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Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
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PROBLEMS

11579. Proposed by Hallard Croft, University of Cambridge, Cambridge, U. K., and
Sateesh Mane, Convergent Computing, Shoreham, NY. Let m and n be distinct integers,
with m, n ≥ 3. Let B be a fixed regular n-gon, and let A be the largest regular m-gon
that does not extend beyond B. Let d = gcd(m, n), and assume d > 1. Show that:
(a) A and B are concentric.
(b) If m | n, then A and B have m points of contact, consisting of all the vertices of A.
(c) If m - n and n - m, then A and B have 2d points of contact.
(d) A and B share exactly d common axes of symmetry.

11580. Proposed by David Alfaya Sánchez, Universidad Autónoma de Madrid,
Madrid, Spain, and José Luis Dı́az-Barrero, Universidad Politécnica de Cataluña,
Barcelona, Spain. For n ≥ 2, let a1, . . . , an be positive numbers that sum to 1, let
E = {1, . . . , n}, and let F = {(i, j) ∈ E × E : i < j}. Prove that∑

(i, j)∈F

(ai − a j )
2
+ 2ai a j (1− ai )(1− a j )

(1− ai )2(1− a j )2
+

∑
i∈E

(n + 1)a2
i + nai

(1− ai )2
≥

n2(n + 2)

(n − 1)2
.

11581. Proposed by Duong Viet Thong, National Economics University, Hanoi,
Vietnam. Let f be a continuous, nonconstant function from [0, 1] to R such that∫ 1

0 f (x) dx = 0. Also, let m = min0≤x≤1 f (x) and M = max0≤x≤1 f (x). Prove that∣∣∣∣∫ 1

0
x f (x) dx

∣∣∣∣ ≤ −mM

2(M − m)
.

11582. Proposed by Aleksandar Ilić, University of Niš, Serbia. Let n be a positive inte-
ger, and consider the set Sn of all numbers that can be written in the form

∑k
i=2 ai−1ai

with a1, . . . , ak being positive integers that sum to n. Find Sn .
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11583. Proposed by David Beckwith, Sag Harbor, NY. The instructions for a magic
trick are as follows: Pick a positive integer n. Next, list all partitions of n as nonde-
creasing strings—for instance, with n = 3, the list is {111, 12, 3}. Count 1 point for
the string (n). For the string λ1 · · · λk with k > 1, count

∏k−1
j=1

(
λ j+1
λ j

)
points. Add up

your points, take the log base 2 of that, and add 1. Voilà! n. Explain.

11584. Proposed by Raymond Mortini and Jérôme Noël, Université Paul Verlaine,
Metz, France. Let 〈a j 〉 be a sequence of nonzero complex numbers inside the unit
circle such that

∏
∞

k=1 |ak | converges. Prove that∣∣∣∣∣∣
∞∑
j=1

1− |a j |
2

a j

∣∣∣∣∣∣ ≤ 1−
∏
∞

j=1 |a j |
2∏

∞

j=1 |a j |
.

11585. Proposed by Bruce Burdick, Roger Williams University, Bristol, RI. Show that

∞∑
k=3

1

k

(
k−2∑
m=1

ζ(k − m)ζ(m + 1)− k

)
= 3+ γ 2

+ 2γ1 −
π2

3
.

Here, ζ denotes the Riemann zeta function, γ is the Euler-Mascheroni constant, given
by γ = limn→∞

(∑n
k=1 1/k − log(n)

)
, and γ1 is the first Stieltjes constant, given by

γ1 = limn→∞

(∑n
k=1

log k
k −

1
2 (log n)2

)
.

SOLUTIONS

Extrema On the Edge

11449 [2009, 647]. Proposed by Michel Bataille, Rouen, France. (corrected) Find the
maximum and minimum values of

(a3
+ b3
+ c3)2

(b2 + c2)(c2 + a2)(a2 + b2)

given that a + b ≥ c > 0, b + c ≥ a > 0, and c + a ≥ b > 0.

Solution by Chip Curtis, Missouri Southern State University, Joplin, MO. Let F be the
expression to be maximized. The maximum of F in the feasible region is 2, attained
when a = b = 1 and c = 2, as well as at permutations and scalings of this.

Let H = 2(b2
+ c2)(c2

+ a2)(a2
+ b2)− (a3

+ b3
+ c3)2. Since F ≤ 2 is equiva-

lent to H ≥ 0, we prove the latter. By symmetry, we may assume that a ≤ b ≤ c. By
homogeneity, we may take a = 1. Hence, we can write b = 1+ x and c = 1+ x + y
with x, y ≥ 0. Since a + b ≥ c, we have y ≤ 1. Expanding H as a polynomial in x
with coefficients that are polynomials in y gives the following expansion:

H = x4
[1+ 7(1+ y)(1− y)] + 2x3

[1+ (1− y)(7y2
+ 21y + 13)]

+ x2
[1+ (1+y)(1− y)(13y2

+ 42y + 39)]

+ 2x(1+y)(1−y)(3y + 7)(y2
+ 2y + 2)+(1+y)2(1−y)(y3

+ 5y2
+ 7y + 7),

which is evidently nonnegative. It is 0 if and only if x = 0 and y = 1. This corresponds
to (a, b, c) = (1, 1, 2).
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Also solved by R. Agnew, A. Alt, M. Ashbaugh, R. Bagby, D. Beckwith, H. Caerols & R. Pellicer (Chile),
R. Chapman (U. K.), H. Chen, C. Curtis,P. P. Dályay (Hungary), Y. Dumont (France), J. Fabrykowski and T.
Smotzer, S. Falcón and Á. Plaza (Spain), D. Fleischman, J.-P. Grivaux (France), E. A. Herman, F. Holland (Ire-
land), T. Konstantopoulos (U. K.), O. Kouba (Syria), A. Lenskold, J. H. Lindsey II, B. Mulansky (Germany),
P. Perfetti (Italy), C. R. Pranesachar (India), N. C. Singer, R. Stong, T. Tam, R. Tauraso (Italy), M. Tetiva (Ro-
mania), D. Tyler, E. I. Verriest, Z. Vörös (Hungary), S. Wagon, G. D. White, GCHQ Problem Solving Group
(U. K.), Microsoft Research Problems Group, and the proposer.

Editorial comment. Two versions of this problem appeared; the first was not what the
proposer intended. The treatment of the upper bound given in the March issue of this
column (p. 278) fails as a solution to the corrected version. The maximum of F in the
closure of the feasible region is attained not only at a corner, which is off-limits, but
also at the other boundary points noted. The solver list here includes those who had
supplied solutions under a new deadline. The editors regret the confusion.

Hexagon Inscribed in Circle

11470 [2009, 491]. Proposed by Marian Tetiva, National College “Gheorghe Roşca
Codreanu,” Bı̂rlad, Romania. Let ABCDEF be a hexagon inscribed in a circle. Let M ,
N , and P be the midpoints of the line segments BC, DE, and FA, respectively, and
similarly let Q, R, and S be the midpoints of AD, BE, and CF. Show that if both MNP
and QRS are equilateral, then the segments AB, CD, and EF have equal lengths.

Solution by Oliver Geupel, Brühl, NRW, Germany. Let the circle be the unit circle
in the complex plane, and let a, b, c, . . . be the complex numbers corresponding to
A, B,C, . . . . Thus 2m = b + c, 2n = d + e, 2p = f + a, 2q = a + d , 2r = b + e,
and 2s = c + f . Write ε = exp(2π i/3). It is well known (for example: T. Andreescu
and T. Andrica, Complex Numbers from A to Z, Birkhäuser, Boston, 2006, pp. 70ff.,
Proposition (3.4)1) that a triangle UVW is equilateral if and only if u + εv + ε2w = 0
or u + εw + ε2v = 0, depending on the orientation of 4UVW. Without loss of gener-
ality, we may assume that 4MNP is oriented so that m + εn + ε2 p = 0. Hence

(b + c)+ ε(d + e)+ ε2( f + a) = 0. (1)

We consider two cases, depending on the orientation of 4QRS.
Case 1: 4MNP and 4QRS have opposite orientation. In this case

(a + d)+ ε(c + f )+ ε2(b + e) = 0. (2)

Multiplying (1) by −1−ε+ε2

2(ε−1) , multiplying (2) by −1+ε+ε2

2(ε−1) , and adding, we obtain a +

εc + ε2e = 0. Multiplying (1) by −1+ε+ε2

2(ε−1) , multiplying (2) by −1−ε+ε2

2(ε−1) , and adding,
we obtain b + εd + ε2 f = 0. Thus 4ACE and 4BDF are equilateral, which implies
AB = CD = EF.

Case 2: 4QRS has the same orientation as 4MNP. Now

(b + e)+ ε(c + f )+ ε2(a + d) = 0. (3)

Multiplying (1) by 1
1−ε , multiplying (3) by− 1

1−ε , and adding, we obtain c− e = ε( f −

d). Therefore CE=DF, so CD= EF. Multiplying (1) by ε2

1−ε , multiplying (3) by− 1
1−ε ,

and adding, we obtain e − a = ε( f − b). Therefore EA = FB, so EF = AB.

Also solved by R. Chapman (U. K.), P. P. Dályay (Hungary), M. Garner, M. Goldenberg & M. Kaplan, J.-P.
Grivaux (France), S. W. Kim (Korea), O. Kouba (Syria), O. P. Lossers (Netherlands), M. A. Prasad (India), R.
Stong, S. Tonegawa & F. Vafa, and the proposer.
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Product of Derivatives

11472 [2009, 941]. Proposed by Mahdi Makhul, Shahrood University of Technology,
Shahrood, Iran. Let t be a nonnegative integer, and let f be a (4t + 3)-times continu-
ously differentiable function on R. Show that there is a number a such that at x = a,

4t+3∏
k=0

dk f (x)

dx k
≥ 0.

Solution by Robin Chapman, University of Bristol, Bristol, England, U. K. We first
claim that if g is a twice-differentiable function on R, then there exists b ∈ R such
that g(b)g′′(b) ≥ 0. To prove this, suppose that g(x)g′′(x) < 0 for all x ∈ R. Now
g(x) 6= 0 for all x ∈ R. Since g is continuous, g has constant sign. Hence, g′′ has the
opposite sign. Suppose that g is positive and g′′ is negative (otherwise consider −g in
place of g). Hence g′ is decreasing, and there exists c ∈ R with g′(c) 6= 0. By Taylor’s
theorem, for each x ∈ R,

g(x) = g(c)+ (x − c)g′(c)+
(x − c)2

2
g′′(ξ),

where ξ is between c and x . Since g′′ is negative,

g(x) ≤ g(c)+ (x − c)g′(c).

Depending on the sign of g′(c), this implies that g(x) < 0 for all large enough x or for
all small enough x . Either way we have a contradiction. Hence there exists b ∈ R with
g(b)g′′(b) ≥ 0.

Now let f be a (4t + 3)-times continuously differentiable function on R. Let
F(x) =

∏4t+3
j=0 f ( j)(x). If F is always negative, then F is always nonzero, so each f ( j)

with 0 ≤ j ≤ 4t + 3, since it is continuous, has constant sign. From the foregoing,
f ( j) and f ( j+2) must have the same sign for 0 ≤ j ≤ 4t + 1. Therefore

∏2t+1
j=0 f (2 j)

and
∏2t+1

j=0 f (2 j+1) are both positive, so F is positive, a contradiction.

Editorial comment. The special case t = 0 of this problem was problem A3 on the
1998 Putnam exam.

Also solved by G. Apostolopoulos (Greece), P. P. Dályay (Hungary), J.-P. Grivaux (France), O. Kouba (Syria),
O. P. Lossers (Netherlands), M. Omarjee (France), J. Simons (U. K.), R. Stong, R. Tauraso (Italy), M. Tetiva
(Romania), X. Wang, GCHQ Problem Solving Group (U. K.), and the proposer.

A Series Equation

11473 [2009, 941]. Proposed by Paolo Perfetti, Mathematics Dept., University “Tor
Vergata Roma,” Rome, Italy. Let α and β be real numbers such that −1 < α + β < 1
and such that, for all integers k ≥ 2,

−(2k) log(2k) 6= α, (2k + 1) log(2k + 1) 6= α,

1+ (2k + 1) log(2k + 1) 6= β, −1− (2k + 2) log(2k + 2) 6= β.

Let

T = lim
N→∞

N∑
n=2

n∏
k=2

α + (−1)k · k log(k)

β + (−1)k+1(1+ (k + 1) log(k + 1))
,

U = lim
N→∞

N∑
n=2

((n + 1) log(n + 1))
n∏

k=2

α + (−1)k · k log(k)

β + (−1)k+1(1+ (k + 1) log(k + 1))
.
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(a) Show that the limits defining T and U exist.
(b) Show that if, moreover, |α| < 1/2 and β = −α, then T = −2U .

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The
Netherlands.
(a) The series for T and U are eventually alternating in sign, so for convergence it
suffices to prove that the absolute value of the term decreases eventually and converges
to zero. Since (n + 1) log(n + 1) is an increasing function of n, it suffices to prove this
for U only. The negative of the quotient of two consecutive terms is

(n + 1) log(n + 1)

n log n
·

(−1)nα + n log n

1+ (−1)n+1β + (n + 1) log(n + 1)
.

With the abbreviation xn = n log n, this expression can be written as

1−
1− (−1)n(α + β)

xn
+

(
1

xn+1
−

1

xn

)
(−1)n(α + β)+ O(x−2

n ).

Since 1/xn+1 − 1/xn = O(n−1x−1
n ) and |α + β| < 1, this has the form 1− cn with 1 >

cn >
1
2 (1− |α + β|)/xn eventually. Therefore

∏n
k=1 |1− ck | is eventually decreasing.

Also, since
∑

x−1
n diverges, the product goes to zero. This proves that the limit for U ,

and hence also for T , exists.
(b) The equation T = −2U is incorrect. Let pk = (−1)kα + xk and qk =

(−1)k+1β + 1+ xk+1. If α + β = 0, then the partial sums for T + 2U can be written
as

N∑
n=2

(−1)n+1(qn + pn+1)

n∏
k=2

pk

qk
=

N∑
n=2

(−1)n+1

(∏n
k=2 pk∏n−1
k=2 qk

+

∏n+1
k=2 pk∏n
k=2 qk

)
.

This is a telescoping sum that simplifies to

−p2 + (−1)N+1 pN+1

N∏
k=2

pk

qk
.

From the convergence of T and U , it follows that the second term goes to zero as N
tends to infinity. Thus

T + 2U = −α − 2 log 2.

Also solved by O. Kouba (Syria), R. Stong, and the GCHQ Problem Solving Group (U. K.).

An Inequality for Triangles

11476 [2010, 86]. Proposed by Panagiote Ligouras, “Leonardo da Vinci” High
School, Noci, Italy. Let a, b, and c be the side-lengths of a triangle, and let r be
its inradius. Show

a2bc

(b + c)(b + c − a)
+

b2ca

(c + a)(c + a − b)
+

c2ab

(a + b)(a + b − c)
≥ 18r 2.

Solution by P. Nüesch, Lausanne, Switzerland. Write s for the semiperimeter of the
triangle. The left side of the inequality is (employing geometry’s cyclic summation
conventions) ∑ a2bc

(b + c)(b + c − a)
=

abc

2

∑ a

(2s − a)(s − a)
.
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The function f defined by

f (x) =
x

(2s − x)(s − x)

is convex for 0 < x < s. Setting x1 = a, x2 = b, x3 = c yields∑ a

(2s − a)(s − a)
=

∑
f (xi ) ≥ 3 f

(∑
xi

3

)
= 3 f

(
2s

3

)
=

9

2s
.

Together with abc = 4Rrs and Euler’s inequality R ≥ 2r , we obtain

abc

2

∑ a

(2s − a)(s − a)
≥

abc

2

9

2s
= 9Rr ≥ 18r 2.

Also solved by A. Alt, G. Apostolopoulos (Greece), R. Bagby, D. Beckwith, E. Bráune (Austria), R. Chapman
(U. K.), P. P. Dályay (Hungary), J. Fabrykowski & T. Smotzer, H. Y. Far, O. Faynshteyn (Germany), V. V.
Garcia (Spain), O. Kouba (Syria), K.-W. Lau (China), J. H. Lindsey II, Á. Plaza & S. Falcón (Spain), C.
Pohoata (Romania), C. R. Pranesachar (India), R. Stong, E. Suppa (Italy), M. Tetiva (Romania), M. Vowe
(Switzerland), L. Wimmer (Germany), L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.

The Winding Density of a Non-Closing Poncelet Trajectory

11479 [2010, 87]. Proposed by Vitaly Stakhovsky, National Center for Biotechnologi-
cal Information, Bethesda, MD. Two circles are given. The larger circle C has center
O and radius R. The smaller circle c is contained in the interior of C and has center o
and radius r . Given an initial point P on C , we construct a sequence 〈Pk〉 (the Poncelet
trajectory for C and c starting at P) of points on C : Put P0 = P , and for j ≥ 1, let
Pj be the point on C to the right of o as seen from Pj−1 on a line through Pj−1 and
tangent to c. For j ≥ 1, let ω j be the radian measure of the angle counterclockwise
along C from Pj−1 to Pj . Let

�(C, c, P) = lim
k→∞

1

2πk

k∑
j=1

ω j .

(a) Show that �(C, c, P) exists for all allowed choices of C , c, and P , and that it is
independent of P .
(b) Find a formula for �(C, c, P) in terms of r , R, and the distance d from O to o.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. We
will show

�(C, c, P) =
F

(
1

2
arccos

r − d

R

∣∣∣m

)
K (m)

,where m =
4d R

(R + d)2 − r 2
,

which is independent of P . We have used the incomplete elliptic integral of the first
kind, defined by

F(θ |m) =
∫ θ

0

dt√
1− m sin2 t

=

∫ sin θ

0

dy√
1− y2

√
1− my2

,

and the corresponding complete integral K (m) = F(π/2|m).
Use coordinates with c centered at the origin and C centered on the nonneg-

ative x-axis. Parameterize c as T (θ) = (r cos θ, r sin θ) and C as P(φ) = (d +
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R cosφ, R sinφ). Then ‖T (θ)‖2
= ‖T ′(θ)‖2

= r 2 and 〈T ′(θ), T (θ)〉 = 0. The tan-
gent line to c at T (θ) is given by 〈X, T (θ)〉 = r 2 and a point X on the tangent can be
written as

X = T (θ)±

√
‖X‖2 − r 2

r
T ′(θ),

using the + sign if X is counterclockwise from T (θ) and the − sign if X is clockwise
from T (θ) as viewed from the origin.

For any two points P(φ1) and P(φ2) on C we have

P(φ1)− P(φ2) = 2 sin

(
φ1 − φ2

2

)(
−R sin

(
φ1 + φ2

2

)
, R cos

(
φ1 + φ2

2

))
,

P ′(φ1)+ P ′(φ2) = 2 cos

(
φ1 − φ2

2

)(
−R sin

(
φ1 + φ2

2

)
, R cos

(
φ1 + φ2

2

))
.

Hence these two vectors are parallel.
For a point T (θ) on the circle c, write P(φ−) and P(φ+) for the two points where

the tangent to c at T (θ) meet C with φ+ counterclockwise from T (θ) and φ− <
φ+ < φ− + 2π . Then 〈P(φ±), T (θ)〉 = r 2 so 〈P(φ+)− P(φ−), T (θ)〉 = 0 and hence
〈P ′(φ+)+ P ′(φ−), T (θ)〉 = 0. Now suppose we traverse the circle c so that

dθ

dt
= 〈P ′(φ−), T (θ)〉 = −〈P ′(φ+), T (θ)〉.

This makes dθ/dt > 0, so we traverse c in counterclockwise order. Then from

0 =
d

dt
〈P(φ±), T (θ)〉 = 〈P ′(φ±), T (θ)〉

dφ±
dt
+ 〈P(φ±), T ′(θ)〉

dθ

dt
we see

dφ±
dt
= ±〈P(φ±), T ′(θ)〉

= r
√
‖P(φ±)‖2 − r 2 = r

√
R2 + d2 − r 2 + 2d R cosφ±.

Thus the elliptic integral I given by

I =
∫ φ+

φ−

dφ√
R2 + d2 − r 2 + 2d R cosφ

satisfies
d I

dt
=

1√
R2 + d2 − r 2 + 2d R cosφ+

dφ+
dt

−
1√

R2 + d2 − r 2 + 2d R cosφ−

dφ−
dt

= r − r = 0

and is a constant. One possible chord is the vertical one through the point (r, 0) with
θ = 0, φ± = ± arccos((r − d)/R), so we obtain

I = 2
∫ arccos((r−d)/R)

0

dφ√
R2 + d2 − r 2 + 2d R cosφ

=
4√

(R + d)2 − r 2
F

(
1

2
arccos

r − d

R

∣∣∣ 4d R

(R + d)2 − r 2

)
.
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Let

J =
∫ 2π

0

dφ√
R2 + d2 − r 2 + 2d R cosφ

=
4√

(R + d)2 − r 2
K

(
4d R

(R + d)2 − r 2

)
.

Now suppose P0 = (d + R cosφ0, R sinφ0) and let φk = φ0 +
∑k

j=1 ω j . We have∫ φk

φ0

dφ√
R2 + d2 − r 2 + 2d R cosφ

= k I.

This integral is over an interval of at least b(φk − φ0)/(2π)c complete periods and
fewer than d(φk − φ0)/(2π)e complete periods. Hence⌊∑k

j=1 ω j

2π

⌋
J ≤ k I ≤

⌈∑k
j=1 ω j

2π

⌉
J.

Thus

I

J
−

1

k
≤

1

k

(⌈∑k
j=1 ω j

2π

⌉
− 1

)
≤

∑k
j=1 ω j

2πk
≤

1

k

(⌊∑k
j=1 ω j

2π

⌋
+ 1

)
≤

I

J
+

1

k

and

lim
k→∞

∑k
j=1 ω j

2πk
=

I

J
,

which is the quotient of elliptic integrals claimed.

Editorial comment.
In the classical case, when the trajectory closes—returns to its starting point af-

ter finitely many steps—this “winding density” is rational: the number of times the
closed trajectory goes around the circle divided by the number of intervals in the tra-
jectory. The use of elliptic integrals to compute it is known, and in many special cases it
can be computed without elliptic integrals: see http://mathworld.wolfram.com/
PonceletsPorism.html.

Also solved by J. A. Grzesik, and the proposer.
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