Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche

Per le definizioni e teoremi si fa riferimento ad uno qualsiasi dei libri M.Bertsch - R.Dal Passo Lezioni di Analisi Matematica, I edizione settembre 1996, ARACNE EDITRICE, via Raffaele Garofalo, 133 A/B 00173 Roma tel.0672672233/22, M.Bertsch - R.Dal Passo Elementi di Analisi Matematica, I edizione ottobre 2001, ARACNE EDITRICE

- 1.1.2 Determinare: dominio, immagine, monotonia e disegnare un grafico approssimativo delle seguenti funzioni: $f_1(x) = \log_3 \sqrt{x^{-3}}, \quad f_2(x) = \arccos\log_3 \sqrt{x^{-3}}, \quad f_3(x) = \sqrt{\frac{x^2 - 1}{x^2 + 1}}$
- 2.1.2 Studiare la invertibilità delle seguenti funzioni nei rispettivi domini di definizione oppure, in subordine, in qualche sottoinsieme del dominio. Per f_3 trovare l'inversa. $f_1(x) = x^3 + x$, $f_2(x) = x^3 - x$, $f_3(x) = x^2 + 2x - 3$;
- **3.1.2** Trovare per quali valori di x sono vere le seguenti identità trigonometriche 1) cos arctan $x=\frac{1}{\sqrt{1+x^2}}$, sin arctan $x=\frac{x}{\sqrt{1+x^2}}$
- 2) $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2} \frac{x}{|x|}$

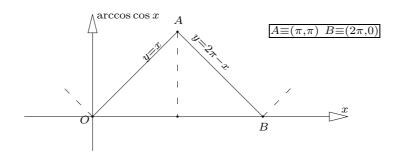
- 2) $\arctan x + \arctan \frac{\cdot}{x} = \frac{\cdot}{2} \frac{\cdot}{|x|}$ 3) $\arcsin x + \arccos x = \frac{\pi}{2}$, $\arccos \sqrt{1 x^2} = \arcsin x$, $\arccos \sqrt{1 x^2} = -\arcsin x$, 4) $\arccos \frac{1 x^2}{1 + x^2} = 2 \arctan x$, $\arccos \frac{1 x^2}{1 + x^2} = -2 \arctan x$, 5) $\arctan x = \operatorname{arc} \cot \frac{1}{x}$, $\arctan x = \operatorname{arc} \cot \frac{1}{x} \pi$ 6) $\arctan x \pm \arctan y = \arctan \frac{x \pm y}{1 \mp xy} + \pi$, $\arctan x \pm \arctan y = \arctan \frac{x \pm y}{1 \mp xy}$, $\arctan x \pm \arctan x \pm \arctan x + \arctan x$ $\arctan y = \arctan \frac{x \pm y}{1 \mp xy} - \pi,$
- 7) $\arctan x + \arctan 1 = \arctan \frac{1+x}{1-x}$, $\arctan x + \arctan 1 = \arctan \frac{1+x}{1-x} + \pi$,
- 8) $\frac{1}{2} \arcsin x + \arctan \sqrt{\frac{1-x}{1+x}} = \frac{\pi}{4}$
- Tracciare i grafici delle funzioni $y = \arccos(\cos x), y = \arcsin(\sin x)$ e $y = \arctan(\tan x)$ senza usare derivate
- **5.1.2** Senza usare derivate dire se le funzioni $y = \tan \arccos \frac{x|x|}{x^2+2}$ e $y = \tan \arcsin \frac{x|x|}{x^2+2}$ sono invertibili. In caso affermativo trovare le inverse e tracciarne il grafico con l'approssimazione massima possibile. Dimostrare che se una funzione è dispari ed è invertibile anche l'inversa è dispari.
- **6.1.2)** Trovare le infinite funzioni inverse di: $\cos x$ per $x \notin [0, \pi]$, $\sin x$ per $x \notin [-\frac{\pi}{2}, \frac{\pi}{2}]$, $\tan x \text{ per } x \notin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right],$ $\cot x \text{ per } x \notin [0, \pi,]$
- **7.1.2)** Sia data una funzione $f: X \to Y$ dotata di inversa f^{-1} . Si stabilisca se sono vere le seguenti affermazioni: $f(A \cup B) = f(A) \cup f(B)$, $f(A \cap B) = f(A) \cap f(B)$, $(A \in B \text{ sono})$ sottoinsiemi di X), $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$, $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$, $(C \in D)$ sono sottoinsiemi di Y). Per le relazioni eventualmente non vere si dia un esempio concreto.
- **8.1.2)** Si trovi il dominio delle seguenti funzioni: $(x^2 x 2)^{\ln \frac{x}{2}}$
- 9.1.2) Calcolare $\sin 9^{\circ} + \cos 9^{\circ}$
- **10.1.2**) Si dimostri che la funzione $\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}$ è costante in un intervallo [a,b]. Si trovi l'intervallo e il valore della costante.

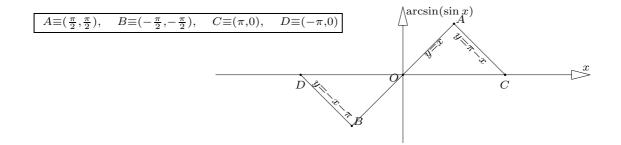
SOLUZIONI

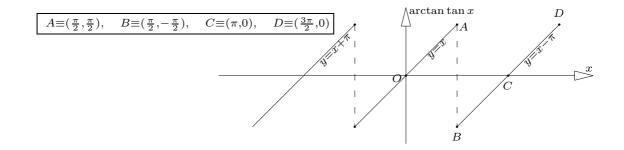
§1.2

- **1.1.2)** $Dom(f_1) = \mathbf{R}^+, Im(f_1) = \mathbf{R}, f_1$ è monotona decrescente. $Dom(f_2) = [3^{-2/3}, 3^{2/3}], Im(f_2) = [0, \pi], f_2$ è monotona crescente. $Dom(f_3) = \{x \in \mathbf{R} \mid |x| \ge 1, \} Im(f_3) = \{x \in \mathbf{R} \mid 0 \le x < 1\}.$ f_3 è pari ed è monotona crescente per $x \ge 1$ mentre è monotona decrescente per $x \le -1$.
- **2.1.2**) f_1 è invertibile. f_2 ed f_3 no.
- **3.1.2)** 1) e 2): sono vere per ogni $x \in \mathbf{R}$, 3): è vera se $x \in \mathbf{R}$, la seconda per $0 \le x \le 1$, la terza per $-1 \le x \le 0$, 4): la prima è vera per $x \ge 0$ mentre la seconda per $x \le 0$ 5): la prima per x > 0 e la seconda per x < 0, 6): se $\arctan x \pm \arctan y \in [-\pi, -\frac{\pi}{2}]$ vale la prima, se $\arctan x \pm \arctan x \pm \arctan y \in [\frac{\pi}{2}, \pi]$ vale la terza, 7): se x < 1 vale la prima, se x > 1 la seconda, 8) è vera per ogni $-1 \le x < 1$

4.1.2)







5.1.2) Cominciamo dalla prima funzione. $Dom(f) = \mathbf{R} \setminus \{0\}$, $Im(f) = \mathbf{R} \setminus \{0\}$; la funzione è dispari, monotona decrescente ed ha un asintoto verticale per x = 0. È invertibile su tutto il suo dominio e la sua inversa è data da $y = \frac{x}{|x|} \sqrt{\frac{2}{\sqrt{1+x^2}-1}}$

Per la seconda funzione si ha $Dom(f) = \mathbf{R}$ e $Im(f) = \mathbf{R}$. La funzione anche in questo caso è dispari e monotona crescente dunque invertibile con inversa data da $y = \frac{x}{|x|} \sqrt{\frac{2|x|}{\sqrt{1+x^2}-|x|}}$

6.1.2) Per la funzione $\cos x$, detta $q_n(x)$ la inversa nell'intervallo $[n\pi, (n+1)\pi]$, si ha $q_n(x) =$

 $n\pi + \arccos x$ se n è pari mentre $q_n(x) = (n+1)\pi - \arccos x$ se n è dispari

Per la funzione $\sin x$, detta $q_n(x)$ la inversa nell'intervallo $\left[\frac{(2n-1)\pi}{2},\frac{(2n+1)\pi}{2}\right]$, si ha $q_n(x)=n\pi+\arcsin x$ se n è pari mentre $q_n(x)=n\pi-\arcsin x$ se n è dispari

Per la funzione $\tan x$, detta $q_n(x)$ la inversa nell'intervallo $\left[\frac{(2n-1)\pi}{2}, \frac{(2n+1)\pi}{2}\right]$, si ha $q_n(x) = n\pi + \arctan x$ per ogni n

Per la funzione $\operatorname{arccot}(x)$, detta $q_n(x)$ la inversa nell'intervallo $[n\pi, (n+1)\pi]$, si ha $q_n(x) = n\pi + \operatorname{arccot} x$ per ogni n

- **7.1.2)** Sono tutte vere tranne $f(A \cap B) = f(A) \cap f(B)$. Infatti è vera $f(A \cap B) \subset f(A) \cap f(B)$; si prenda ad esempio la funzione $f: [0,2] \to [0,1], \ f(x) = \begin{cases} x & 0 \le x \le 1 \\ x-1 & 1 < x \le 2 \end{cases}$ e si prenda A = [0,1] e B = (1,2]. $A \cap B = \emptyset$ mentre $f(A) \cap f(B) = [0,1]$.
- **8.1.2)** $Dom(f) = (2, +\infty) \cup \{x \in (0, 2) : x = 2e^{\frac{p}{q}} < 2, \ q \text{ dispari}, p \in q \text{ primi fra di loro}\}.$ La proprietà $p \in q$ primi fra di loro si indica con (p, q) = 1
- **9.1.2**) $\frac{1}{2}\sqrt{3+\sqrt{5}}$
- **10.1.2)** l'intervallo è [1,2] e il valore è 2. Si calcoli $f^2(x)$

RISOLUZIONE DEGLI ESERCIZI

1.1.2) f_1 : Essendo in presenza di una radice quadrata, il radicando deve essere positivo o nullo e dunque $x^{-3} \geq 0$. x = 0 va scartato poiché non si può dividere per lo zero e quindi il dominio della funzione è dato dalle x > 0. Ora di tutto \mathbf{R}^+ bisogna vedere quali valori, facenti parte del dominio della funzione f_1 , si possono tenere. f_1 è il risultato della composizione di quattro funzioni $g_1 \circ g_2 \circ g_3 \circ g_4$ dove $g_4 \colon \mathbf{R}^+ \ni x \to \frac{1}{x} \in \mathbf{R}^+$; $g_3 \colon \mathbf{R}^+ \ni x \to x^3 \in \mathbf{R}^+$ (1.1.2); $g_2 \colon \mathbf{R}^+ \ni x \to \sqrt{x} \in \mathbf{R}^+$; $g_1 \colon \mathbf{R}^+ \ni x \to \log_3 x \in \mathbf{R}$. Come ben noto, affinché ciascuna composizione abbia senso, è necessario che $\mathrm{Im}(g_j) \subset Dom(g_{j+1})$ e ciò e facilmente verificabile. Dunque il dominio della funzione f_1 è \mathbf{R}^+ e la sua immagine è \mathbf{R} . Per quel che riguarda la monotonia si può dire che $g_1 \circ g_2 \circ g_3 \doteq h$ è la composizione di tre funzioni monotone crescenti mentre g_4 è monotona decrescente. Ora la composizione di $h \circ g_4 \equiv f_1$ è monotona decrescente. Sia infatti x < x'. Ne segue che $g_4(x) > g_4(x')$ data la decrescenza di g_4 . Essendo h crescente si ha $h(g_4(x)) > h(g_4(x'))$ da cui la decrescenza di $h \circ g_4$.

Va detto che la funzione $k: \mathbf{R} \setminus \{0\} \ni x \to \frac{1}{x} \in \mathbf{R} \setminus \{0\}$; è diversa da $g_4: \mathbf{R}^+ \ni x \to \frac{1}{x} \in \mathbf{R}^+$; in quanto si è cambiato il suo dominio. Una funzione infatti è costituita da un dominio e dall'azione di una applicazione sul dominio. Cambiare il dominio lasciando inalterata l'applicazione cambia di fatto la funzione. Lo stesso discorso può ripetersi per g_3 .

 $f_2 = g_o \circ f_1$ con $g_o: [-1,1] \supset x \to [0,\pi]$ e quindi, per quel che riguarda il dominio bisogna vedere quali x sono tali che $-1 \le f_1 \le 1$ ossia $g_2 \circ g_3 \circ g_4 \in [3^{-1},3] \Rightarrow g_3 \circ g_4 \in [9^{-1},9] \Rightarrow x \in [3^{-\frac{2}{3}},3^{\frac{2}{3}}]$. Dunque abbiamo $Dom(f_2) = [3^{-\frac{2}{3}},3^{\frac{2}{3}}]$. Im $(f_2) = [0,\pi]$ e la funzione è monotona decrescente in quanto l'arccos è monotona decrescente.

 $f_3 \equiv \sqrt{\frac{P}{Q}}$: $\frac{x^2-1}{x^2+1} \geq 0$ per $|x| \geq 1$ e quindi $Dom(f_3) = \{|x| > 1\}$. Poiché P < Q per ogni x nel dominio, risulta che $Im(f_3) \subset [0,1)$. Facciamo vedere ora che qualsiasi numero reale $y \in [0,1)$ fa parte dell'immagine della funzione. Bisogna risolvere la equazione $\frac{x^2-1}{x^2+1} = y^2$ ossia

^(1.1.2) Si può notare che come dominio di g_4 sia stato preso \mathbf{R}^+ . Qualora fosse stato preso tutto $\mathbf{R}\setminus\{0\}$ avremmo avuto $Img_4\circ g_3=\mathbf{R}\setminus\{0\}$ sarebbe stato in contrasto con la esistenza della radice ossia della funzione g_2 .

 $(1-y)x^2 = 1+y^2 \Rightarrow x^2 = \frac{1+y^2}{1-y^2}$ e quindi $x = \pm \sqrt{\frac{1+y^2}{1-y^2}}$. Per quel che riguarda la monotonia si può scrivere $f_3 = \sqrt{1-\frac{2}{x^2+1}}$ ed osservare che $\frac{1}{x^2+1}$ è monotona crescente per x < 0 e decrescente per x > 0. Dunque f_3 è monotona crescente per x > 0 e decrescente per x < 0 (fatto evidente dalla parità di f_3).

2.1.2 f_1 : È somma di due funzioni monotone crescenti e dunque è monotona crescente \Rightarrow invertibile sul dominio che è tutto \mathbf{R} .

 f_2 : non vale lo stesso discorso per via del segno meno. Si può osservare che $f_2(1) = f_2(0)$ e quindi la inversa non può esistere. Come conseguenza si ha che certamente la f_2 non è monotona in quanto se lo fosse sarebbe invertibile ma abbiamo fatto appena vedere che non è possibile. Si badi bene che in casi analoghi, ossia la differenza di due funzioni monotone crescenti o decrescenti, può essere possibile stabilire la monotonia (non esiste però una regola generale ed ogni caso va trattato singolarmente). Ad esempio si consideri la seguente somma 2x - x = x. Come nel caso in questione si è in presenza della differenza di due funzioni monotone crescenti che però danno luogo ad una funzione crescente.

 f_3 : Riscriviamo $f_3(x)=(x+1)^2-4$ e poniamo x=t-1 ottenendo $f_3(x(t))=\tilde{f}_3(t)=t^2-4$. È una funzione pari $\tilde{f}_3(t)=\tilde{f}_3(-t)$ e quindi non può essere invertibile su tutto il suo dominio in quanto i punti t=t hanno la stessa ordinata. Quello che si può fare è invertire sui sottoinsiemi $t\geq 0$ e t<0. Si ottiene $t=+\sqrt{y+4}$ per t>0 e $t=-\sqrt{y+4}$ per t<0.

- **3.1.2** 1) $\cos\arctan x = \frac{1}{\sqrt{1+x^2}}$ si ottiene osservando che $\tan\arctan x = \frac{\sin\arctan x}{\cos\arctan x} = \frac{x}{|x|} \frac{\sqrt{1-\cos^2\arctan x}}{\cos\arctan x} = x$. Detto $z \doteq \cos\arctan x$, l'equazione diventa $z^2 = \frac{1}{1+x^2}$ ossia $|z| = \frac{1}{\sqrt{1+x^2}}$ ed essendo z sempre positivo (perché?) si ha $z = \cos\arctan x = \frac{1}{\sqrt{1+x^2}}$. Ottenere $\sin\arctan x = \frac{x}{\sqrt{1+x^2}}$ è ora immediato. Basta fare $x = \frac{\sin\arctan x}{\sqrt{1-\sin^2\arctan x}}$ ossia $|\sin\arctan x| = \frac{|x|}{\sqrt{1+x^2}}$ Ora $x\sin\arctan x > 0$ per cui si ottiene il risultato.
- 2) Si applica $\sin x$ a sinistra ed a destra ottenendo $\frac{x}{\sqrt{1+x^2}}\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+x^2}}\frac{1}{x\sqrt{1+\frac{1}{x^2}}}=\frac{x|x|}{1+x^2}+\frac{|x|}{x\sqrt{1+\frac{1}{x^2}}}=\frac{|x|}{x\sqrt{1+\frac{1}{x^2}}}=\frac{|x|}{1+x^2}+\frac{|x|}{x\sqrt{1+\frac{1}{x^2}}}=\frac{|x|}{x}$ e dunque $\sin(\arctan x+\arctan\frac{1}{x})=\frac{|x|}{x}$. Essendo $\frac{|x|}{x}=\sin\frac{\pi}{2}\frac{|x|}{x}$ si ha $\arctan x+\arctan\frac{1}{x}=\frac{\pi}{2}\frac{x}{|x|}$ oppure $\arctan x+\arctan\frac{1}{x}=\pi-\frac{\pi}{2}\frac{x}{|x|}$ ma per x<0 quella con la seconda è falsa essendo $\pi-\frac{\pi}{2}\frac{x}{|x|}>\pi$ per x<0 mentre $\pi-\frac{\pi}{2}\frac{x}{|x|}$ per x>0
- 3) La prima relazione è è definita per $|x| \le 1$ ed è equivalente a $-\arccos x + \frac{\pi}{2} = \arcsin x$. Applicando $\sin x$ ad ambedue i membri si ottiene x = x per ogni valore reale. La seconda relazione è definita ugualmente per $|x| \le 1$ ed applichiamo sin a sinistra ed a destra ottenendo $\sin(\arccos\sqrt{1-x^2}) = x$. La relazione fondamentale della trigonometria ci dice che $\sin(\arccos\sqrt{1-x^2}) = +\sqrt{1-\cos(\arccos\sqrt{1-x^2})}$. Davanti alla radice vi è il segno più in quanto $\arccos\sqrt{1-x^2} \in [0,\pi]$ e quindi $\sin(\arccos\sqrt{1-x^2}) \ge 0$. Ciò vuol dire che delle due possibilità $\sin\xi = \pm\sqrt{1-\cos^2\xi}$ va presa quella con il segno più. Dunque abbiamo $x = \sqrt{1-\cos(\arccos\sqrt{1-x^2})} = \sqrt{1-(1-x^2)} = |x|$ e quest'ultima relazione è vera solo se $x \ge 0$. Se invece x < 0 la stessa sequenza di passaggi conduce (ricordando che arcsin x è una funzione dispari) a -x = |x| che è vera per x < 0.
- 4) Ambedue le relazioni sono definite per $x \in \mathbf{R}$. Per quanto riguarda la prima solo $x \in \mathbf{R}^+$ può eventualmente andar bene. Applicando il cos a sinistra ed a destra si ottiene $\frac{1-x^2}{1+x^2} = \cos 2 \arctan x = \cos^2 \arctan \sin^2 \arctan x = \frac{1}{1+x^2} \frac{x^2}{1+x^2}$ (usando l'esercizio 1)). Dunque la prima relazione è vera per ogni $x \in \mathbf{R}^+$. Se x < 0, arctan x < 0 e quindi la relazione diventa

 $\arccos \frac{1-x^2}{1+x^2} = -2 \arctan x = 2 \arctan(-x)$ che conduce allo stesso risultato.

- 5) Le relazioni hanno senso per $x \in \mathbf{R} \setminus \{0\}$. Per $x \to +\infty$ si esclude la seconda in quanto arctan x > 0. Applicando tan si ottiene x = x. Identico discorso vale per la seconda solo che bisogna ricordarsi della periodicità della tangente.
- 6) Chiaramente $y \neq \frac{1}{x}$. Se $x = \frac{1}{y}$ vale la 2). Ovvia trigonometria dà $\tan(x \pm y) = \frac{\sin(x \pm y)}{\cos(x \pm y)} = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$. Ora sia $x = x' + \pi k_x$ e $y = y' + \pi k_y$ dove $x' \in [-\frac{\pi}{2}, \frac{\pi}{2}], \ y' \in [-\frac{\pi}{2}, \frac{\pi}{2}], \ k_x \in \mathbf{Z}, \ k_y \in \mathbf{Z}; \ x' + y' \in [-\pi, \pi]$. Data la periodicità della tangente si ha $\tan(x \pm y) = \tan(x' \pm y') = \frac{\tan x' \pm \tan y'}{1 \mp \tan x' \tan y'}$. Inoltre è possibile definire $x' = \arctan a$ e $y' = \arctan b$ poiché (è essenziale) $x' \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ e $y' \in [-\frac{\pi}{2}, \frac{\pi}{2}]$. Ora possono aversi tre possibilità. Se $x' \pm y' \in [-\pi, -\frac{\pi}{2}]$ $\tan(x' \pm y') = \tan(x' \pm y' + \pi) \Rightarrow x' \pm y' + \pi = \arctan(\frac{\tan x' \pm \tan y'}{1 \mp \tan x' \tan y'})$ in quanto $x' \pm y' + \pi \in [0, \frac{\pi}{2}]$. Sostituendo ora $x' = \arctan a$ e $y' = \arctan b$ si ottiene $a \pm \arctan a \pm \arctan b + \pi = \arctan(\frac{a \pm b}{1 \mp ab})$ Se $x' \pm y' \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ allora $a \pm \arctan a \pm \arctan b \pi = \arctan(\frac{a \pm b}{1 \mp ab})$
- 7) Si può applicare l'esercizio precedente facendo le opportune corrispondenze fra i vari simboli. In questo caso si ha b=1 ed a=x. Quindi si ha $y'=\frac{\pi}{4}$ e dunque $x'+y'\in [-\frac{\pi}{4},\frac{3}{4}\pi]$. Se $x'+y'\in [\frac{\pi}{2},\frac{3}{4}\pi]$ ossia $x'\in [\frac{\pi}{4},\frac{\pi}{2}]$ allora vuol dire che a>1 e quindi la seconda delle due relazioni è vera per a>1 (nell'esercizio vi è x) ossia $\arctan x+\arctan 1=\pi+\arctan \frac{1+x}{1-x}$. Se invece $x'\in [-\frac{\pi}{2},\frac{\pi}{4}]$ allora a<1 e quindi vale $\arctan x+\arctan 1=\arctan \frac{1+x}{1-x}$.
- 8) Scrivendo la relazione come $-\frac{1}{2} \arcsin x + \frac{\pi}{4} = \arctan \sqrt{\frac{1-x}{1+x}}$ ed applicando sin a sinistra ed a destra si ottiene il risultato dopo avere osservato che la quantità $\frac{\pi}{2} \arctan \sqrt{\frac{1-x}{1+x}}$ è definita per $-1 \le x < 1$ ed appartiene a $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- 4.1.2 $y = f(x) = \arccos \cos x : Dom_f = \mathbf{R}$; è chiaramente periodica di periodo 2π e continua essendo composizione di funzioni continue. Se $0 \le x \le \pi$ la funzione vale x in quanto si compongono una funzione e la sua inversa. Se invece $\pi \le x \le 2\pi$ allora si deve fare $\cos x = \cos(2\pi x)$ dove stavolta $0 \le 2\pi x \le \pi$ e dunque posso applicare di nuovo la funzione arccos. È chiaramente sbagliato pensare che il grafico della funzione sia y = x (non è neppure periodica) in quanto la funzione arccos è quella funzione che inverte cos esclusivamente nell'intervallo $[0, \pi]$.
- $y=\arctan\tan x$ è definita per ogni x eccetto per $x=\frac{\pi}{2}+2k\pi$ ed inoltre è continua essendo composizione di due funzioni continue. Inoltre è periodica di periodo π Se $-\pi \le x \le \pi$ y=x e quindi il grafico è dato da una successione di segmenti tutti paralleli alla bisettrice del primo e terzo quadrante che intersecano l'asse delle x nei punti $x=k\pi$ con k intero.
- 5.1.2 Scriviamo la funzione come $y = \tan \arccos \frac{x|x|}{2+x^2} \doteq f_1 \circ f_2 \circ f_3(x) = f_o$ (chi sono le varie f_i è ovvio). Prima di tutto troviamo il dominio. Si verifica che $\{\xi \in \mathbf{R} : \xi = \frac{x|x|}{2+x^2}, x \in \mathbf{R}\} = (-1,1)$. La dimostrazione di questo fatto (semplice) è posposta. Poiché $\xi \in (-1,1)$ si può applicare arccos ed osservare però che se x = 0 allora il corrispondente valore di ξ vale $\frac{\pi}{2}$ e la tangente non può essere ivi applicata. Quindi alla fine $Dom(f_o) = \mathbf{R} \setminus \{0\}$.

Le seguenti osservazioni (dimostrate successivamente) consentono di restringersi a considerare $f_o|_{\mathbf{R}^+}$

1) f_o è strettamente decrescente, 2) f_o è dispari, 3) l'inversa (che esiste da 1)) è dispari pure essa

Grazie ai punti 1)-3) ci basta studiare la inversa per valori positivi di x.

 $f_3(x)$ è monotona crescente per $x \ge 0$ essendo $f_3(x) = \frac{x^2}{2+x^2} = 1 - \frac{1}{2+x^2}$ ed essendo $\frac{1}{2+x^2}$; decrescente (quindi crescente con il segno - davanti). Essendo $\{y \in \mathbf{R} \mid y = f_3(x) \mid x \ge 0\} = [0,1)$ (in altre parole l'immagine di f_3 per $x \geq 0$ è l'intervallo [0,1)). f_2 è decrescente ed inoltre ci interessa tutta e solo la parte compresa fra 0 e $\frac{\pi}{2}$. $f_2 \circ f_3$ è monotona decrescente ed anche in questo caso il grafico di $f_2 \circ f_3$ assume tutti i valori compresi fra il sup e l'inf dell'immagine ossia $\{y \in \mathbf{R} \mid y = f_2 \circ f_3(x), x \ge 0\} = (0, \frac{\pi}{2}]$. Fra 0 e $\frac{\pi}{2}$ f_3 è monotona crescente e quindi f_o è monotona decrescente; $Im(f_3)$ è l'insieme \mathbb{R}^+ . Dunque si può invertire la funzione e indichiamola con $g:(0,+\infty)\to(0,+\infty)$. È da notare come l'immagine di g non coincida esattamente con il dominio di f_o e quindi $g \circ f_o = f_o \circ g(x) \equiv x$ vale solo per $x \in (0, +\infty)$. Usando la formula 3.1.2 1), si arriva alla formula dell'inversa data da $y = \frac{2\sqrt{1+x^2}}{x^2}$ Infatti da $y = f_1 \circ f_2 \circ f_3(x)$ si ottiene $f_1^{-1}(y) = \arctan y = f_2 \circ f_3(x)$ da cui deriva $f_2^{-1} \circ f_1^{-1}(y) = \operatorname{cos}\arctan y = \frac{1}{\sqrt{1+y^2}} = f_3(x)$ e da ultimo $f_o^{-1} = f_3^{-1} \circ f_2^{-1} \circ f_1^{-1}(y) = \sqrt{\frac{2}{\sqrt{1+y^2}-1}}$. Si verifichi che tan $\arccos \frac{g(y)|g(y)|}{2+g^2(y)} = y$.

Veniamo ora alle dimostrazioni delle proprietà preannunciate prima.

 $\{\xi \in \mathbf{R} \mid \xi = \frac{x|x|}{2+x^2} \ x \in \mathbf{R}\} = (-1,1)$. Essendo $\frac{x|x|}{2+x^2}$ una funzione dispari ci basta mostrare che $\{\xi \in \mathbf{R} \mid \xi = \frac{x|x|}{2+x^2} \mid x \ge 0\} = [0,1)$ ossia bisogna dimostrare che è possibile risolvere la equazione $x^2 = 2a + ax^2$ per ogni $a \in [0,1)$. Infatti la soluzione è $x = \sqrt{\frac{2a}{1-a}}$ che è accettabile essendo il radicando positivo.

Il secondo punto da dimostrare è che f_o è dispari. Infatti f_3 è chiaramente dispari. Dunque si ha $f_2 \circ f_3(-x) = f_2(-f_3(x))$. Ora il grafico della funzione arccos ci dice che arccos(x) $\pi - \arccos(-x)$ ossia $\arccos(-x) = \pi - \arccos(x)$. Dunque $f_1(f_2(-f_3(x))) = f_1(\pi - f_2(f_3(x))) = f_1(\pi - f_2(f_3(x)))$ $f_1(-f_2(f_3(x))) = -f_1(f_2(f_3(x)))$ e quindi si ha $(f_1 \circ f_2 \circ f_3)(-x) = -(f_1 \circ f_2 \circ f_3)(x)$. Si verifichi l'applicazione del fatto che f_1 è periodica di periodo π e del fatto che è dispari.

La terza ed ultima dimostrazione da dare è costituita dalla affermazione secondo cui se una funzione invertibile è dispari allora anche l'inversa è dispari. Dunque supponiamo di avere una funzione f invertibile in un certo sottoinsieme del suo dominio e tale da verificare la proprietà f(x) = -f(-x). Sia g l'inversa; $(g \circ f)(x) = (f \circ g)(x) = x$. $-x = (g \circ f)(-x) = (g \circ (-f))(x)$. Del resto $-x = (-g \circ f)(x)$ e quindi si ha $(g \circ (-f))(x) = (-g \circ f)(x)$ ossia il risultato.

Per avere la inversa in $(-\infty,0)$ si può usare la disparità di f_o . Infatti dalla disparità di f_o si arriva alla disparità della sua inversa. Dunque si ha g(-x) = -g(x) e dunque per x < 0l'inversa è $y=-\sqrt{\frac{2}{\sqrt{1+y^2-1}}}$. La notazione unificata consente di dire che l'inversa della funzione in $\mathbf{R}^+\cup\mathbf{R}^-$ è $y=\frac{x}{|x|}\sqrt{\frac{2}{\sqrt{1+x^2-1}}}$.

in
$$\mathbf{R}^+ \cup \mathbf{R}^-$$
 è $y = \frac{x}{|x|} \sqrt{\frac{2}{\sqrt{1+x^2-1}}}$.

Alternativamente si può dire che per x<0 $f_2\in(\frac{\pi}{2},\pi)$ e quindi bisogna invertire $\tan x$ con $\frac{\pi}{2} < x < \pi$. Quando si applica $f_1^{-1}(y)$ si ottiene $\arctan y + \pi = f_2 \circ f_3(x)$ e quando si inverte f_2 si ha $-\cos\arctan y = -\frac{1}{\sqrt{1+y^2}} < 0$ per cui l'inversa di f_3 dà $-\sqrt{\frac{2}{\sqrt{1+y^2}-1}}$.

6.1.2) È ben noto che $\arccos x: [-1,1] \to [0,\pi]$, per definizione, inverte la funzione $\cos x$ solamente nell'intervallo $[0,\pi]$. È però evidente che la stessa funzione $\cos x$ è invertibile in ogni intervallo della forma $[n\pi, (n+1)\pi]$ con $n \in \mathbf{Z}$ solo che la funzione inversa è diversa in ognuno di questi intervalli. Se ad esempio $x \in [\pi, 2\pi]$ e quindi n = 1 indichiamo con $q_1(x)$ la funzione inversa in questione che sappiamo esistere. Sappiamo inoltre che $\cos x = \cos(2\pi - x) \doteq p$ solo che $2\pi - x \in [0, \pi]$. Ciò vuol dire che $q_1(p) = x = 2\pi - \arccos p$ e quindi $q_1(p) = 2\pi - \arccos(p)$. Va notato che l'uguaglianza $q_1(p) = x$ è conseguenza della definizione di q_1 mentre la seconda uguaglianza deriva dal fatto che $\arccos(\cos(2\pi - x)) = x \text{ per } x \in [\pi, 2\pi].$

Se invece $x \in [2\pi, 3\pi]$ e quindi n = 2 sia $q_2(x)$ la funzione inversa della funzione coseno. Abbiamo

```
\cos x = \cos(x - 2\pi) = p \text{ e } x - 2\pi \in [0, \pi]. Quindi q_2(p) = x = 2\pi + \arccos(p).
```

Se $x \in [3\pi, 4\pi]$ e quindi n = 3 sia $q_3(x)$ la funzione inversa della funzione coseno. Abbiamo $\cos x = \cos(4\pi - x) = p$ e $4\pi - x \in [0, \pi]$. Quindi $q_3(p) = x = 4\pi - \arccos(p)$.

Proseguendo in questo modo otteniamo che se n è pari la funzione inversa è data da $q_n(x) = n\pi - \arccos x$ mentre se n è dispari si ha $q_n(x) = (n+1)\pi + \arccos x$

Per quanto riguarda la funzione sin x si divide l'asse reale in intervalli del tipo

 $[-\frac{\pi}{2}+n\pi, \frac{\pi}{2}+n\pi] = [\frac{(2n-1)\pi}{2}, \frac{(2n+1)\pi}{2}]$ ed indichiamo con $q_n(x)$ l'inversa in ciascuno di tali sottointervalli (chiaramente $q_0(x) = \arcsin x$). Se $x \in [\frac{\pi}{2}, \frac{3}{2}\pi]$ allora n=1 ed inoltre $\sin x = \sin(\pi-x)$ dove stavolta $\pi-x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ per cui $q_1(p) = x = \pi - \arcsin(p)$.

Se n = 2 e $x \in [\frac{3}{2}\pi, \frac{5}{2}\pi]$ allora $\sin x = \sin(-2\pi + x) = p$ e quindi $q_2(p) = 2\pi + \arcsin(p)$.

Alla fine il risultato è quello dato ossia se n è dispari $q_n(x) = n\pi - \arcsin x$ mentre se n è pari $q_n(x) = n\pi + \arcsin x$.

Per quanto riguarda la funzione $\tan x$ si divide l'asse reale così come per il seno ed il risultato è che per ogni n $q_n(x) = n\pi + \arctan x$

Nel caso della funzione $\operatorname{arccot}(x)$ si divide l'asse come per la funzione coseno e $q_n(x) = n\pi + \operatorname{arccot}(x)$ per ogni n.

- **7.1.2)** Cominciamo da $f(A \cup B) = f(A) \cup f(B)$. Dobbiamo far vedere che $f(A \cup B) \subset f(A) \cup f(B)$ e che $f(A \cup B) \supset f(A) \cup f(B)$.
- $\subset: f(A \cup B) \doteq \{y \in Y \mid y = f(x) \land x \in A \cup B\}$ e quindi la x sta in A oppure in B od in tutti e due se la loro intersezione è non nulla. Se $x \in A$ allora $f(x) \in f(A)$ e quindi $f(x) \in f(A) \cup f(B)$, Se $x \in B$ allora $f(x) \in f(B)$ ed analogamente $f(x) \in f(A) \cup f(B)$. Se $A \cap B \neq \emptyset$ e $x \in A \cap B$ allora $x \in A$ (oppure B) e quindi $f(x) \in f(A)$.
- \supset : Sia $y \in f(A) \cup f(B)$ ossia $y \in \{y \in Y \mid y = f(x) \land x \in A\} \cup \{y \in Y \mid y = f(x) \land x \in B\}$. Essendo x appartenente tanto ad A che a B ne segue che appartiene alla loro intersezione e quindi $x \in A \cup B$ da cui il risultato.

Vediamo ora $f(A \cap B) \subset f(A) \cap f(B)$. $f(A \cap B) = \{y \in Y \mid y = f(x) \land x \in A \cap B\}$ e quindi $x \in A$ da cui $f(x) \subset f(A)$. Del resto $x \in B$ ugualmente per cui $f(x) \subset f(B)$ e quindi f(x) deve stare anche in $f(A) \cap f(B)$.

Ora dimostriamo che $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$. Dobbiamo far vedere che $f^{-1}(C \cup D) \subset f^{-1}(C) \cup f^{-1}(D)$ e che $f^{-1}(C \cup D) \supset f^{-1}(C) \cup f^{-1}(D)$.

- \subset : $f^{-1}(C \cup D) = \{x \in X \mid f(x) \in C \cup D\}$ e quindi $f(x) \in C \vee f(x) \in D$. Di conseguenza $x \in f^{-1}(C) \vee x \in f^{-1}(D)$ ossia $x \in f^{-1}(C) \cup f^{-1}(D)$.
- ⊃: $f^{-1}(C) \cup f^{-1}(D) = \{x \in X \mid f(x) \in C\} \cup x \in X \mid f(x) \in D\}$; ciascuno dei due insiemi $\{x \in X \mid f(x) \in C\}$ e $\{x \in X \mid f(x) \in D\}$ è sottoinsieme di $\{x \in X \mid f(x) \in C \cup D\}$ per cui $f^{-1}(C) \cup f^{-1}(D) \subset f^{-1}(C \cup D)$

Da ultimo è rimasto $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$. Dobbiamo far vedere che $f^{-1}(C \cap D) \subset f^{-1}(C) \cap f^{-1}(D)$ e che $f^{-1}(C \cap D) \supset f^{-1}(C) \cap f^{-1}(D)$.

- $\subset: f^{-1}(C \cap D) = \{x \in X \mid f(x) \in C \cap D\}$ e quindi $f^{-1}(C \cap D) \subset f^{-1}(C)$ e $f^{-1}(C \cap D) \subset f^{-1}(D)$ e quindi della loro intersezione da cui la tesi
- ⊃: $f^{-1}(C) \cap f^{-1}(D) = \{x \in X \mid f(x) \in C\} \cap \{x \in X \mid f(x) \in D\}$ e quindi $f(x) \in C \cap D$ da cui la tesi.
- **8.1.2)** Una funzione del tipo $(P(x))^{\ln(Q(x))}$ è certamente definita quando P(x) > 0 e Q(x) > 0. Dunque si deve avere: x > 0 a causa del logaritmo, $x^2 x 2 > 0$ ossia $x < -1 \lor x > 2$. L'intersezione dei due insiemi dà x > 2. x = 2 va scartato poiché darebbe 0^0 . D'altro canto se $\ln \frac{x}{2} = \frac{p}{q}$ con q dispari e (p,q) = 1 allora la base può essere negativa. Da ciò segue il risultato.