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Let R denote the real numbers and Q the rational numbers. A function f has a local

minimum at the point x0 if there exists an open neighborhood U of x0 such that f(x0) ≤
f(x) for all x ∈ U.

1. Find a non-constant function f :R→ R such that f has a local minimum at every

point.

2. Find a function g:Q→ Q such that for each rational number r, there is neighbor-

hood U of r such that g(r) < g(x) for each x ∈ U.

1. Let f :R→ R be defined by f(x) = 1 if x < 0 and f(x) = 0 for x ≥ 0. f is non–constant
and every point is a minimum.

2. g:Q → Q, g(p/q) = −1/q, g(0) = −1 and (1 is the greatest common divisor of p and

q: (p|q) = 1). For any p/q let’s define a neighborhood by
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whence q′ ≥ q + 1. It follows g(p′/q′) = −1/q′ > −1/q. Of Course

x = 0 is a minimum.

This function is not new. As far as I know it goes back to Riemann

• By the way f :R → R, f(x) =
{ − 1/q, x = p/q, (p|q) = 1

0 otherwise
has a dense set of min-

ima of 0 Lebesgue measure. The set of minima of the everywhere dicontinuous Dirichlet
function: f(x) = 0 x ∈ Q and f(x) = −1 for x ∈ R\Q is of full measure.
In [2] the authors construct an example of continuous function f :R → R having a dense
set of proper minima (f(x0) < f(x)). This type of functions can be proved to be dense
(residual) in the set of continuous functions C([0, 1]) with the sup norm [3]. A considerably
more difficult example of a differentiable function having a dense set of maxima and minima
is constructed in [4], see also [5] p.141.

• As for point 1 we could have inserted “more steps”: f(x) = −k for k ≤ x < k+1 whose
graph is a “staircase”. The steps can be made as close as we want but there does not exist
a function satisfying 1 and not constant on every interval.We then prove the theorem

Theorem There does not exist a function f :R → R, having a minimum at each point

and not constant on every open neighborhood

The initial step of the proof is the following interesting lemma (proved as early as 1900
[1])

Lemma The set of the ordinates of maxima or minima is a countable set for any function

f :R→ R,

Proof of the theorem Let be f :R → R and B = f(R). By hypotheses each point of B

is a minimum and the lemma implies the countability of B: B =
∞
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yk. Let’s define
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By the Baire–category theorem applied on R which is complete, we have
o

Ak 6= ∅ for at
least a k, say k = k0. Hence there exists an open set, say C, such that for any p ∈ C,
Ak0

∩ Up 6= ∅ for any open neighborhood Up 3 p. There are two possibilities:

i) If Up ∩A(k0) = ∅ for a pair p–Up, then Up ⊂ Ak0
and this would imply f constant and

equal to yk0
in Up hence the thesis.

ii) If Up ∩ A(k0) 6= ∅ for any p ∈ C and for any Up 3 p, then A(k0) would be dense in C.
In this case the density of A(k0) and Ak0

contradicts the fact that each point must be a
minimum.

• The Lemma is false if one wants countable the set of the inflection points and in fact a
C1 counterexample is easily constructed. Let be F ⊂ [0, 1] the Cantor–ternary–set and for

x ∈ [0, 1], ρ(x, F ) is the distance between x and F. Let be h(x)
.
=

∫ x

0

ρ(t, F )dt.

1) h is differentiable and h′(x) = ρ(x, F ) being ρ(x, F ) continuous , 2) h′(x) ≥ 0 being
ρ(x, F ) ≥ 0. The derivative is zero if and only if x ∈ F being F a closed set 3) h is

injective. In fact
∫ x′

x
ρ(t, F )dt > 0 if x < x′ because F is completely disconnected, (F

does not contain any interval), 4) the points of zero derivative are uncountable being F
uncountable (as well known).

The Cantor–ternary–set has zero Lebesgue measure but this is inessential. We could have
taken a Cantor set of positive measure.
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