
Junior problems

J139. Let a0 = a1 = 1 and

an+1 =
a2

n

an + an−1

for n ≥ 1. Find an in closed form.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Dmitri Skjorshammer, Harvey Mudd College, USA

We prove that an = 1
n! by induction on n.

Base Case: Consider n = 1. Then a2 = a2
1

a1+a0
= 1

2 = 1
2! , as desired.

Strong Induction Hypothesis: Suppose that for n ≤ k, it is true that ak = 1
k! .

Inductive Step: Consider k + 1. Then

ak+1 =
a2

k

ak + ak−1
=

(
1
k!

)2
1
k! + 1

(k−1)!

=

(
1
k!

)2
1+k
k!

=
(

1
k!

)2 k!
k + 1

=
1

k!(k + 1)
=

1
(k + 1)!

.

Since the claim is true for the base case and for the inductive step, it follows
that it is true for all n ≥ 1.

Also solved by G. C. Greubel, Newport News, USA; Perfetti Paolo, Diparti-
mento di Matematica, Università degli studi di Tor Vergata Roma, Italy; Ercole
Suppa, Teramo, Italy; Arkady Alt, San Jose, California, USA; Badr Alghamdi,
Saudi Arabia; Bedri Hajrizi, Albania; Michel Bataille, France; Daniel Lasaosa,
Universidad Pública de Navarra, Spain; Tarik Adnan Moon, Bangladesh.
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J140. Let n be a positive integer. Find all real numbers x such that

bxc+ b2xc+ . . . + bnxc =
n(n + 1)

2
.

Proposed by Mihai Piticari, “Dragos-Voda” National College, Romania

First solution by John Mangual

Let f(x) = bxc+ b2xc+ · · ·+ bnxc. Note f(1) = n(n + 1)/2 and

f(1− ε) = b(1− ε)c+ b2(1− ε)c+ · · ·+ bn(1− ε)c < 1 + 2 + · · ·+ n =
n(n + 1)

2

for ε > 0. Since f(x) is monotone increasing, x = 1 is the smallest solution
to f(x) = n(n + 1)/2. f(x) will continue to hold this value until one of the
bkxc increases at x = 1 + 1/k. The first time this happens is at x = 1 + 1/n.
Therefore the solution set is the interval [1, 1/n).

Second solution by Michel Bataille, France

Let S(x) = bxc+ b2xc+ · · ·+ bnxc. We show that S(x) = n(n+1)
2 if and only if

1 ≤ x < 1 + 1
n .

First, suppose 1 ≤ x < 1 + 1
n and let k ∈ {1, 2, . . . , n}. Then

k ≤ kx < k +
k

n
≤ k + 1

so that bkxc = k. It follows that S(x) = 1 + 2 + · · ·+ n = n(n+1)
2 .

If x < 1, then kx < k so that bkxc < k for every k ∈ {1, 2, . . . , n} and by
addition, S(x) < n(n+1)

2 . Thus, no x < 1 is a solution.
Lastly, suppose that x ≥ 1 + 1

n . Then, for every k ∈ {1, 2, . . . , n − 1}, we have
kx ≥ k + k

n so that bkxc ≥ k. Besides, nx ≥ n + 1, hence bnxc ≥ n + 1. It
follows that

S(x) ≥ 1 + 2 + · · · (n− 1) + (n + 1) =
n(n + 1)

2
+ 1,

which implies that such an x is not a solution.

Also solved by Perfetti Paolo, Dipartimento di Matematica, Università degli
studi di Tor Vergata Roma, Italy; Ercole Suppa, Teramo, Italy; Arkady Alt, San
Jose, California, USA; Bedri Hajrizi, Albania; Daniel Lasaosa, Universidad
Pública de Navarra, Spain; Tarik Adnan Moon, Bangladesh.
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J141. Let a, b, c be the side lengths of a triangle. Prove that

0 ≤ a− b

b + c
+

b− c

c + a
+

c− a

a + b
< 1.

Proposed by Titu Andreescu, University of Texas at Dallas, USA and Dorin
Andrica, “Babes-Bolyai” University, Romania

First solution by the authors. We can write∑
cyc

a− b

b + c
=
∑
cyc

a + c

b + c
− 3 = E − 3,

where
E =

a + c

b + c
+

b + a

b + c
+

c + b

b + c
.

For the right-hand side inequality observe that in any triangle we have b + c >
1
2(a + b + c), c + a > 1

2(a + b + c), and a + b > 1
2(a + b + c). It follows

E <
2(a + c + b + a + c + b)

a + b + c
= 4.

For the left-hand side inequality we use the Cauchy-Schwarz inequality and get

E =
∑
cyc

a + c

b + c
=
∑
cyc

(a + c)2

(a + c)(b + c)
≥

(
∑

cyc(a + c))2∑
cyc(a + c)(b + c)

=
4(a + b + c)2

a2 + b2 + c2 + 3(ab + bc + ca)
.

The last fraction is greater than 3, since we have a2 + b2 + c2 ≥ ab + bc + ca.
The equality holds if and only if the triangle is equilateral.

Second solution by Arkady Alt, San Jose, California, USA

Since∑
cyc

(a− b) (a + b) (c + a) =
∑
cyc

(a− b)
(
a2 + ab + bc + ca

)
=
∑
cyc

(a− b) a2 + (ab + bc + ca)
∑
cyc

(a− b)

=
∑
cyc

(a− b) a2 = a3 + b3 + c3 − a2b− b2c− c2a

=
1
3

∑(
2a3 + b3 − 3a2b

)
=

1
3

∑
(a− b)2 (2a + b)
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then ∑
cyc

a− b

b + c
=

a3 + b3 + c3 − a2b− b2c− c2a

(a + b) (b + c) (c + a)
≥ 0.

It remains to prove that

∑
cyc

a− b

b + c
< 1 ⇐⇒ a3 + b3 + c3 − a2b− b2c− c2a < (a + b) (b + c) (c + a) .

We have

(a + b) (b + c) (c + a)− a3 − b3 − c3 + a2b + b2c + c2a

= 2abc + a2b + b2c + c2a +
∑
cyc

a2 (b + c− a)) > 0

because a, b, c satisfy the inequalities b + c− a > 0, c + a− b > 0, a + b− c > 0.

Third solution by Michel Bataille, France

The central expression rewrites as N
D with

N = (a− b)a2 + (b− c)b2 + (c− a)c2 and D = (a + b)(b + c)(c + a).

Assume without loss of generality that a = max{a, b, c}. Then,

N = (a−b)a2+(b−c)b2+(c−b)c2+(b−a)c2 = (a−b)(a−c)(a+c)+(b−c)2(b+c) ≥ 0

and since D > 0, we obtain N
D ≥ 0.

It is easily checked that

D −N = a2(b + c− a) + b2(c + a− b) + c2(a + b− c) + a2b + b2c + c2a + 2abc,

hence D − N > 0 (since a, b, c are the side lengths of a triangle, we have a <
b + c, b < c + a and c < a + b). Thus, N

D < 1 and we conclude that 0 ≤ N
D < 1,

as required.

Also solved by G. C. Greubel, Newport News, USA; Ercole Suppa, Teramo, Italy;
Daniel Lasaosa, Universidad Pública de Navarra, Spain.
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J142. For each positive integer m, define the binomial coefficient
(

x
m

)
= x(x−1)···(x−m+1)

m! .
Let x1, x2, . . . , xn be real numbers such that x1 +x2 + · · ·+xn ≥ n2. Prove that

n− 1
2

(
n∑

i=1

(
xi

3

))( n∑
i=1

xi

)
≥ n− 2

3

(
n∑

i=1

(
xi

2

))2

.

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

First solution by G. C. Greubel, Newport News, USA

Let

φ =
n− 1

2

(
n∑

i=1

(
xi

3

))( n∑
i=1

xi

)
(1)

=
n− 1

2

(
n∑

i=1

xi(xi − 1)(xi − 2)
3!

)(
n∑

i=1

xi

)

=
n− 1
12

(
n∑

i=1

(x3
i − 3x2

i + 2xi)

)(
n∑

i=1

xi

)
. (2)

When use is made of Chebychev’s inequality of two and three variables, namely,

n∑
k=1

xkyk ≥ n

(
1
n

n∑
k=1

xk

)(
1
n

n∑
k=1

yk

)
(3)

and

n∑
k=1

xkykzk ≥ n

(
1
n

n∑
k=1

xk

)(
1
n

n∑
k=1

yk

)(
1
n

n∑
k=1

zk

)
(4)

we have
n∑

k=1

xi ≥ n2, (5)

by the original problem, and

n∑
k=1

x2
i ≥ n

(
1
n

(n2)
)2

= n3 (6)

n∑
k=1

x3
i ≥ n

(
1
n

(n2)
)3

= n4. (7)
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From this we have

φ ≥ n− 1
12

(
n4 − 3n3 + 2n2

) (
n2
)

≥ n4

12
(n− 1)2(n− 2). (8)

This can be rearranged to be in the form

φ ≥ n− 2
3

· n4(n− 1)2

4

≥ n− 2
3

(
n2

2
(n− 1)

)2

≥ n− 2
3

(
n∑

k=1

xi(xi − 1)
2!

)2

≥ n− 2
3

(∑
k=1

n

(
xi

2

))2

. (9)

Thus we have

n− 1
2

(
n∑

i=1

(
xi

3

))( n∑
i=1

xi

)
≥ n− 2

3

(∑
k=1

n

(
xi

2

))2

. (10)

Second solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain

If n = 1, the RHS is negative while the LHS is zero, or we may assume that
n ≥ 2. Denote Sk = xk

1 + xk
2 + · · ·+ xk

n. Clearly,

n∑
i=1

(
xi

3

)
=

S3 − 3S2 + 2S1

6
,

n∑
i=1

(
xi

2

)
=

S2 − S1

2
,

or the proposed inequality rewrites as

S1S3 − S2
2 − S1S2 + S2

1 +
(S2 − S1)2

n− 1
≥ 0.

Now, S2
2 − (n + 1)S1S2 + nS2

1 = (S2 − S1)(S2 − nS1) ≥ 0 as a consequence of
the inequality between arithmetic and quadratic means, with equality iff all xi

are equal, because S2 ≥
S2

1
n ≥ nS1. Thus, (S2 − S1)2 ≥ (n − 1)(S1S2 − S2

1).
Moreover,

S1S3 − S2
2 =

∑
i6=j

xixj(xi − xj)2 ≥ 0.

The conclusion follows, equality holding iff all xi are equal.
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J143. Let x1 = −2, x2 = −1 and

xn+1 = 3
√

n(x2
n + 1) + 2xn−1

for n ≥ 2. Find x2009.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Badr Alghamdi, Saudi Arabia

By plugging in values we find

x3 = 0, x4 = 1, x5 = 2.

We will prove that
xn = n− 3

by induction on n. Assume it is true for n and let us prove it for n+1.

xn+1 = 3
√

n(x2
n + 1) + 2xn−1 = 3

√
n
(
(n− 3)2 + 1

)
+ 2 (n− 4)

= 3
√

n3 − 6n2 + 12n− 8 = 3

√
(n− 2)3 = n− 2

hence the inductive step is also true. We can now find x2009 = 2009− 3 = 2006.

Also solved by G. C. Greubel, Newport News, USA; Perfetti Paolo, Dipartimento
di Matematica, Università degli studi di Tor Vergata Roma, Italy; Ercole Suppa,
Teramo, Italy; Arkady Alt, San Jose, California, USA; Bedri Hajrizi, Albania;
Dmitri Skjorshammer, Harvey Mudd College, USA; Michel Bataille, France;
Daniel Lasaosa, Universidad Pública de Navarra, Spain.
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J144. Let ABC be a triangle with a > b > c. Denote by O and H its circumcenter
and orthocenter, respectively. Prove that

sin ∠AHO + sin∠BHO + sin∠CHO ≤ (a− c)(a + c)3

4abc ·OH
.

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

First solution by Ercole Suppa, Teramo, Italy

Let R, A, B, C, a, b, c be the circumradius, the angles and the side lengths of
the triangle ABC, respectively.

A

B C

H

O

Clearly we have

∠HAO = ∠HAC − ∠OAC = (90◦ − C)− (90◦ −B) = B − C (1)

The sine law in triangle AHO yields

AO

sin∠AHO
=

OH

sin∠HAO
(2)

From (1) and (2), taking into account the law of sines and the law of cosines in
triangle ABC, it follows that

sin∠AHO =
R

OH
· sin(B − C) =

=
R

OH
· (sinB cos C − cos B sinC) =

=
1

OH
·
(

b

2
cos C − c

2
cos B

)
=

=
1

OH
·
(

b · a2 + b2 − c2

4ab
− c · a2 + c2 − b2

4ac

)
=

=
1

OH
· b2 − c2

2a
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Building up two similar equalities and adding up all of them, we get

sin∠AHO + sin∠BHO + sin∠CHO =

=
1

OH
·
(

b2 − c2

2a
+

a2 − c2

2b
+

a2 − b2

2c

)
=

=
1

2abc ·OH

[
bc
(
b2 − c2

)
+ ac

(
a2 − c2

)
+ ab

(
a2 − b2

)]
=

=
1

2abc ·OH
(a + b)(b + c)(a− c)(a− b + c) =

=
1

4abc ·OH
(a + b)(b + c)(a− c)(2a− 2b + 2c)

Then, according to the above relation, the given inequality can be rewritten in
the form

(a + b)(b + c)(2a− 2b + 2c) ≤ (a + c)3

which is true because of AM-GM inequality. �

Second solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain

We will show that the inequality holds always strictly. Applying the Sine Law
to triangle ∆AHO, we find OH sin∠AHO = AO sin∠OAH = R sin(B − C),
and similarly for its cyclic permutations, or the strict inequality is equivalent to

4abcR (sin(A−B) + sin(A− C) + sin(B − C)) < (a− c)(a + c)3.

Using the Cosine Law and trigonometric relations yields

(a− c)(a+ c) = a2− c2 = b2− 2bc cos A = b(a cos C− c cos A) = 2bR sin(A−C),

while sin(A−B)+sin(B−C) = 2 sin A−C
2 sin 3B

2 , or the inequality is equivalent
to

2ac sin
3B

2
< cos

A− C

2
(a2 + c2).

Now, 2 sin 3B
2 cos B

2 = sin(2B) + sinB, while 2 cos A−C
2 cos B

2 = sinA + sinC, or
it suffices to prove that

(a+c)(a2+c2) > 2ac(b+2b cos B), a3+2b3+c3+a2c+ac2 > 2b(a2+ac+c2).

Write 2b = ρ(a + c), where ρ < 2 because of the triangular inequality. The
proposed inequality transforms finally into

(ρ3 − 3ρ + 2)(a + c)2 + (a− c)2(2− ρ) > 0.

The second term is stricly positive, while ρ3−3ρ+2 = (ρ−1)2(ρ+2) ≥ 0, with
equality iff ρ = 1. The conclusion follows.

Mathematical Reflections 6 (2009) 9



Senior problems

S139. Let a0 = 1 and an+1 = a0 · · · an + 3 for n ≥ 0. Prove that

an + 3
√

1− anan+1 = 1,

for all n ≥ 1.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Perfetti Paolo, Dipartimento di Matematica, Università degli studi
di Tor Vergata Roma, Italy

Observe that an+1 = (an − 3)an + 3 = a2
n − 3an + 3 is an easy consequence

of an+1 = a0 · · · an + 3. It follows an + 3
√

1− an(a2
n − 3an + 3) = 1 that is

an + 3
√

1− an)3 = 1 and we are done.

Also solved by G. C. Greubel, Newport News, USA; Arkady Alt, San Jose,
California, USA; Dmitri Skjorshammer, Harvey Mudd College, USA; Michel
Bataille, France; Daniel Lasaosa, Universidad Pública de Navarra, Spain.
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S140. Let a, b, c be integers. Prove that∑
cyc

(a− b)(a2 + b2 − c2)c2

is divisible by (a + b + c)2.

Proposed by Dorin Andrica, “Babeş-Bolyai” University, Cluj-Napoca, Romania

First solution by G. C. Greubel, Newport News, USA

Let φ be the cyclical sum of the problem, namely,

φ =
∑
cycl

(a− b)(a2 + b2 − c2)c2 (11)

= (a− b)(a2 + b2 − c2)c2 + (b− c)(b2 + c2 − a2)a2

+ (c− a)(c2 + a2 − b2)b2. (12)

Multiplying out the terms of (2) yields

φ = a3(c2 − b2) + b3(a2 − c2) + c3(b2 − a2) + a4(c− b) + b4(a− c)

+ c4(b− a) + abc[c(b− a) + a(c− b) + b(a− c)]

= a4(c− b) + a3(c2 − b2) + b4(a− c) + b3(a2 − c2)

+ c4(b− a) + c3(b2 − a2)

= (a + b + c)[a3(c− b) + b3(a− c) + c3(b− a)]. (13)

Let

σ = a3(c− b) + b3(a− c) + c3(b− a). (14)

Then

σ = a3(c− b) + b3(a− c) + c3(b− a)

= ac(a2 − c2) + ab(b2 − a2) + bc(c2 − b2)
= (a + b + c)[ac(a− c) + ab(b− a) + bc(c− b)]
− abc[(a− c) + (b− a) + (c− b)]

= (a + b + c)[ab(b− a) + bc(c− b) + ca(a− c)]

= (a + b + c)
∑
cycl

ab(b− a). (15)
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From (1), (3), and (5) we have∑
cycl

(a− b)(a2 + b2 − c2)c2 = (a + b + c)2
∑
cycl

ab(b− a). (16)

This provides the fact that the original sum is divisible by (a + b + c)2.

Second solution by Michel Bataille, France

We introduce the following polynomial with integer coefficients:

P (x) = x4 + x3(b + c)− x2(b2 + c2 + bc)− x(b + c)(b2 + c2) + bc(b + c)2.

A simple calculation shows that∑
cyc

(a− b)(a2 + b2 − c2)c2 = (c− b)P (a).

Now, assume that we have proved that P (x) is divisible by (x + b + c)2. The
quotient Q(x) has integer coefficients and the relation P (a) = (a + b + c)2Q(a)
then implies that the given sum is divisible by (a+ b+ c)2. Thus, it is sufficient
to prove that P (x) is divisible by (x + b + c)2, or equivalently, that

P (−(b + c)) = P ′(−(b + c)) = 0

where P ′(x) = 4x3+3x2(b+c)−2x(b2+c2+bc)−(b+c)(b2+c2) is the derivative
of P (x). Now, we compute

P (−(b+c)) = (b+c)4−(b+c)4−(b+c)2(b2+c2+bc)+(b+c)2(b2+c2)+bc(b+c)2 = 0

and

P ′(−(b+ c)) = −4(b+ c)3 +3(b+ c)3 +2(b+ c)(b2 + c2 + bc)− (b+ c)(b2 + c2) = 0

and the proof is complete.

Also solved by Arkady Alt, San Jose, California, USA; Ercole Suppa, Teramo,
Italy; Perfetti Paolo, Dipartimento di Matematica, Università degli studi di Tor
Vergata Roma, Italy; Daniel Lasaosa, Universidad Pública de Navarra, Spain.

Mathematical Reflections 6 (2009) 12



S141. Four squares are laying inside a circle of radius
√

5 such that no two have a
common point. Prove that one can place these squares inside a square of side
4, such that no two have a common point.

Proposed by Nairi Sedrakyan, Armenia

Solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain

Denote by a ≥ b ≥ c ≥ d the sidelengths of the four squares, by ABCD the
square with sidelength 4, and assume that a + b < 4. Place the square with
sidelength a with one vertex on A, and two sides along segments AB and AD,
then displace it a distance δ = 4−a−b

3 towards the interior of ABCD in both
directions perpendicular to the sides of ABCD, and proceed similarly with the
squares with sidelengths b, c, d on vertices B,C,D, respectively. Clearly, two
squares will have common points iff 4 ≤ a + b + δ = 4+2a+2b

3 , clearly not true
since a + b < 4. We can see that the squares may be placed inside a square of
side 4 without common points, if any two squares have sidelengths adding up
to less than 4.

Assume now that two squares ABCD with sidelength a and A′B′C ′D′ with
sidelength b, such that a + b ≥ 4, may be fitted (even touching each other)
inside a circle with radius

√
5. Note that if they fit without touching, they may

be brought into contact and still will fit inside the circle, or we may assume
wlog that C is on side C ′D′, where CD′ = d and CC ′ = b− d. Denote π

4 ≤ α =
∠ACC ′ ≤ π

2 . We find

AA′2 = b2 + d2 + 2a2 + 2
√

2a(d cos α + b sinα),

BB′2 = 2b2 − 2bd + d2 + a2 +
√

2a(d cos α + (2b− d) sinα).

Given d, note that AA′ is smallest when α is smallest because d ≤ b, while BB′ is
smallest when α is closest to its upper bound π

2 . Therefore, if AA′ > BB′ we may
decrease AA′ by decreasing α, thus increasing BB′, and vice versa, leading to a
common minimum when AA′ = BB′, ie, when a2 +2bd+

√
2ad(cos α+sinα) =

b2. Note also that

AA′2 + BB′2 = 3b2 − 2bd + 2d2 + 3a2 +
√

2a(3d cos α− d sinα + 4b sinα).

For any given d, the minimum of the previous expression is reached when sin α
is minimum, since sinα ≥ cos α, and b ≥ d; moreover, when the previous
expression is minimum, then AA′ = BB′ is clearly minimum, or the minimum
is reached when α = π

4 and 2d = b− a, yielding

max{AA′2, BB′2} ≥ b2 + a2 + d2 + 3ab =
5(a + b)2

4
≥ 20,
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or max{AA′, BB′} ≥ 2
√

5, hence at least equal to the diameter of the circle.
Hence two squares whose sidelengths add up to 4 or more cannot be fitted, even
touching one another’s perimeter, inside a circle with radius

√
5. The conclusion

follows.
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S142. Consider two concentric circles C1(O,R) and C2(O, R
2 ). Prove that for each

point A on the circumference of circle C1 and for each point Ω inside the circle
C2 there are points B and C on the circumference of C1 such that Ω is the
center of the nine-point circle of triangle ABC.

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

Solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain

Denote by H the symmetric of O with respect to Ω, and draw the circle with
center A passing through H. This circle intesects C1 at two points, which we
will call P and Q. Draw now the perpendicular bisectors of HP and HQ, which
clearly pass through A, and intersect each the circumcircle at another point,
respectively B and C. Now, ∠QCA = ∠ACP because AP = AQ, or since AC
is the perpendicular bisector of HQ, CP passes through H and is perpendicular
to AB, and similarly BQ passes through H and is perpendicular to AC. Hence
H is the orthocenter of ABC, and its nine-point center is the midpoint of H
and O, which is Ω, as desired.

Note that we have not only constructed triangle ABC inscribed in C1 such that
Ω is its nine-point center, but from the construction we may find additional
information: since H is clearly inside the circumcircle of ABC, we conclude
that ABC will always be acute. Note also that we are not restricted to Ω being
inside C2: the proposed construction is valid as long as the symmetric of Ω with
respect to O is such that AH < 2R, ie, Ω may be any point inside circle C3 with
center at the midpoint of AO and radius R (this clearly includes the interior of
circle C2). Note finally that whenever Ω is on the boundary of C2 but inside C3

(this excludes only the symmetric with respect to O of the midpoint of OA),
the symmetric H of O with respect to Ω is on C1, and is one of the vertices of
ABC, the third one being the symmetric of A with respect to O, ABC being
rectangle at H; if Ω is outside C2 but inside C3, then ABC inscribed in C1 and
such that Ω is its nine-point center may be constructed, but it is obtuse.
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S143. Let m and n be positive integers, m < n. Evaluate

n∑
k=m+1

k(k2 − 12) · · · (k2 −m2).

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by the author. Denoting the sum by Sm,n we have

(2m + 2)Sm,n =
n∑

k=m+1

k(k2 − 12) · · · (k2 −m2)[(k + m + 1)− (k −m− 1)]

=
n∑

k=m+1

[(k −m)...k...(k + m + 1)− (k −m− 1)...k...(k + m)],

which telescopes to (n−m)...n...(n + m + 1). Hence

Sm,n =
1

2(m + 1)
· (n + m + 1)!
(n−m− 1)!

.

Second solution by Michel Bataille, France

Let Sm,n denote the given sum. We will show that

Sm,n = (2m + 1)!
(

m + n + 1
2m + 2

)
=

1
2m + 2

· (n + m + 1)!
(n− (m + 1))!

.

We have

Sm,n =
n∑

k=m+1

((k −m)(k − (m− 1)) · · · (k − 1)k(k + 1) · · · (k + m))

=
n∑

k=m+1

(k + m)!
(k − (m + 1))!

= ((2m + 1)!)
n∑

k=m+1

(
m + k

2m + 1

)
.

Now, for nonnegative integers p, q, we have(
p

p

)
+
(

p + 1
p

)
+ · · ·+

(
p + q

p

)
=

(
p + 1
p + 1

)
+
(

p + 1
p

)
+ · · ·+

(
p + q

p

)
=

(
p + 2
p + 1

)
+
(

p + 2
p

)
+ · · ·+

(
p + q

p

)
= . . . . . . . . . . . . . . .

=
(

p + q

p + 1

)
+
(

p + q

p

)
=
(

p + q + 1
p + 1

)
.
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It follows that
n∑

k=m+1

(
m + k

2m + 1

)
=
(

m + n + 1
2m + 2

)
and so

Sm,n = (2m+1)!
(

m + n + 1
2m + 2

)
= (2m+1)!

(m + n + 1)!
(2m + 2)!(n−m− 1)!

=
1

2m + 2
· (n + m + 1)!
(n− (m + 1))!

.

Also solved by G. C. Greubel, Newport News, USA; Raul A. Simon,Chile; Arkady
Alt, San Jose, California, USA; Dmitri Skjorshammer, Harvey Mudd College,
USA; Daniel Lasaosa, Universidad Pública de Navarra, Spain.
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S144. Let ABCD be a quadrilateral. Consider the reflection of each of the lines AB,
BC, CD, DA on the respective midpoints of the opposite sides CD, DA, AB,
BC. Prove that these four lines bound a quadrilateral A′B′C ′D′ homothetic
with ABCD and find the ratio and center of the homothety.

Proposed by Francisco Javier Garćıa Capitán and Juan Bosco Romero
Márquez

First solution by Ercole Suppa, Teramo, Italy

Consider a system of coordinates with origin in the centroid O of ABCD and
denote by

−→
X the vector from O to X. Let A1, B1 be the reflections of A, B

on the midpoint M of CD and let A2, D2 be the reflections of A, D on the
midpoint N of BC, as shown in figure.

A

B
C

D

M

N

A'

B'

C'

D'

O

A2

A1

B1

D2

We clearly have
−→
M =

−→
C +

−→
D

2 ,
−→
N =

−→
B+

−→
C

2 , hence

−→
A1 =

−→
C +

−→
D −

−→
A,

−→
B1 =

−→
C +

−→
D −

−→
B (1)

−→
A2 =

−→
B +

−→
C −

−→
A,

−→
D2 =

−→
B +

−→
C −

−→
D (2)
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Since A′ lies on the lines A1B1 and A2D2 there are suitable real numbers t, u
such that

−→
A′ =

−→
A1 + t

(−→
B1 −

−→
A1

)
=
−→
A2 + u

(−→
D2 −

−→
A2

)
and using (1) and (2) we get

−→
C +

−→
D −

−→
A + t

(−→
A −

−→
B
)

=
−→
B +

−→
C −

−→
A + u

(−→
A −

−→
D
)

⇒

(t− u)
−→
A − (t + 1)

−→
B + (u + 1)

−→
D = 0

Since the vectors
−→
A ,

−→
B and

−→
D are linearly independent we obtain

t = u = −1 ⇒
−→
A′ =

−→
B +

−→
C +

−→
D − 2

−→
A (3)

From (3), taking into account that
−→
O = 1

4

(−→
A +

−→
B +

−→
C +

−→
D
)
, it follows that

−→
A′ + 3 ·

−→
A = 4 ·

−→
O ⇔

−−→
OA′ = −3 ·

−→
OA

and this implies that A′ is the image of A under the homotety of center O and
ratio k = −3. In similar way we can prove that B′, C ′, D′ are respectively the
correspondents of B, C, D in the homotety with center O and ratio k = −3.

Therefore the quadrilateral A′B′C ′D′ is the image of ABCD under the ho-
motety of center O and ratio k = −3. �

Second solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain

Any two points X, Y , respectively on lines AB,DA, satisfy ~AX = ρ ~AB and
~AY = ρ ~AD for some reals ρ, κ. The midpoint M of CD clearly satisfies ~AM =

1
2

~AC + 1
2

~AD, or the symmetric X ′ of X with respect to M is such that ~AX ′ +
ρ ~AB = ~AC+ ~AD. Similarly, the symmetric Y ′ of Y with respect to the midpoint
of BC satisfies ~AY ′ + κ ~AD = ~AB + ~AC. Calling A′ the point where these two
lines meet, κ and ρ for A′ must be such that ~AD − ρ ~AB = ~AB − κ ~AD, or
κ = ρ = −1, and ~AA′ = ~AB + ~AC + ~AD. Adding 4 ~OA to both sides, where O
is the barycenter of ABCD, we find 3 ~OA + ~OA′ = ~OA + ~OB + ~OC + ~OD = ~0,
and clearly ~OA′ = −3 ~OA, and similarly for the other three vertices of both
quadrilaterals. We conclude that ABCD and A′B′C ′D′ are homothetic, the
radio and center of the homothety are respectively −3 and the barycenter of
ABCD, which is also the barycenter of A′B′C ′D′.

Also solved by Raul A. Simon,Chile; Miguel Amengual Covas.
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Undergraduate problems

U139. Find the least interval containing all values of the expression

E(x, y, z) =
x

x + 2y
+

y

y + 2z
+

z

z + 2x
.

Proposed by Dorin Andrica, “Babeş-Bolyai” University, Cluj-Napoca,
Romania

Solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain

Note first that, whenever x = 0, y = 2u − 2, z = 2 − u, for u 6= 1 and u 6= 2,
then the expression takes the value 0 + 2u−2

2u−2+4−2u + 1 = u, or any real value
except for 1 and 2 may be obtained in this way. Note next that the expression
takes value 1 when x = y = z 6= 0. Note finally that, when x =

√
17−1
2 , y = −4

and z = 1, the expression takes the value
√

17− 1√
17− 17

+ 2 +
1√
17

= 2.

Therefore, the expression takes all real values.

Also solved by Arkady Alt, San Jose, California, USA; Perfetti Paolo, Diparti-
mento di Matematica, Università degli studi di Tor Vergata Roma, Italy; Ercole
Suppa, Teramo, Italy.
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U140. Let (an)n≥1 a decreasing sequence of positive real numbers. Let

sn = a1 + a2 + . . . + an,

and

bn =
1

an+1
− 1

an
,

for all n ≥ 1. Prove that if the sequence (sn)n≥1 is convergent, then the sequence
(bn)n≥1 is unbounded.

Proposed by Bogdan Enescu, ”B. P. Hasdeu” National College, Buzau,
Romania

First solution by Perfetti Paolo, Dipartimento di Matematica, Università degli
studi di Tor Vergata Roma, Italy

It is well known that if a decreasing sequence of positive terms (an)n≥1 is such
that sn = a1+. . .+an tends to a limit, then limn→∞ nan = 0 that is nan < ε for
any n ≥ nε (ε may be choose as small as we need). Thus we have 1

aN+1
≥ N+1

ε .

Now let’s suppose bn > 0 bounded that is 0 < bn ≤ B. We have 1
an+1

≤ 1
an

+ B
yielding

N∑
n=1

1
an+1

≤
N∑

n=1

1
an

+ BN or
1

aN+1
<

1
a1

+ BN

but this contradicts 1
aN+1

≥ N+1
ε as soon as ε < a1(N+1)

1+a1NB completing the proof.

Second solution by Arkady Alt, San Jose, California, USA

Suppose that there is M > 0 such that bn < M. Then

1
an+1

− 1
a1

=
n∑

k=1

(
1

ak+1
− 1

ak

)
=

n∑
k=1

bk < nM

is equivalent to
1

an+1
< nM +

1
a1

equivalent to
an+1 >

a1

a1Mn + 1
, n ≥ 1.
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Let K := min
{

a1,
1
M

}
then

a1

a1Mn + 1
≥ K

n + 1
. Furthermore a1n + a1 ≥

KMa1 + K if and only if a1 (1−KM) + (a1 −K) ≥ 0.

Thus, an >
K

n
, n ≥ 2 and, therefore, sn = a1 + a2 + ... + an > a1 − 1 + hn,

where hn = 1 +
1
2

+
1
3

+ ... +
1
n

is a divergent harmonic sequence. This contra-

diction proves that (bn)n≥1 is unbounded.

Also solved by Michel Bataille, France; Daniel Lasaosa, Universidad Pública de
Navarra, Spain.
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U141. Find all pairs (x, y) of positive integers such that 13x + 3 = y2.

Proposed by Andrea Munaro, Universit degli Studi di Trento, Italy

Solution by Andrea Munaro, Universit degli Studi di Trento, Italy

We have (4−
√

3)x(4 +
√

3)x = 13x = (y −
√

3)(y +
√

3). It is easy to see that
Z[
√

3] is a Euclidean domain with the norm N given by

N(a + b
√

3) =
∣∣a2 − 3b2

∣∣ .
Hence Z[

√
3] is a PID and so a UFD.

Suppose there exists a prime p ∈ Z[
√

3] which divides both y−
√

3 and y +
√

3.
Then

N(p) | N(y +
√

3) =
∣∣y2 − 3

∣∣ = 13x.

On the other hand since p | 2
√

3, we have N(p) | N(2
√

3) = 12. Then N(p) |
(12, 13x) = 1 and so N(p) = 1, contradiction.
Hence (y −

√
3, y +

√
3) = 1 and so y +

√
3 is a x-power. In particular, since

both 4 −
√

3 and 4 +
√

3 are primes then (4 +
√

3)x = y +
√

3, which after
comparing coefficients of

√
3 in both sides yields

1 =
∑(

x

2k + 1

)
3k4x−(2k+1) = x4x−1 + (terms ≥ 1).

Therefore x = 1.
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U142. Let f : [0, 1] → R be a continuously differentiable function. Prove that if
1
2∫
0

f(x)dx = 0 then

1∫
0

(f ′(x))2dx ≥ 12

 1∫
0

f(x)dx

2

.

Proposed by Duong Viet Thong Faculty of Foundation, Nam Dinh University
of Technology Education, Phu Nghia Road, Loc Ha Ward, Nam Dinh City,

Vietnam

First solution by Perfetti Paolo, Dipartimento di Matematica, Università degli
studi di Tor Vergata Roma, Italy

Define the function g(x) =
{

ax 0 ≤ x ≤ 1/2
−a(x− 1) 1/2 ≤ x ≤ 1

We have

∫ 1

0
f(x)g′(x)dx = f(x)g(x)

∣∣∣1
0
−
∫ 1

0
f ′(x)g(x)dx = −

∫ 1

0
f ′(x)g(x)dx

but we have also∫ 1

0
f(x)g′(x)dx = a

∫ 1/2

0
f(x)dx− a

∫ 1

1/2
f(x)dx = −a

∫ 1

0
f(x)dx

thanks to the condition on f(x). Cauchy–Schwarz yields(∫ 1

0
f ′(x)g(x)dx

)2

≤
∫ 1

0
(f ′(x))2dx

∫ 1

0
(g(x))2dx

thus

a2

(∫ 1

0
f(x)dx

)2

≤ a2

(∫ 1

0
(f ′(x))2dx

)
·

(∫ 1/2

0
x2dx +

∫ 1

1/2
(x− 1)2dx

)

and finally (∫ 1

0
f(x)dx

)2

≤ 1
12

∫ 1

0
(f ′(x))2dx.

Second solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain
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Define g(x) = f(x)+f(1−x)
2 and h(x) = f(x)−f(1−x)

2 . Clearly g(x) = g(1 − x),
h(x) = h(1 − x) and f(x) = g(x) + h(x), and moreover f ′(x) = g′(x) + h′(x),
where g′(x) = −g′(1−x) and h′(x) = h′(1−x), leading to

∫ 1
0 g′(x)h′(x)dx = 0.

Note also that we may define

K =
∫ 1

2

0
g(x)dx =

∫ 1

1
2

g(x)dx = −
∫ 1

2

0
h(x)dx =

∫ 1

1
2

h(x)dx.

The proposed inequality thus rewrites as∫ 1
2

0
(g′(x))2dx +

∫ 1
2

0
(h′(x))2dx ≥ 24K2,

where g′
(

1
2

)
= 0 and h

(
1
2

)
= 0. Clearly (g′(x))2 ≥ 0 for all x ∈

[
0, 1

2

]
,

with equality iff g(x) = 2K for all x ∈ [0, 1], while using the Cauchy-Schwarz
inequality,

1
24

∫ 1
2

0
(h′(x))2dx =

(∫ 1
2

0
x2dx

)(∫ 1
2

0
(h′(x))2dx

)
≥

(∫ 1
2

0
xh′(x)dx

)2

=,

=

(
1
2
h

(
1
2

)
− 0 · h(0)−

∫ 1
2

0
h(x)dx

)2

= K2,

with equality iff h′(x) = ρx for all x ∈
[
0, 1

2

]
and some real constant ρ. The

conclusion follows, and equality holds iff, for all x ∈
[
0, 1

2

)
,

h(x) = −
∫ 1

2

x
h′(t)dt = −ρ

∫ 1
2

x
tdt = ρ

4x2 − 1
8

.

Moreover, it must hold that

−K =
∫ 1

2

0
h(x)dx = ρ

∫ 1
2

0

4x2 − 1
8

dx = − ρ

24
,

ie, equality holds in the proposed inequality iff f(x) = 12Kx2 − K for all
x ∈

[
0, 1

2

]
and f(x) = −7K + 24Kx − 12Kx2 for all x ∈

[
1
2 , 1
]
, for some real

constant K, where we have used the relation between h(x) and h(1− x).
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U143. For a positive integer n > 1, determine

lim
x→0

sin2(x) sin2(nx)
n2 sin2(x)− sin2(nx)

.

Proposed by N. Javier Buitrago A., Universidad Nacional de Colombia

First solution by Ercole Suppa, Teramo, Italy

First of all, let us rewrite the function in the following simpler form by using
the well known identity sin2 x = 1−cos x

2 :

sin2(x) sin2(nx)
n2 sin2(x)− sin2(nx)

=
1− cos x− cos(nx) + cos x cos(nx)

2n2 − 2n2 cos x− 2 + 2 cos(nx)

Now, a repeated application of L’Hospital’s Rule gives the result

lim
x→0

1− cos x− cos(nx) + cos x cos(nx)
2n2 − 2n2 cos x− 2 + 2 cos(nx)

=

= lim
x→0

sinx + n sin(nx)− cos(nx) sinx− n cos x sin(nx)
2n2 sinx− 2n sin(nx)

=

= lim
x→0

cos x + n2 cos(nx)− cos x cos(nx)− n2 cos x cos(nx) + 2n sinx sin(nx)
2n2 cos x− 2n2 cos(nx)

=

= lim
x→0

− sinx +
(
1 + 3n2

)
cos(nx) sinx− n3 sin(nx) +

(
3n + n3

)
cos x sin(nx)

−2n2 sinx + 2n3 sin(nx)
=

= lim
x→0

− cos x +
(
1 + 6n2 + n4

)
cos x cos(nx)− n4 cos(nx)− 4

(
n + n3

)
sinx sin(nx)

−2n2 cos x + 2n4 cos(nx)
=

=
6n2

2n4 − 2n2
=

3
n2 − 1

�

Second solution by Michel Bataille, France

We shall use u(x) ∼ v(x) to mean limx→0
u(x)
v(x) = 1 and o(xn) to denote any

function of the form xnε(x) where limx→0 ε(x) = 0.
From the well-known sinx ∼ x, we deduce sin2(x) sin2(nx) ∼ n2x4 (1).
On the other hand, from sinx = x− x3

6 + o(x4), we first obtain

sin2 x = x2 − x4

3
+ o(x4)
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and then

n2 sin2(x)− sin2(nx) = n2x2

(
1− x2

3
+ o(x2)

)
− n2x2

(
1− n2x2

3
+ o(x2)

)
= n2x2

(
(n2 − 1)x2

3
+ o(x2)

)
.

Thus,

n2 sin2(x)− sin2(nx) ∼ n2(n2 − 1)x4

3
(2).

Finally, (1) and (2) readily yield

lim
x→0

sin2(x) sin2(nx)
n2 sin2(x)− sin2(nx)

=
3

n2 − 1
.

Third solution by John Mangual

Let L denote the limit:

L = lim
x→0

sin2 x sin2 nx

n2 sin2 x− sin2 nx

Then taking reciprocals the fractions simplify a bit:

1/L = lim
x→0

n2

sin2 nx
− 1

sinx2

We can estimate sin x to third order x− x3/6 without getting divergences:

1/L = lim
x→0

n2(
nx− n3x3

6

)2 −
1(

x− x3

6

)2

= lim
x→0

1(
x− n2x3

6

)2 −
1(

x− x3

6

)2

= lim
x→0

1
x2

 1(
1− n2x2

6

)2 −
1(

1− x2

6

)2


Finally, use the square of the geometric series formula: 1/(1 − x)2 = 1 + 2x +
3x2 + . . . up to second order:

1/L = lim
x→0

1
x2

[(
1 +

n2x2

3

)
−
(

1− x2

3

)
=

n2 − 1
3

]
Therefore, the resulting limit is L = 3/(n2 − 1).

Also solved by Arkady Alt, San Jose, California, USA; Bedri Hajrizi, Albania;
Daniel Lasaosa, Universidad Pública de Navarra, Spain.
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U144. Let F be the set of all continuous functions f : [0,∞) → [0,∞) satisfying the
relation

f(

x∫
0

f(t)dt) =

x∫
0

f(t)dt

for all x ∈ [0,∞).

a) Prove that F has infinitely many elements.

b) Find all convex functions f in the set F .

Proposed by Mihai Piticari, “Dragos-Voda” National College, Romania

Solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain

a) Define f(x) = x for x ∈ [0, a], f(x) = 2a− x for x ∈ [a, 2a] and f(x) = 0 for
all x ≥ 2a. Clearly f(x) is continuous, and the maximum value of

∫ x
0 f(t)dt is

a2, or f ∈ F as long as a2 ≤ a, ie, as long as a ≤ 1. The set F contains therefore
at least all the functions f(x) thus defined for the infinite values a ∈ [0, 1].

b) Define g(x) =
∫ x
0 f(t)dt. Clearly, f(g(x)) = g(x), g(x) is continuous, and

g(0) = 0. If g(x) is not bounded, by the intermediate value theorem, for any
positive real x a real y exists such that g(y) = x, or f(x) = f(g(y)) = g(y) = x,
and f(x) = x for all x ∈ [0,∞). Note that f(x) = x is convex (not strictly).
Assume now that g(x) is bounded; then, S = supx∈[0,∞) g(x) exists, and by the
intermediate value theorem f(x) = x for all x ∈ [0, S). Assume that y > x
exists such that f(y) < y, then point

(
S
2 , S

2

)
is on the graph of f(x) and above

the line through points (0, 0) and (y, f(y)), which are also on the graph of f(x),
and f(x) would be concave; contradiction, hence f(x) ≥ x for all x > S, and
g(x) is not bounded, contradiction. Hence if g(x) is bounded and its supreme
S is positive, either f(x) = x, or f /∈ F , or f is not convex. Moreover, if S = 0,
clearly f(x) = 0 for all x, and again we obtain a (non strictly) convex function
in F . We conclude that the only convex functions in F are f(x) = x for all
x ∈ [0,∞) and f(x) = 0 for all x ∈ [0,∞); neither is strictly convex, but any
other function in F is necessarily concave.
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Olympiad problems

O139. Through point M on the circle circumscribed to the acute triangle ABC, draw
parallels to the sides BC, CA, AB which interesect the circle the second time

at points A′, B′, C ′ (A′ ∈
_

BC,B′ ∈
_

CA, C ′ ∈
_

AB). If {D} = A′B′ ∩ BC, {E} =
A′B′ ∩ CA, {F} = B′C ′ ∩ CA, {D′} = B′C ′ ∩ AB, {E′} = A′C ′ ∩ AB, {F ′} =
A′C ′ ∩BC, prove that the lines DD′, EE′, FF ′ are concurrent.

Proposed by Cătălin Barbu, Colegiul “Vasile Alecsandri”, Bacau Romania

First solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain

Let P,Q,R be the respective points where the parallels through M to BC, CA, AB
intersect the circumcircle of ABC. Clearly ∠PMQ = ∠ACB, ∠QMR =
∠BAC and ∠RMP = ∠CBA, or since they are all chords of the same cir-
cle, PQ = AB, QR = BC and RP = CA. We conclude that triangles ABC
and PQR are equal, or there is a diameter of the circumcircle of ABC with
respect to which ABC and PQR are symmetric; denote by r this diameter.
Clearly, this diameter intersects ABC in two points, which are also points of
PQR, wlog D and D′ (they may be others according to the position of M
on the circumcircle, but we may rename the points D,E, F, D′, E′, F ′ rotat-
ing them cyclically without altering the problem). Now, points E and F ′ are
clearly symmetric with respect to DD′, and so are F and E′, or EF ′E′R is an
isosceles trapezoid whose parallel sides have perpendicular bisector DD′, hence
its diagonals EE′ and FF ′ intersect on DD′. The conclusion follows.

Second solution by Tarik Adnan Moon, Bangladesh

At first we prove that 4ABC ∼= C ′B′A′. Here ∠A′B′C ′ = ∠C ′MA′ = ∠ABC,
as MC ′,MA′ are parallel to BC, AB respectively. Analogously ∠B′A′C ′ =
∠BCA. So, Both of the triangles have the same circumcircle, hence they have
equal circumradius. We get, A′C ′ = 2R sin B′ = 2R sinB = AC. Thus we
conclude that 4ABC ∼= C ′B′A′.
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Now we prove that EFE′F ′ is a cyclic isosceles trapezoid. Here AC = AC ′. So,
AC ′A′C is a cyclic isosceles trapezoid. Thus ∠C ′AC = ∠AC ′A′. Also AC ′ �
A′C. From the congruence of the triangles we deduce that ∠E′AF = ∠E′C ′F ,
so AC ′E′F is a cyclic quadrilateral. Analogously ECA′F ′ is a cyclic quadrilat-
eral. We have, ∠C ′AF = ∠FE′F ′ and ∠C ′AF = π−∠ECA′ = π−∠EF ′E′ So,
EF ′ ‖ FE′. Also, ∠C ′AF = π − ∠CA′F ′ = ∠F ′AC. So, EFE′F ′ is a cyclic
isosceles trapezoid. We also notice that 4D′E′F and 4DEF ′ are isosceles
triangles erected on E′F and EF ′. So, the result follows from symmetry.
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O140. Let n be a positive integer and let xk ∈ [−1, 1] , 1 ≤ k ≤ 2n, such that
2n∑

k=1

xk is

an odd integer. Prove that

1 ≤
2n∑

k=1

|xk| ≤ 2n− 1.

Proposed by Bogdan Enescu, ”B. P. Hasdeu” National College, Buzau,
Romania

First solution by Perfetti Paolo, Dipartimento di Matematica, Università degli
studi di Tor Vergata Roma, Italy

We begin with the r.h.s. If xk ≡ 1 we would have
2n∑

k=1

xk =
2n∑

k=1

|xk| = 2n

but this is excluded by the hypotheses so at most we can have
2n∑

k=1

|xk| ≤ 2n− 1

L.h.s. Since
∑2n

k=1 xk = 1 + 2p suppose that p ≥ 0, p integer. The inequality
follows by

2n∑
k=1

|xk| ≥
2n∑

k=1

xk = 1 + 2p ≥ 1.

Now let p negative integer. We have
2n∑

k=1

|xk| ≥
2n∑

k=1

(−xk) = −2p− 1 ≥ 1.

Second solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain

Assume wlog that x1+x2+· · ·+x2n is positive, since changing each xk into −xk

does not alter the problem. Clearly, |x1|+|x2|+· · ·+|x2n| ≥ x1+x2+· · ·+x2n ≥
1, with equality iff all xk are positive and their sum is 1.

Assume now that |x1| + |x2| + · · · + |x2n| > 2n − 1, and call S+ the sum of
all positive xk, and S− the sum of all negative xk in absolute value. Then,
S+ + S− > 2n − 1 and S+ − S− = 2m + 1 is a positive odd integer. Hence,
S+ > n + m and S− > n−m− 1. Since each xk is at most 1 in absolute value,
there are at least n + m + 1 positive xk’s and at least n − m negative xk’s,
yielding at least 2n + 1 xk’s, absurd. The conclusion follows.
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O141. Let Sn be the set of all 3n-digit numbers consisting of n 1s,n 2s , and n 5s.
Prove that for each n there are at least 4n−1 numbers in Sn that can be written
as sum of the cubes of some n + 1 distinct positive integers.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain

Note first that 125 = 53 and 512 = 83. Note also that 152 = 125+27 = 53 +33,
which makes the result true for n = 1. Assume now that the result is true for
n−1, and let N be any of the at least 4n−2 3n−3-digit numbers formed by n−1
1s, n−1 2s and n−1 5s which may be written as the sum of n distinct positive
cubes, ie, positive integers x1, x2, . . . , xn exist such that N = x3

1 +x3
2 + · · ·+x3

n.
Note now that (5 · 10n−1)3 +x3

1 +x3
2 + · · ·+x3

n, (8 · 10n−1)3 +x3
1 +x3

2 + · · ·+x3
n,

(10x1)3 +(10x2)3 + · · ·+(10xn)3 +53 and (10x1)3 +(10x2)3 + · · ·+(10xn)3 +83

are 3n-digit numbers formed by n 1s, n 2s and n 5s (they have actually the
same digits as N , with either 125 or 512, either in front or behind), and may
clearly be written as the sum of n+1 distinct positive cubes, since 10xk cannot
be equal to either 5 or 8, and 5 · 10n−1 and 8 · 10n−1 are necessarily larger than
any xk, since their cubes are larger than N itself. Hence, if there are at least
4n−2 numbers that satisfy the desired property for n − 1, there are at least
4 · 4n−2 = 4n−1 numbers that satisfy the desired property for n. By induction,
the conclusion follows.
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O142. If m is a positive integer show that 5m + 3 has neither a prime divisor of the
form p = 30k + 11 nor of the form p = 30k − 1.

Proposed by Andrea Munaro, Universita degli Studi di Trento, Italy

First solution by Andrea Munaro, Universita degli Studi di Trento, Italy

In the following denote by
(

a
p

)
the Legendre symbol.

First suppose that m is even. Then
(
5

m
2

)2
≡ −3 (mod p), and so

(
−3
p

)
= 1.

But
(
−3
p

)
=
(
−1
p

)(
3
p

)
and by quadratic reciprocity law we have(

3
p

)(p

3

)
= (−1)

p−1
2 .

Also
(p

3

)
≡ p ≡ −1 (mod 3) and

(
−1
p

)
= (−1)

p−1
2 . Then

(
−3
p

)
= −1, absurd.

If m is odd we have
(
5

m+1
2

)2
≡ −15 (mod p) and so

(
−15

p

)
= 1. But

(
−15

p

)
=(

−3
p

)(
5
p

)
= −

(
5
p

)
, and

(p
5

)
≡ p2 ≡ 1 (mod 5). Again by quadratic reciprocity

law we have (
5
p

)(p

5

)
= (−1)p−1 = 1,

and so
(

5
p

)
= 1. Finally

(
−15

p

)
= −1, absurd.

Second solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain

Euler, in his paper ”Theoremata circa divisores numerorum in hac forma paa±
qbb contentorum”, states that an integer of the form a2 + 3b2, where a, b are
relatively prime integers, can only have prime divisors 2, 3, or of the form
c2+3d2, where c, d must clearly be relatively prime positive integers of opposite
parity, and 3 does not divide c. He also states that an integer of the form
3a2 + 5b2, where a, b are relatively prime integers, can only have prime divisors
2, 3, 5, or of one of the forms c2 + 15d2 or 3e2 + 5f2, where clearly c, d are
relatively prime integers of opposite parity, e, f are relatively prime integers of
opposite parity, 3 does not divide c or f , and 5 does not divide c or e.

Since c2 ≡ 1 (mod 3) for any c not divisible by 3, it follows that a2 + 3b2 may
only have divisors 2, 3, or congruent to 1, 7, 13, 19, 25 modulus 30, hence neither
of the form 30k + 11 nor 30k − 1. Now, if m is even, 5m + 3 = a2 + 3b2, where
a = 5

m
2 and b = 1.

Since c2 ≡ 1 (mod 3) and c2 ≡ ±1 (mod 5) for any c not divisible by 3 or 5, it
follows that c2 + 15d2 is congruent to 1 or 4 modulus 15, hence neither of the
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form 30k+11 nor 30k−1. Similarly, since e2 ≡ ±1 (mod 5) if 5 does not divide
e and f2 ≡ 1 (mod 3) if 3 does not divide f , if follows again that 3e2 + 5f2 is
congruent to 1 or 4 modulus 15. Now, if m is odd, 5m + 3 = 5b2 + 3a2, where
b = 5

m−1
2 and a = 1.

The conclusion follows.

Note: We include a proof of the first statement, ie, an integer of the form
a2 + 3b2, where a, b are relatively prime positive integers, can only have prime
divisors 2, 3, or odd primes of the form c2 +3d2, where c, d are relatively prime
positive integers.

Proof: If a = 3b′ for some integer b′, call b = a′, yielding a2+3b2 = 3(a′2+3b′2),
proceeding this way until a is not a multiple of 3. It thus suffices to prove that
a2 + 3b2, where a is not a multiple of 3, has only prime divisors 2 and odd
primes of the form c2 + 3d2.

If a2 + 3b2 is even, and since a, b are relatively prime, then a, b are both odd,
hence a2 + 3b2 is a multiple of 4 since odd perfect squares leave remainder 1
when divided by 8. Note that 4 may be written as c2 + 3d2 with c, d = 1.

Assume now that a2 + 3b2 is divisible by p = c2 + 3d2, where c, d are relatively
prime positive integers, and either p is an odd prime other than 3, or p = 4
and clearly c = d = 1. In the latter case, and since a, b must both be odd, note
that either ad + bc = a + b and ac − 3bd = a − 3b are both multiples of 4, or
ad − bc = a − b and ac + 3bd = a + 3b are both multiple of 4. In the former
case,

(ac + 3bd)(ac− 3bd) = a2c2 − 9b2d2 = (a2 + 3b2)c2 − 3b2(c2 + 3d2),

where c2+3d2 is an odd prime that divides a2+3b2, and hence it must also divide
either ac + 3bd or ac− 3bd. Moreover, c(ac± 3bd)− a(c2 + 3d2) = 3d(bc∓ ad),
and since c2 + 3d2 clearly cannot divide 3d, it must divide either bc − ad or
bc + ad, respectively. It follows that either e = ac−3bd

c2+3d2 and f = bc+ad
c2+3d2 are both

integers, or e = ac+3bd
c2+3d2 and f = ad−bc

c2+3d2 are both integers, while in either case,
(c2+3d2)(e2+3f2) = a2+3b2. Therefore, if a2+3b2 is divisible by an odd prime
of the form c2 + 3d2 6= 3, or if it is even and hence divisible by c2 + 3d2 = 4,
then a2+3b2

c2+3d2 is also of the form e2 + 3f2.

Assume finally that a2 + 3b2, not multiple of 2 or 3, is the least composite
number of this form that is not divisible by numbers of the form c2 + 3d2,
and call p the smallest of its prime divisors (clearly odd). Write a = mp ± a′,
b = np ± b′, where m,n are integers and wlog |a′|, |b′| < p

2 are also integers.
Clearly a3 +3b2 = (m2p+3n2p±2a′m±6b′n)p+a′2 +b′2, or p divides a′2 +3b′2.
Since a factor not of the form c2 +3d2 divides a′2 +3b′2 ≤ a2 +3b2, then a′ = a
and b′ = b, or a2+3b2

p is a divisor of a2 + 3b2 greater than 1 and smaller than
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p, absurd. Thus all composite numbers of the form a2 + 3b2, not multiple of 2
or 3, have some prime divisor of the form p = c2 + 3d2, hence dividing by p,
we find a new number of the form a2 + 3b2, which is therefore, either prime, or
divisible by another prime of this same form. An infinite descent of this type
is impossible, since in each division we reduce the number of prime factors by
1, hence for all relatively prime a, b, all prime divisors of a2 + 3b2 other than 2
or 3 must be primes of the form c2 + 3d2.

The proof of the second statement is similar, except that numbers of both forms
3a2+5b2 and a2+15b2 must be mixed along the proof (note that (3c2+5d2)(3e2+
5f2) = (3cd±5df)2 +15(de∓ cf)2, that (3c2 +5d2)(e2 +15f2) = 3(ce±5df)2 +
5(de ∓ 3cf)2, and that (c2 + 15d2)(e2 + 15f2) = (ce ± 15df)2 + 15(de ∓ cf)2).
Also, it must be used that if 3a2+5b2 or a2+15b2 are even and a, b are relatively
prime (hence both odd), it follows that 8 divides them, and 8 = 3c2 +5d2, with
c = d = 1. This, together with divisions by 3 or 5, reduces the problem to
finding the prime divisors of numbers of the form 3a2 + 5b2 and a2 + 15b2 that
are not divisible by 2, 3 or 5. A similar process as the one followed for the first
statement yields again that these prime divisors can only be of one of the forms
c2 + 15d2 or 3c2 + 5d2.

Third solution by Srinath.R, Chennai, India

Assume that there is a prime number p of the form 30k+11 or 30k−1 dividing
5m +3. Before proceeding to the main solution, I will present the following two
theorems and give the source of the theorems at the end .

(a) −3 is a quadratic residue modulo p if and only if p ≡ 1 mod 6 where p is
an odd prime number .

(b) 5 is a quadratic residue modulo p if and only if p ≡ ±1 mod 10 where p is
an odd prime number .

Lets take two cases and prove separately for p = 30k + 11 and p = 30k − 1 .

Case 1- p = 30k + 11

We have 5m ≡ −3 mod p .Since m is a positive integer ,it can either be even
or odd . So if m = 2k where k ∈ N ,we have 52k ≡ −3 mod p. Since 52k

is a perfect square it implies that −3 is a qaudratic residue modulo p. Thus(
−3
p

)
= 1 where

(
a
p

)
denotes the Legendre Symbol of a with respect to p . By

Theorem 1 , −3 can be a quadratic residue modulo p if and only if p ≡ 1 mod 6
. But p ≡ 11 mod 30 ⇒ p ≡ 5 mod 6 ,so p is a quadratic non residue mod
p,thus we get a contradiction. So m is odd .Let m = 2k− 1 where k ∈ N . So ,

52k−1 ≡ −3 mod p ⇒ 52k ≡ −15 mod p ⇒
(
−15
p

)
= 1 (1)
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Now since the Legendre symbol has the multiplicative property ,(
−15
p

)
=
(

5
p

)(
−3
p

)
Since p ≡ 11 mod 30 ⇒ p ≡ 1 mod 10 . So by theorem 2 , 5 is a quadratic
residue mod p . Thus ,

(
5
p

)
= 1 and we have already proved

(
−3
p

)
= −1 . So

from both these conditions it follows that
(
−15

p

)
= −1 ,contradicting (1) . This

completes the proof of the theorem when p = 30k + 11 .

Case 2 -p = 30k − 1

We can proceed as the proof for Case 1 . We have 5m ≡ −3 mod p. Since
m is a positive integer ,it can either be even or odd . So if m = 2k where
k ∈ N ,we have 52k ≡ −3 mod p. Since 52k is a perfect square it implies
that −3 is a qaudratic residue modulo p. Thus

(
−3
p

)
= 1. By Theorem 1

, −3 can be a quadratic residue modulo p if and only if p ≡ 1 mod 6. But
p ≡ 29 mod 30 ⇒ p ≡ 5 mod 6,so p is a quadratic non residue mod p ,thus we
get a contradiction. So m is odd .Let m = 2k − 1 where k ∈ N . So ,

52k−1 ≡ −3 mod p ⇒ 52k ≡ −15 mod p ⇒
(
−15
p

)
= 1(2)

As the legendre symbol has the multiplicative property(
−15
p

)
=
(

5
p

)(
−3
p

)
Since p ≡ 29 mod 30 ⇒ p ≡ −1 mod 10 . So by theorem 2 , 5 is a quadratic
residue mod p . Thus ,

(
5
p

)
= 1 and we have already proved

(
−3
p

)
= −1 as

p ≡ 5 mod 6 . So from both these conditions it follows that
(
−15

p

)
= −1

,contradicting (2) . This completes the proof of the theorem when p = 30k− 1
.So the proof for the problem is complete .

Source for the theorems:

The theorem 1 and theorem 2 can be found in the file Quadratic Congruences
written by Dusan Djukic,author of IMO compendium ,as part of the article for
the International Mathematics Olympiad ,at the website

http://www.imomath.com/tekstkut/quadcong ddj.pdf
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O143. Let ABCDEF be a convex hexagon such that the sum of the distances of each
interior point to the six sides is equal to the sum of the distances between the
midpoints of AB and DE,BC and EF, and CD and FA. Prove that ABCDEF
is cyclic.

Proposed by Nairi Sedrakyan, Armenia

Solution by Nairi Sedrakyan, Armenia

Let AD and CF, CF and BE, BE and AD intersect at points M,N,P, re-
spectively. Let O be the incenter of triangle MNP. In the case when M,N,P
overlap, O is point M. Let A1, B1, C1, D1, E1, F1 be the midpoints of sides
AB,BC,CD,DE,EF, and FA. Let da, db, dc, dd, de, df the distance from point
O to the lines AB,BC, CD,DE,EF, FA. Finally, let A0, B0, C0, D0, E0, F0 be
the intersection of lines MO,NO, PO with lines AB,BC, CD,DE,EF, FA.
Note that A0D0 ≥ da + db, B0E0 ≥ db + de, C0F0 ≥ dc + df hence

A0D0 + B0E0 + C0F0 ≥ da + db + dc + dd + de + df . (1)

On the other hand we have ∠A1A0D0 ≥ 90◦ and ∠D1D0A0 ≥ 90◦, because
in any triangle the bisector is between the median and the height if they are
all drawn from the same vertex. Thus the projection of segment A1D1 onto
A0D0 contains A0D0, and this implies that A1D1 ≥ A0D0. Analoguously we
get B1E1, B0E0, C1F1 ≥ C0F0. From the last 3 inequalities and (1) we get

A1D1 + B1E1 + C1F1 ≥ da + db + dc + dd + de + df . (2)

The inequality (2) becomes equality due to the give3n condition. Note that
the last happens only when points A1, B1, C1, D1, E1, F1 are identical to points
A0, B0, C0, D0, E0, F0. Hence we get that lines B0E0, C0F0, A0D0 are the me-
dians and perpendiculars of segments BC and EF,CD and AF,DE and AB, re-
spectively. In conclusion point O is at the same distance from points A,B, C, D, E, F
and hence ABCDEF can be inscribed in a circle.
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O144. Find all positive integers a, b, c such that (2a − 1)(3b − 1) = c!.

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, France

Solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain

Claim: For any positive integer m, φ(3m) = 2 · 3m−1 is the least exponent k
such that 3m divides 2k − 1.

Proof: The result is easily checked by inspection for m = 1, 2. By Euler-
Fermat’s theorem, 3m|2φ(3m) − 1. Let now k be the least positive integer such
that 3m|2k−1 for some m ≥ 3, and write φ(3m) = qk+r, where r ∈ {0, 1, . . . , k−
1}. Clearly, 2φ(3m) = (2k)q · 2r ≡ 2r ≡ 1 (mod 3m), and 3m|2r − 1, or r = 0
since k is minimum, and k divides φ(3m). If k < φ(3m), then either k = 3u

(impossible, since 2k ≡ −1 (mod 3) for any odd k), or k = 2 · 3u. In this latter
case,

22·3u − 1 = (26 − 1)(212 + 26 + 1)(236 + 218 + 1) . . . (24·3u−1
+ 22·3u−1

+ 1).

Note that since 26 ≡ 1 (mod 9), all brackets in the RHS except for the first
one are congruent 3 modulus 9, or they are divisible by 3 but not by 9. Since
26 − 1 is divisible by 9 but not by 27, the highest exponent of 3 that divides
the RHS is thus u− 1 + 2 = u + 1, or u ≥ m− 1. The conclusion follows.

Assume that some solution is possible with c ≥ 9. The exponent of 3 that
divides c! is b c

3c + b c
32 c + b c

33 c + . . . , clearly larger than c
3 when c ≥ 9 since

b c
32 c ≥ 1. By the claim, a > 2 · 3

c
3
−1 and ln(2a − 1) > 3

c
3
−1. Since ln(c!) <

ln(cc) = c ln(c), then there will be no solution as long as c > 3 + 3 log3(c ln c).
Assume now that there is a solution for c = 15. Clearly, it must be 4 <
log3(15 ln 15), or ln 15 > 81

15 > 5, which is false. There is therefore no solution
for c = 15. Moreover, since c grows faster than 3 + 3 log3(c ln c) (just compare
their derivatives), then there is no solution for c ≥ 15. Assume now that there
is a solution for 9 ≤ c ≤ 14. Clearly 34 divides 2a − 1, or a ≥ 54. Now,
254 − 1 > 244 = 166 · 84 · 44 > 14!, or there is no solution for c ≥ 9. Assume
next that there is a solution for c = 8. Therefore, 32 divides 2a−1, or 6 divides
a. If a ≥ 12, then 2a − 1 ≥ 4095 > 315 = 8!

27 (because 2a − 1 cannot be divided
by 2), and there is no solution; hence a = 6, or 3b − 1 = 8!

63 = 640. But 641 is
not a power of 3, and we conclude that there is no solution for c ≥ 8. Assume
finally that there is a solution for c = 6; as before, a = 6, absurd, since 26 − 1
is divisible by 7 but 6! is not. Clearly c = 1 cannot have any solution since
3b− 1 is at least 2, or there may be solutions only for c = 2, 3, 4, 5, 7. There are
actually solutions for all these values of c:

2! = 2 = (21−1)(31−1), 3! = 6 = (22−1)(31−1), 4! = 24 = (22−1)(32−1),
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5! = 120 = (24 − 1)(32 − 1), 7! = 5040 = (26 − 1)(34 − 1).

The possible values for (a, b, c) are then (1, 1, 2), (2, 1, 3), (2, 2, 4), (4, 2, 5) and
(6, 4, 7). There may not be any other solutions for the given values of c; the
case c = 7 immediately forces a = 6 as before, wherefrom b = 4 results by direct
calculation; the case c = 5 forces 3|2a − 1 and 8|3b − 1, the second condition
resulting in b even, b ≥ 4 being ruled out since 3 · 80 = 240 > 5!, wherefrom
2a−1 = 15; finally, all cases where c ≤ 4 result in c! = 2u3v, which clearly force
2u = 3b − 1 and 3v = 2a − 1, with unique solutions.

Also solved by Paolo Leonetti, Bocconi University, Italy; Raul A. Simon, Chile;
Vahagn Aslanyan, Yerevan, Armenia.
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