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F on AB and G on CD satisfy
AF

FB
=
DG

GC
.

In fact, we shall see that if directed distances are used then F can be any point of
the line AB and G the corresponding point on DC.

Let T = EH ∩ AB; then ET ⊥ AB (since ` is parallel to AB and perpendicular
to EH). Because ABCD is cyclic, the triangles DEC and AEB are oppositely
similar. Because F and G are corresponding points in the similar triangles DEC
and AEB as are K and T , we have ∠EGK = ∠EFT or, using directed angles,

∠KGE = ∠EFT. (1)

We now set S = EF ∩HK and want to prove that these lines are perpendicular
at S. Because of the right angles at H and K, the points E,G,H,K lie on the
circle whose diameter is EG, whence

∠KHE = ∠KGE

(as directed angles). But ∠SHE = ∠KHE (because S ∈ KH) and ∠KGE =
∠EFT (from (1)), so it follows that ∠SHE = ∠EFT . Also, the vertically opposite
angles at E are equal so that the triangles SHE and TFE are similar. But
∠FTE = 90◦, hence ∠HSE = 90◦; that is, EF ⊥ HK.

OC90. Let n be a positive integer. If one root of the quadratic equation
x2 − ax+ 2n = 0 is equal to

1√
1

+
1√
2

+ · · ·+ 1√
n
,

prove that 2
√

2n ≤ a ≤ 3
√
n.

Originally question 6 from the 2011 Kazakhstan National Olympiad, Grade 9.

Solved by G. Apostolopoulos; Š. Arslanagić; M. Bataille; C. Curtis; M. Dincǎ;
O. Geupel; L. Giugiuc; B. Jin and E. T. H. Wang; N. Midttun; P. Perfetti;
V. Pambuccian; G. Scărlătescu; D. Văcaru; and T. Zvonaru. We give a solution
similar to those provided by most of the solvers.

Let

s :=
1√
1

+
1√
2

+ . . .+
1√
n
.

Since

s2 − as+ 2n = 0

we have

a = s+
2n

s
.

Therefore, by the AM-GM inequality we get a ≥ 2
√

2n .
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To prove the other inequality we show first that
√
n ≤ s ≤ 2

√
n . The left hand

side inequality is immediate:

s =
1√
1

+
1√
2

+ . . .+
1√
n
≥ 1√

n
+

1√
n

+ . . .+
1√
n

=
√
n .

We next prove the right hand side inequality by induction. When n = 1, it states
that 1 ≤ 2. Next, assume the statement is true for some n = k ≥ 1, so

1√
1

+
1√
2

+ . . .+
1√
k
≤ 2
√
k.

Thus

1√
1

+
1√
2

+ . . .+
1√
k

+
1√
k + 1

≤ 2
√
k +

1√
k + 1

= 2
√
k +

2

2
√
k + 1

≤ 2
√
k +

2√
k +
√
k + 1

= 2
√
k + 2

Ä√
k + 1−

√
k
ä

= 2
√
k + 1

which completes the induction.

Now, since
√
n ≤ s ≤ 2

√
n, we get

a = s+
2n

s
≤ 2
√
n+

n√
n

= 3
√
n ,

which completes the proof.
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Editor’s comment. As is often the case with a trigonometry problem, there were
several different approaches exhibiting a variety of efficiency and recourse to other
results. Kouba produced a solution similar to the second one above and Woo
analyzed the graph of y = 2 tanx − secx to show that it lay above the line y =
−π/3+2x. Some solvers used the representation of the tangents and cosines of the
half angles of a triangle in terms of the sides, semi-perimeter, inradius and area.
Brown noted that the given inequality is equivalent to s2 ≥ 12Rr+ 3r2, while Lau
reduced it to 3s2 ≤ (4R+ r)2. Dincǎ proved this generalization : Let A1A2 . . . An
be a convex n−gon. Then

n∑
k=1

tan
Ak
2
≥ cos

π

n

n∑
k=1

sec
Ak
2
.

3777. [2012 : 335, 336] Proposed by G. Apostolopoulos.

Let x, y, and z be positive real numbers such that xyz = 1 and
1

x4
+

1

y4
+

1

z4
= 3. Determine all possible values of x4 + y4 + z4.

Solved by A. Alt ; Š.Arslanagic ; D. Bailey, E. Campbell and C. Diminnie ; M. Ba-
taille ; C. Curtis ; R. Hess ; O. Kouba ; D. Koukakis ; S. Malikić (2 solutions) ;
P. Perfetti ; A. Plaza ; C. M. Quang ; D. Smith ; D. R. Stone and J. Hawkins ;
I. Uchiha ; D. Văcaru ; T. Zvonaru ; and the proposer. There was also an incorrect
solution. We give a solution that is a composite of virtually all solutions received.

By the AM-GM Inequality, we have

3 =
1

x4
+

1

y4
+

1

z4
≥ 3 3

 
1

x4
· 1

y4
· 1

z4
= 3.

Thus, we must have the equality above, which implies that
1

x4
=

1

y4
=

1

z4
or

x = y = z. Since we know that xyz = 1, it follows that x = y = z = 1 and so
x4 + y4 + z4 = 3.

3778. [2012 : 335, 337] Proposed by M. Bataille.

Let ∆A1A2A3 be a triangle with circumcentre O, incircle γ, incentre I, and in-
radius r. For i = 1, 2, 3, let A′i on side AiAi+1 and A′′i on side AiAi+2 be such
that A′iA

′′
i ⊥ OAi and γ is the Ai–excircle of ∆AiA

′
iA
′′
i where A4 = A1, A5 = A2.

Prove that

(a) A′1A
′′
1 ·A′2A′′2 ·A′3A′′3 =

4a1a2a3
(a1 + a2 + a3)2

· r2

(b) A′1A
′′
1 +A′2A

′′
2 +A′3A

′′
3 =

a21 + a22 + a23
a1a2a3

· IK2 +
3a1a2a3

a21 + a22 + a23
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3780. [2012 : 335, 337] Proposed by O. Furdui.

Let f : [0, 1]→ R be a continuously differentiable function and let

xn = f

Å
1

n

ã
+ f

Å
2

n

ã
+ · · ·+ f

Å
n− 1

n

ã
.

Calculate lim
n→∞

(xn+1 − xn).

Solved by A. Alt ; M. Bataille ; O. Kouba ; M. R. Modak ; P. Perfetti ; and the pro-
poser. There were five flawed solutions, three of which applied an invalid converse
of the Stolz-Cesaro theorem. We present 2 solutions.

Solution 1 by Omran Kouba.

The required limit is equal to
∫ 1

0
f(x)dx.

We first note that, if g : [0, 1] −→ R is a continuously differentiable function, then,
using integration by parts, we have that∫ 1

0

Å
x− 1

2

ã
g′(x)dx =

ïÅ
x− 1

2

ã
g(x)

ò1
0

−
∫ 1

0

g(x)dx

=
g(1) + g(0)

2
−
∫ 1

0

g(x)dx.

Apply this to the function g(x) = f((k + x)/n) for k = 0, 1, 2, . . . , n − 1 and add
the resulting equations to obtain

xn +
f(0) + f(1)

2
− n

∫ 1

0

f(x)dx =

∫ 1

0

Å
x− 1

2

ã
Hn(x)dx,

where

Hn(x) =
1

n

n−1∑
k=0

f ′
Å
k + x

n

ã
.

Observe that, for each x ∈ [0, 1], Hn(x) is a Riemann sum for the integral
∫ 1

0
f ′(t)dt

and |Hn(x)| ≤ sup[0.1] |f ′|.

From the foregoing equation and its analogue for n+ 1, we obtain that

xn+1 − xn −
∫ 1

0

f(x)dx =

∫ 1

0

(Hn+1(x)−Hn(x))

Å
x− 1

2

ã
dx.

As n tends to infinity, the integrand on the right side tends pointwise and boun-
dedly to 0, so by the Lebesgue Dominated Convergent Theorem, we conclude that

limn→∞(xn+1 − xn) =
∫ 1

0
f(x)dx.
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Solution 2 by Paolo Perfetti.

There exists ξk ∈ (k(n+ 1)−1, kn−1) for which

xn+1 − xn =
n∑
k=1

Å
f

Å
k

n+ 1

ã
− f
Å
k

n

ãã
+ f(1)

=
n∑
k=1

f ′(ξk)

Å −k
n(n+ 1)

ã
+ f(1)

= − 1

n+ 1

n∑
k=1

k

n

Å
f ′(ξk)− f ′

Å
k

n

ãã
− 1

n+ 1

n∑
k=1

k

n
f ′
Å
k

n

ã
+ f(1)

where k(n+ 1)−1 < ξk < kn−1. Note that f ′ is uniformly continuous on [0, 1] and
that ∣∣∣∣ξk − k

n

∣∣∣∣ ≤ k

n(n+ 1)
<

1

n
.

Therefore, for each ε > 0, when n is sufficiently large∣∣∣∣f ′(ξk)− f ′
Å
k

n

ã∣∣∣∣ < ε

for 1 ≤ k ≤ n. Thus∣∣∣∣∣− 1

n+ 1

n∑
k=1

k

n

Å
f ′(ξk)− f ′

Å
k

n

ãã∣∣∣∣∣ < ε

Å
1

n(n+ 1)

ãÅ
n(n+ 1)

2

ã
=
ε

2
.

Moreover

lim
n→∞

− 1

n+ 1

n∑
k=1

k

n
f ′
Å
k

n

ã
= −

∫ 1

0

xf ′(x)dx.

Therefore, integrating by parts, we find that

lim
n→∞

(xn+1 − xn) = f(1)−
∫ 1

0

xf ′(x)dx =

∫ 1

0

f(x)dx.

Editor’s comment. Malikić and Ricardo noted that the proposer poses and solves
this problem in his book Limits, Series, and Fractional Part Integrals published
by Springer in 2013. It is problem 1.32 on page 6 under Miscellaneous Limits ; the
solution appears on page 52.
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