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1 Introduction

We use the following bounds: for all x ∈ (0, π/2],

sinx ≥ x− x3/6,

cosx ≤ 1− x2/2 + x4/24,

and
sin4 x ≥ x4 − 2x6/3 + x8/5− 34x10/945.1

(The proof of (1) is given at the end. The RHS of (1) is the Taylor approximation
of sin4 x around x = 0.)

It suffices to prove that, for all x ∈ (0, π/2],
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which is true. The proof of (2) is given at the end.
We are done.
Proof of (1).
Using sinx ≥ x − x3/6 + x5/120 − x7/5040 ≥ 0 for all x ∈ (0, π/2], by

Bernoulli inequality, we have

sin4 x ≥ (x− x3/6 + x5/120− x7/5040)4

= (x− x3/6)4
(
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· 4
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= x4 − 2x6/3 + x8/5− 34x10/945 +
1
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≥ x4 − 2x6/3 + x8/5− 34x10/945.
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We are done.
Proof of (2).
It suffices to prove that
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Using x3 ≤ 3x2 − 8x/3 + 20/27 (equivalent to (x − 2/3)2(5/3 − x) ≥ 0), it
suffices to prove that
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(Note: Now, the polynomial is of degree four.)
Do the same things twice again, it suffices to prove that
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which is true. We are done.
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