
Proposed solution of problem 3486 – deadline 05–01–2010

Let a, b, c be positive real numbers. Prove that
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Proof The inequality is

∑

cyc

(

1−
a2

a2 + bc

)

≤
1

2
3

√

3(a + b + c)

(

1

a
+

1

b
+

1

c

)

or

1

2
3

√

3(a + b + c)

(

1

a
+

1

b
+

1

c

)

+
∑

cyc

a2

a2 + bc
≥ 3

Cauchy–Schwarz yields
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Now set a + b + c = 1 (the inequality is homogeneous) and define ab + bc + ca =
1− x2

3
,

0 ≤ x ≤ 1. We know that (Matematical Reflections, vol.2007, issue 2, “On a class of
three–variable inequalities”, Vo Quoc Ba Can), we are interested in the r.h.s.
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In the variable x the inequality reads as
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and after simple algebra we come to

−x2(16x6
− 7x5 + 41x4

− 18x3 + 30x2 + 4) ≤ 0

which evidently holds taking into account that 0 ≤ x ≤ 1 and then 30x2 ≥ 18x3, 41x4 ≥

7x5.
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