Problems I cannot solve (at the moment)

If anyone solves some of them, I would like to know the solution perfetti@mat.uniroma2.it

1) Write a polynomial P(x, y), $(x, y) \in \mathbb{R}^2$, with three or more critical points all maxima (no saddle) [It is known an example with two critical points, A. Durfee, N.Kronenfeld, H.Munson, J.Roy, I.Westby American Mathematical Monthly 100, No.3 (Mar., 1993), 255-271]

2) Is the everywhere divergent trigonometric series (Steinhaus) $\sum_{k=2}^{\infty} \frac{\sin(k(x - \ln \ln k))}{\ln k}$ a Fourier

series?

H.Steinhaus: A divergent trigonometrical series, Journal of London Mathematical Society, **4** (1929) pp.86–88, Sioban O'Shea: On a Divergent Trigonometrical Series Given by Steinhaus, Proocedings of the American Mathematical Society, Volume 10, Issue 1 (Feb., 1959) pp.60–70. A.Zygmund: Trigonometric Series, Third Edition, Volume–I, (Cambridge Mathematical Library), p.338. Some years ago Elias Stein e-mailed me that if Zygmund has written it is not Fourier, he certainly knew the proof.

3) Does the series
$$\sum_{k=3}^{\infty} \frac{(-1)^k}{\ln k + \sin k}$$
 converge?

4) $\{d_k\}$ is a monotone decreasing sequence of positive numbers such that $\sum d_k = +\infty$. Prove or disprove: a monotone decreasing sequence $\{d'_k\}$ of positive terms can be found such that $\sum d'_k = +\infty$ but $\sum \min\{d_k, d'_k\} < +\infty$.

5) Let $\{a_k\} = \{1/(k\ln(k+1))\}, k \ge 1$. Let $\{b_k\}$ be another sequence defined by $b_1 = 1$, $b_2 = -a_2, b_3 = -a_3, b_4 = a_4, b_5 = a_5, b_6 = a_6, b_7 = a_7, b_8 = -a_8, \ldots, b_{15} = -a_{15}$ and so on. The series $\sum b_k$ converges but diverges absolutely. Moreover $\sum b_k z^k$ $(z \in \mathbf{C})$ converges on $|z| \le 1$. Is the convergence uniform?

6) Let $\{a_k\}$ be a sequence of nonnegative real numbers such that $\lim_{n \to \infty} \sum^n a_k \doteq \lim_{n \to \infty} A_n = \infty$. Let $\{g_k\}$ be a sequence such that $g_k \to +\infty$ and $\sum \frac{a_k}{A_k g_k} = +\infty$. Give a monotonic sequence $\{f_n\}$ $f_n \leq f_{n+1}$ such that $\sum \frac{a_k}{f_k} = +\infty$, but $\sum \min\{\frac{a_k}{A_k g_k}, \frac{a_k}{f_k}\} < +\infty$, [Paul Erdos; N.J.Fine; J.B.Kelly – A.M.M. Vol.58, No.6 (Jun. – Jul., 1951), 425–426]

7) (A question raised by Littlewood) Let $\{a_k\}$ be a sequence such that $0 < a_k \le a_{k+1} \le k+1$. It is known (AMM Vol.72, No.6, (Jun. – Jul., 1965), pp.675–677) that the series $\sum (a_k/A_k)^{\alpha}$ converges if $\alpha > 1$ and $A_n = a_1 + \ldots + a_n$. Littlewood raised the question about the convergence of the series if $a_k \le k\omega_k$ with $\omega_k \to \infty$ sufficiently slow.

8) For
$$x \in (0, \pi/2]$$
 prove $\frac{\sin^4 x}{x^4} + \frac{\sin x}{13} \ge \cos x$