

2

a − 1

)
= 17

2(a + 7)2
− 1

2(a − 1)2
.

The unique critical point occurs at a = 3+√
17

2 where E = 23+√
17

8 ≈ 3.390388. As a →
1+, E → ∞ and as a → ∞, E → 4 so this is the minimum of E .

Also solved by A. Alt, J. Grivaux (France), E. A. Herman, G. I. Isaacs, K.-W. Lau (China), GCHQ Problem
Solving Group (U. K.), Microsoft Research Problems Group, and the proposer.

Errata and End Notes for 2008.

An Infinite Product Based on a Base

11222 [2006, 459]. Proposed by Jonathan Sondow, New York, NY. Fix an integer B ≥
2, and let s(n) denote the sum of the base-B digits of n. Prove that

∞∏
n=0

∏
k odd

0<k<B

( nB + k

nB + k + 1

)(−1)s(n)

= 1√
B

.

Solution by the proposer. Set ε(n) = (−1)s(n). If B is odd, then s(n) ≡ n mod 2, since
all powers of B are odd. If B is even, then the constant term in the base-B expansion of
2m cannot be B − 1, and hence s(2m + 1) = s(2m) + 1. Hence in both cases ε(2m +
1) = −ε(2m). Let δk = 1 if k = 0, and otherwise δk = 0, and let

Pk,B = Pk =
∞∏

n=δk

( nB + k

nB + k + 1

)ε(n)

.
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Then Pk converges because it is a product over m ≥ 0 of factors of the form

( (2m)B + k + 1

(2m)B + k
· (2m + 1)B + k

(2m + 1)B + k + 1

)±1
,

which simplifies to (1 + B+1
x(x+B+1)

)±1, where x = 2m B + k. Thus products of the form∏
k∈S Pk converge for any finite subset S of [0, B − 1], and in particular, the original

product converges.
We now consider a product of Pk’s that telescopes nicely:

B−1∏
k=0

∞∏
n=δk

( nB + k

nB + k + 1

)ε(n) =
B−1∏
k=1

( k

k + 1

)ε(0) ∞∏
n=1

B−1∏
k=0

( nB + k

nB + k + 1

)ε(n)

= 1

B

∞∏
m=1

( m

m + 1

)ε(m)

.

(1)

If 0 ≤ k < B, then s(nB + k) = s(n) + k, so ε(nB + k) = (−1)kε(n). After splitting
the last product in (1) by collecting factors with the same residue modulo B, apply
ε(nB + k) = (−1)kε(n) to obtain

∞∏
m=1

( m

m + 1

)ε(m) =
B−1∏
k=0

∞∏
n=δk

( nB + k

nB + k + 1

)(−1)kε(n)

.

Substitute this into (1). Since the infinite products are all nonzero (being convergent
and having no zero factors), the factors for even k are the same on both sides and
cancel out. This yields

∏
k odd

0<k<B

∞∏
n=0

( nB + k

nB + k + 1

)ε(n) = 1

B

∏
k odd

0<k<B

∞∏
n=0

( nB + k

nB + k + 1

)−ε(n)

.

All the products are positive, and the desired formula follows.

Editorial comment. The solution of Problem 11222 for odd values of B given in the
May, 2008 issue of the Monthly was selected at a time when the proposer’s solution had
become separated from the file of solutions. The previously published solution treated
odd B only by reference to the literature. The proposer’s elegant solution covers all
cases simultaneously and efficiently. Fortunately, it was recovered, and we are pleased
to present it.

The names of solver Apostolis Demis, of Athens, Greece (11285, [2007,358]), and
William Dickinson, (11201, [2008,73]) were misspelled. Our apologies.

Paolo Perfetti gives a counterexample to the if-direction of part (a) in 11257, [2008,
269]. If zk = (−1)k−1/ ln(k + 1) (and sk = ∑ j

1 zk), then 〈sn〉 converges, but
∑

zk/sk

diverges, tending to −∞.
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