
52/ THE CONTEST CORNER

Originally problem 6 from Demi-finale du Concours Maxi de Mathématiques de
Belgique 2002.

There were eight solution submitted for this question, all essentially the same.

By the Pythagorean Theorem we have

AC =
√
BC2 +AB2 =

…
1 +

1

4
=

√
5

2

and

DC = AC −AD =

√
5

2
− 1

2
=

√
5− 1

2
.

CC108. In an orthonormal system, the line with equation y = 5x crosses
the parabola with equation y = x2 in point A. The perpendicular to OA at O
intersects the parabola at B. What is the area of triangle AOB?

Originally problem 20 from Demi-finale du Concours Maxi de Mathématiques de
Belgique 2009.

We received six correct solutions, and one incorrect solution. We present the
solution of Titu Zvonaru.

It is easy to deduce that A(5, 25). The slope of OB is −1/5. Solving the system
y = − 1

5x, y = x2 we obtain B(− 1
5 ,

1
25 ).

It follows that OA =
√

52 + 252 = 5
√

26, OB =
»

1
52 + 1

252 =
√
26
25 . Hence the

area of the triangle is AOB = OA·OB
2 = 26

10 = 13
5 .

CC109. Let E be the set of reals x for which the two sides of the following
equality are defined:

cot 8x− cot 27x =
sin kx

sin 8x sin 27x
.

If this equality holds for all the elements of E, what is the value of k?

Originally problem 21 from Demi-finale du Concours Maxi de Mathématiques de
Belgique 2009.

We received seven submitted solutions to this problem, one of which was incorrect
and five were incomplete. We present the only correct solution by Paolo Perfetti
modified by the editor.

Note first that E = {x ∈ R|x 6= mπ
8 and x 6= mπ

27 for any m ∈ Z. For x ∈ E, the
given equality is equivalent to

sin 8x · sin 27x(cot 8x− cot 27x) = sin kx. (1)

We shall prove that the only value of k for which (1) holds for all x ∈ E is k = 19.
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Since

sin 8x · sin 27x(cot 8x− cot 27x) = sin 27x cos 8x− cos 27x sin 8x

= sin (27x− 8x) = sin 19x,

k = 19 satisfies (1).

Next, suppose (1) holds for all x ∈ E and some k ∈ Z with k 6= 19.

If k = −19, then from (1) we have 2 sin 19x = 0 for all x ∈ E, which is false (for
example, if x = π

38 , then x ∈ E, but sin 19x = sin π
2 = 1 6= 0). Hence k 6= −19.

From (1), we also have

2 sin

Å
19− k

2
x

ã
cos

Å
19 + k

2
x

ã
= 0. (2)

Since sin
(
19−k

2 x
)

= 0 if and only if 19−k
2 x = mπ or x = 2mπ

19−k and cos
(
19+k

2 x
)

= 0

if and only if 19+k
2 x = (m + 1

2 )π or x = (2m+1)π
19+k for some m ∈ Z, there must be

some x ∈ E that does not satisfy (2). (To be more precise, the set of all x such

that x = 2mπ
19−k or x = (2m+1)π

19+k for some m ∈ Z is countable while E is clearly
uncountable.) This is a contradiction and our proof is complete.

CC110. What is the number of real solutions to the equation:

|1 + x− |x− |1− x||| = | − x− |x− 1||.

Originally problem 26 from Demi-finale du Concours Maxi de Mathématiques de
Belgique 2009.

We have received four correct solutions and one incorrect submission. We present
the solution by Henry Ricardo.

We compute the left-hand side (LHS) and the right-hand side (RHS) on three
intervals that cover the real number line.

Case 1. Suppose that 0 ≤ x ≤ 1. Then

RHS = | − x− (1− x)| = | − x− 1 + x| = 1.

When x ∈ [−, 12 ],

|1 + x− |x− (1− x)|| = |1 + x− (1− 2x)| = 3x

and when x ∈ ( 1
2 , 1],

|1 + x− |2x− 1|| = |1 + x− (2x− 1)| = |2− x| = 2− x

so that

LHS =

ß
3x if 0 ≤ x ≤ 1

2 ,
2− x if 1

2 < x ≤ 1.
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Solution 2, abridged version of the solution by the Missouri State University Prob-
lem Solving Group.

Let A = (0, 0), B = (1, 0), C = (0, 1), M = (a, 0), and N = (0, b), where a and
b are rational and 0 < a < b < 1. The equations of the lines BN and CM have
rational coefficients, so the coordinates of O are rational. The area of a triangle
with vertices (x1, y1), (x2, y2), and (x3, y3) is

1

2

∣∣∣∣∣∣det

Ñ
1 x1 y1
1 x2 y2
1 x3 y3

é∣∣∣∣∣∣ .
Therefore, the areas of MBO, BCO, CNO, and AMON are all rational. By
stretching the triangle ABC, the corresponding areas can be made to be integers.
Since stretching does not alter the ratios AM/MB and AN/NC, the configurations
are not affinely equivalent for distinct choices of a and b.

Solution 3, by Titu Zvonaru.

Let a, b,m, n be positive integers and let ABC be a triangle with BC = 2a and
hA = b(m + 1)(n + 1)(m + n + 1). Choose the points M and N on AB and AC
such that

BM

BA
=

1

m+ 1
,

CN

CA
=

1

n+ 1
.

Denote by [XY . . . Z] the area of the polygon XY . . . Z. Then

[BMC] =
[ABC]

m+ 1
, [CNB] =

[ABC]

n+ 1
.

Suppose that AO intersects BC at A′. By Van Aubel’s Theorem for Cevian
triangles we obtain

AO

OA′
=
AM

MB
+
AN

NC
= m+ n

and therefore OA′ = AA′/(m+ n+ 1). It follows that

[BOC] =
[ABC]

m+ n+ 1
.

Thus the areas [ABC], [BMC], [CNB], and [BOC] are all integers and by taking
differences of these areas so are [MBO], [CNO], and [AMON ].

3916. Proposed by Nathan Soedjak.

Let a, b, c be positive real numbers. Prove thatÅ
ab

c

ã2
+

Å
bc

a

ã2
+
(ca
b

)2
≥ 3

Å
ab+ bc+ ca

a+ b+ c

ã2
.

There were 23 correct solutions, with two solutions from one solver, as well as a
Maple verification. We present a sampling of the different approaches.
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Solution 1, by Mohammed Aassila.

Note that x2 + y2 + z2 > xy+ yz+ zx and (x+ y+ z)2 > 3(xy+ yz+ zx) for real
x, y, z. The left side of the inequality is not less than b2 + c2 + a2. However

(a2 + b2 + c2)(a+ b+ c)2 > (ab+ bc+ ca)[3(ab+ bc+ ca)] = 3(ab+ bc+ ca)2,

and the desired result follows.

Solution 2, by Michel Bataille.

By homogeneity, we may suppose that a + b + c = 1. The inequality is then
equivalent to

(ab)4 + (bc)4 + (ca)4 > 3(a2b2c2)(ab+ bc+ ca)2.

Observe that

x4 + y4 + z4 =
1

4
[(x4 + x4 + y4 + z4) + (x4 + y4 + y4 + z4) + (x4 + y4 + z4 + z4)]

> x2yz + xy2z + xyz2 = xyz(x+ y + z),

and (x+ y + z)2 > 3(xy + yz + zx). Applying these inequalities leads to

(ab)4 + (bc)4 + (ca)4 = [(ab)4 + (bc)4 + (ca)4][(a+ b+ c)2]

> [a2b2c2(ab+ bc+ ca)][3(ab+ bc+ ca)]

= 3(a2b2c2)(ab+ bc+ ca)2,

as desired.

Solution 3, by Dionne Bailey, Elsie Campbell, and Charles Dimminnie; Angel
Plaza; Cao Minh Quang; and Edmund Swylan, independently.

Since x2 + y2 + z2 > xy + yz + zx,

ab

c
+
bc

a
+
ca

b
=

(ab)2 + (bc)2 + (ca)2

abc
>
abc(a+ b+ c)

abc
= a+ b+ c.

Using either the convexity of the function x2 or the inequality of the root-mean-
square and arithmetic mean, we find thatÅ

ab

c

ã2
+

Å
bc

a

ã2
+
(ca
b

)2
>

1

3

Å
ab

c
+
bc

a
+
ca

b

ã2
>

1

3
(a+ b+ c)2 =

1

3

(a+ b+ c)4

(a+ b+ c)2

>
[3(ab+ bc+ ca)]2

3(a+ b+ c)2
= 3

Å
ab+ bc+ ca

a+ b+ c

ã2
.
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Solution 4, by Paolo Perfetti.

Since
1

4

Å
x2y2

z2
+
x2y2

z2
+
y2z2

x2
+
z2x2

y2

ã
> xy

by the arithmetic-geometric means inequality, we can follow the strategy of Solu-
tion 2 to obtainÅ
ab

c

ã2
+

Å
bc

a

ã2
+
(ca
b

)2
> ab+ bc+ ca =

3(ab+ bc+ ca)2

3(ab+ bc+ ca)
>

3(ab+ bc+ ca)2

(a+ b+ c)2

as desired.

Solution 5 by Henry Ricardo.

We haveÅ
ab

c

ã2
+

Å
bc

a

ã2
+
(ca
b

)2
=

1

2

ï
a2
Å
b2

c2
+
c2

b2

ã
+ b2

Å
a2

c2
+
c2

a2

ã
+ c2

Å
b2

a2
+
a2

b2

ãò
> a2 + b2 + c2

>
(a+ b+ c)2

3

> 3

Å
ab+ bc+ ca

a+ b+ c

ã2
.

3917. Proposed by Peter Y. Woo.

Given a circle Z, its center O, and a point A on Z, with only a long unmarked
ruler, and no compass, can you draw:

i) points B,C and D on Z so that ABCD is a square?

ii) the square AOBA′?

iii) the points B,W ′′,W and W ′ on Z such that angles AOB, AOW ′′, AOW
and AOW ′ are 90◦, 60◦, 45◦ and 30◦?

There were five correct solutions to this problem. We feature the one by the Mis-
souri State University Problem Solving Group.

We need the following basic construction: Given three collinear points A,B,C such

that AB = BC and a point P not on
←→
AC, we want to construct a line through

P parallel to
←→
AC. To do this, we choose a point Q on the ray

−→
AP such that P is

between A and Q. Denote the intersection of
←→
BQ and

←→
CP by R and denote the

intersection of
←→
AR and

←→
QC by S. We claim that

←→
PS is the line we seek. By Ceva’s

theorem,
AB

BC
· CS
SQ
· QP
PA

= 1,
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3920. Proposed by Alina Ŝıntǎmǎrian.

Evaluate
∞∑
n=0

16n2 + 20n+ 7

(4n+ 2)!
.

There were 15 submitted solutions for this problem, 14 of which were correct. We
present three solutions, representative of the two main solution methods utilized
together with one variant.

Solution 1, by the AN-anduud Problem Solving Group.

Consider the following two power series,

sinx =
∞∑
n=0

(−1)n · x2n+1

(2n+ 1)!
, and ex =

∞∑
n=0

xn

n!
, x ∈ R.

Hence, we have

sin 1 =
∞∑
n=0

(−1)n · 1

(2n+ 1)!
=
∞∑
n=0

Å
1

(4n+ 1)!
− 1

(4n+ 3)!

ã
,

and

e =
∞∑
n=1

1

n!
.

Using the above considerations, we get

∞∑
n=0

16n2 + 20n+ 7

(4n+ 2)!
=
∞∑
n=0

(4n+ 2)(4n+ 1) + 2(4n+ 2) + 1

(4n+ 2)!

=
∞∑
n=0

Å
1

(4n)!
+

2

(4n+ 1)!
+

1

(4n+ 2)!

ã
=
∞∑
n=0

1

n!
+
∞∑
n=0

Å
1

(4n+ 1)!
− 1

(4n+ 3)!

ã
= e+ sin 1.

Solution 2, by the group of Dionne Bailey, Elsie Campbell, and Charles Diminnie.

To begin, we note that for n > 0,

16n2 + 20n+ 7

(4n+ 2)!
=

(4n+ 2) (4n+ 1) + 2 (4n+ 2) + 1

(4n+ 2)!

=
1

(4n)!
+

2

(4n+ 1)!
+

1

(4n+ 2)!
,

Crux Mathematicorum, Vol. 41(2), February 2015



SOLUTIONS /89

and hence,

∞∑
n=0

16n2 + 20n+ 7

(4n+ 2)!
=
∞∑
n=0

1

(4n)!
+ 2

∞∑
n=0

1

(4n+ 1)!
+
∞∑
n=0

1

(4n+ 2)!

(since the Ratio Test easily confirms that each of the three series on the right
converges).

The remainder of this solution depends on the following known series:

sin 1 =
∞∑
k=0

(−1)k

(2k + 1)!
, cos 1 =

∞∑
k=0

(−1)k

(2k)!
,

sinh 1 =
∞∑
k=0

1

(2k + 1)!
, cosh 1 =

∞∑
k=0

1

(2k)!
.

Since we have

(−1)k + 1 =

®
2 if k is even

0 if k is odd
and (−1)k+1 + 1 =

®
0 if k is even

2 if k is odd
,

we obtain:

sin 1 + sinh 1 =
∞∑
k=0

(−1)k + 1

(2k + 1)!
=
∞∑
n=0

2

[2(2n) + 1]!
= 2

∞∑
n=0

1

(4n+ 1)!
,

cos 1 + cosh 1 =
∞∑
k=0

(−1)k + 1

(2k)!
=
∞∑
n=0

2

[2(2n)]!
= 2

∞∑
n=0

1

(4n)!
,

− cos 1 + cosh 1 =
∞∑
k=0

(−1)k+1 + 1

(2k)!
=
∞∑
n=0

2

[2(2n+ 1)]!
= 2

∞∑
n=0

1

(4n+ 2)!
.

Therefore, we obtain,

∞∑
n=0

16n2 + 20n+ 7

(4n+ 2)!
=

cos 1 + cosh 1

2
+ (sin 1 + sinh 1) +

− cos 1 + cosh 1

2

= sin 1 + sinh 1 + cosh 1

= sin 1 +
e− e−1

2
+
e+ e−1

2
= sin 1 + e.

Solution 3, by Paolo Perfetti.

First, we have:

16n2 + 20n+ 7

(4n+ 2)!
=

1

(4n)!
+

2

(4n+ 1)!
+

1

(4n+ 2)!
.
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Let

f(x) =
∞∑
n=0

x4n

(4n)!
,

so that we obtain:

f ′(x) =
∞∑
n=1

x4n−1

(4n− 1)!
, f ′′(x) =

∞∑
n=1

x4n−2

(4n− 2)!
, f ′′′(x) =

∞∑
n=1

x4n−2

(4n− 2)!

f iv(x) =
∞∑
n=1

x4n−4

(4n− 4)!
=
∞∑
n=0

x4n

(4n)!
= f(x).

Thus f(x) satisfies f iv(x) = f(x), f(0) = 1, f ′(0) = 0, f ′′(0) = 0, f ′′′(0) = 0,
whose unique solution is f(x) = 1

2 coshx+ 1
2 cosx. Evaluating, we get

f(1) =
1

2
cosh 1 +

1

2
cos 1 =

∞∑
n=0

1

(4n)!
.

Moreover, if we define

g(x) =
∞∑
n=0

x4n+1

(4n+ 1)!
,

we get g(1) =
∑∞
n=0

1
(4n+1)! and g′(x) = f(x), g(0) = 0. This implies

g(x) =
1

2
sinhx+

1

2
sinx, g(1) =

1

2
sinh 1 +

1

2
sin 1.

Finally, defining

h(x) =
∞∑
n=0

x4n+2

(4n+ 2)!
,

we get h(1) =
∑∞
n=0

1
(4n+2)! and h′(x) = g(x), h(0) = 0. This implies

h(x) =
1

2
coshx− 1

2
cosx, h(1) =

1

2
cosh 1− 1

2
cos 1.

Summing up the terms, we obtain

f(1) + 2g(1) + h(1) = e+ sin 1.

Editor’s Comment. The presented solutions illustrate three techniques: rearrange
the summations wisely to get a simple expression, rearrange the summations and
then recall other atypical power series that make things work, and solve a couple of
DEs to avoid having to work too much with power series. Wagon commented that
the sum can be explicitly computed when the numerator is an arbitrary quadratic
in n.
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