Scritto di CAM1

Anno Accademico 2012/13

1) a) Provare che gli insieme E e F definiti qui sotto sono boreliani.

$$E = \{(x, y) \in \mathbf{R}^2 : x^2 \le y < 3x^2\},\$$

13/09/2013

$$F = \{(x,y) \in \mathbf{R}^2 : \exists n \in \mathbf{Z} : x + n \le y < x + n + \frac{1}{5} \}.$$

- b) Sia f definita da $f(x) = \begin{cases} x+4 \text{ se } x<1 \\ 5x^2 \text{ altrimenti} \end{cases}$. Dire se f è A.C. su [0,2] e se f è B.V. su [0,2].
- c) Sia g una funzione da [4,5] in \mathbf{R} tale che per ogni intervallo aperto]a,b[con a < b contenuto in [4,5] si abbia $g(]a,b[) = \mathbf{Q} \cap [1,2[$. Provare che g non è B.V. in [4,5].
- d) Determinare una funzione g come in c).
- **2)** a) Calcolare, se esiste, $\lim_{n \to +\infty} \int_{\frac{5}{4}}^{2} \frac{nx}{nx + \sin(nx)} dx$.
- b) Sia $A = \{(x,y) \in \mathbf{R}^2 : x \ge 1, 0 \le y \le \frac{1}{x}\}$. Dire per quali $\alpha > 0$ la funzione f definita da $f(x,y) = y^2 x^{\alpha}$ appartiene a $L^4(A)$.
- da $f(x,y) = y^2 x^{\alpha}$ appartiene a $L^4(A)$. c) Calcolare, se esiste, $\lim_{n \to +\infty} \int_A \frac{2ny^3}{ny^2 + x + 1} \, dx \, dy$, ove A è come in b).
- d) Sia $B_n = \{ (\rho \cos(t), \rho \sin(t)) : \rho \in [2, 3], t \in [n\alpha, (n+1)\alpha] \}$, ove $\alpha = \frac{\pi}{153\sqrt{2}}$. Calcolare, se esiste, $\lim_{n \to +\infty} \int_{B_n} \frac{x}{1 + \sin^2(nxy)} dx dy$.
- 3) Sia $C = \{0\} \times \mathbf{R}$ e sia μ una misura definita sui boreliani di \mathbf{R}^2 tale che $\mu(C) = 0$.
- a) Provare che se μ è finita, allora per ogni $\varepsilon > 0$ esiste U aperto di \mathbf{R}^2 contenente C tale che $\mu(U) < \varepsilon$.
- b) Provare che se per ogni $n \in \mathbf{Z}$ esiste $\delta_n > 0$ tale che $\mu([-\delta_n, \delta_n] \times [n, n+1]) < +\infty$, allora per ogni $\varepsilon > 0$ esiste U aperto di \mathbf{R}^2 contenente C tale che $\mu(U) < \varepsilon$.

Scritto di CAM1 Anno Accademico 2012/13

13/09/2013

1) a) Provare che gli insieme E e F definiti qui sotto sono boreliani.

$$E = \{(x, y) \in \mathbf{R}^2 : x + 7 < y \le x + 8\},\$$

$$F = \{(x, y) \in \mathbf{R}^2 : \exists n \in \mathbf{Z} : x^2 + n < y \le x^2 + n + \frac{1}{3} \}.$$

- b) Sia f definita da $f(x) = \begin{cases} x+6 \text{ se } x<3 \\ x^2 \text{ altrimenti} \end{cases}$. Dire se f è A.C. su [2,4] e se f è B.V. su
- c) Sia g una funzione da [2,3] in ${\bf R}$ tale che per ogni intervallo aperto [a,b] con a < bcontenuto in [2,3] si abbia $g(|a,b|) = \mathbf{Q} \cap [6,7[$. Provare che g non è B.V. in [2,3].
- d) Determinare una funzione g come in c).
- **2)** a) Calcolare, se esiste, $\lim_{n \to +\infty} \int_{s}^{z} \frac{nx^2}{nx^2 + \cos(nx)} dx$.
- b) Sia $A = \{(x,y) \in \mathbf{R}^2 : x \ge 1, 0 \le y \le \frac{1}{x}\}$. Dire per quali $\alpha > 0$ la funzione f definita da $f(x,y) = y^{\alpha}\sqrt{x}$ appartiene a $L^5(A)$.
 c) Calcolare, se esiste, $\lim_{n \to +\infty} \int\limits_A \frac{4ny^7}{ny^5 + x^2 + 1} \, dx \, dy$, ove A è come in b).
- d) Sia $B_n = \{ (\rho \cos(t), \rho \sin(t))^A : \rho \in [2, 3], t \in [n\alpha, (n+1)\alpha] \}$, ove $\alpha = \frac{\pi}{138\sqrt{3}}$. Calcolare, se esiste, $\lim_{n \to +\infty} \int_{R} \frac{x^3}{2 + \cos^2(nxy)} dx dy$.
- 3) Sia $C = \mathbf{R} \times \{0\}$ e sia μ una misura definita sui boreliani di \mathbf{R}^2 tale che $\mu(C) = 0$.
- a) Provare che se μ è finita, allora per ogni $\varepsilon > 0$ esiste U aperto di \mathbf{R}^2 contenente C tale
- b) Provare che se per ogni $n \in \mathbf{Z}$ esiste $\delta_n > 0$ tale che $\mu([n, n+1] \times [-\delta_n, \delta_n]) < +\infty$, allora per ogni $\varepsilon > 0$ esiste U aperto di \mathbf{R}^2 contenente C tale che $\mu(U) < \varepsilon$.

Scritto di CAM1 Anno Accademico 2012/13

1) a) Dire se la funzione $f: \mathbf{R} \to \mathbf{R}$ definita da $f(x) = \frac{e^{x^2}}{x-3}$ è A.C. su [1,2] e se è B.V. su [1,2].

11/07/2013

b) Sia u una funzione misurabile da \mathbf{R} in \mathbf{R} . Sia v la funzione definita da $v(x) = \int_{0}^{x} \cos(u(t)) dt$. Dire se v è sempre A.C. su [1,4].

c) Sia s una funzione da [0,1] in \mathbf{R} continua in 0 e tale che s è monotona su $\left[\frac{1}{n+1},\frac{1}{n}\right]$ per ogni n=1,2,3,.... Provare che s è B.V. su [0,1] se e solo se la serie $\sum_{n=1}^{\infty}\left|s\left(\frac{1}{n+1}\right)-s\left(\frac{1}{n}\right)\right|$ è convergente.

2) a) Dire per quali p ≥ 1 la funzione g definita da g(x) = ½ è in L^p([1,4] ∪ [7,+∞[) e per quali p ≥ 1 è in L^p(A), ove A = ∪ [n, n + ½].
b) Indichiamo con B_r(z) la palla aperta in R² di centro z ∈ R² e raggio r per ogni r > 0

b) Indichiamo con $B_r(z)$ la palla aperta in \mathbf{R}^2 di centro $z \in \mathbf{R}^2$ e raggio r per ogni r > 0 e poniamo $B_r := B_r(0)$. Calcolare, se esiste, $\lim_{n \to +\infty} \int_{B_1 \setminus \overline{B_{1-\frac{1}{n}}}} \frac{xy}{|x| + |y| + 4} dx dy$.

c) Calcolare, se esiste, $\lim_{n \to +\infty} \int \frac{1}{(x^2 + y^2)^{10} + 3} dx dy$. $\bigcup_{k=n}^{n^2} B_{\frac{1}{k}}(k,k)$

d) Dire se esistono, $\alpha_n > 0$ tali che $\bigcup_{k=n}^{n^2} B_{\alpha_k}(k,k) = e^{x^2 y^4} dx dy \underset{n \to +\infty}{\longrightarrow} 0.$

3) Siano μ e ν due misure di Radon definite sui boreliani di \mathbf{R}^2 e supponiamo inoltre $\nu(\mathbf{R}^2) = 1$ e $\mu([0,1] \times [0,1]) = 1$.

a) Provare che se esiste $\bar{r} > 0$ tale che $\mu(A+v) = \mu(A)$ per ogni $v \in \mathbf{R}^2$ con $||v|| > \bar{r}$ e per ogni A boreliano di \mathbf{R}^2 , allora μ coincide con la misura di Lebesgue.

b) Provare che se per ogni A boreliano di \mathbf{R}^2 esiste $\bar{r} > 0$ tale che $\mu(A + v) = \mu(A)$ per ogni $v \in \mathbf{R}^2$ con $||v|| > \bar{r}$, allora μ coincide con la misura di Lebesgue.

c) Provare che se esiste $\bar{s} > 0$ tale che per ogni A boreliano di \mathbf{R}^2 e per ogni s tale che $0 < s < \bar{s}$ l'insieme

$$C_A := \{ v \in B_s : \mu(A+v) = \mu(A) \}$$

soddisfa $\nu(C_A) > \frac{1}{2}\nu(B_s)$, allora μ coincide con la misura di Lebesgue.

Scritto di CAM1 Anno Accademico 2012/13 11/07/2013

- 1) a) Dire se la funzione $f: \mathbf{R} \to \mathbf{R}$ definita da $f(x) = \frac{\sin(e^x)}{x-7}$ è A.C. su [1,3] e se è B.V.
- b) Sia u una funzione misurabile da \mathbf{R} in \mathbf{R} . Sia v la funzione definita da v(x)= $\int_{0}^{\infty} \sin(u(t)) dt$. Dire se v è sempre A.C. su [1, 4].
- c) Sia s una funzione da [0,1] in **R** continua in 0 e tale che s è monotona su $\left[\frac{1}{n+1},\frac{1}{n}\right]$ per ogni $n = 1, 2, 3, \dots$ Provare che s è B.V. su [0, 1] se e solo se la serie $\sum_{n=1}^{\infty} \left| s(\frac{1}{n+1}) - s(\frac{1}{n}) \right|$ è convergente.
- 2) a) Dire per quali $p \ge 1$ la funzione g definita da $g(x) = \frac{1}{x}$ è in $L^p([1,3] \cup [97,+\infty[)$ e
- 2) a) Dire per quali $p \ge 1$ la runzione g per quali $p \ge 1$ è in $L^p(A)$, ove $A = \bigcup_{n=1}^{+\infty} [n, n+\frac{1}{3}]$.
 b) Indichiamo con $B_r(z)$ la palla aperta in \mathbf{R}^2 di centro $z \in \mathbf{R}^2$ e raggio r per ogni r > 0 e poniamo $B_r := B_r(0)$. Calcolare, se esiste, $\lim_{n \to +\infty} \int_{B_1 \setminus \overline{B_{1-\frac{1}{n}}}} \frac{x+2y}{|x|+|y|+4} \, dx \, dy$.
- c) Calcolare, se esiste, $\lim_{n \to +\infty} \int \frac{1}{(x^2 + y^2)^{14} + 5} dx dy$. $\bigcup_{k=n}^{n^2} B_{\frac{1}{k}}(k,k)$
- d) Dire se esistono, $\alpha_n > 0$ tali che $\int_{\mathbb{C}^n} e^{x^2 y^4} dx dy \underset{n \to +\infty}{\longrightarrow} 0.$ $\bigcup_{k=n}^{n^2} B_{\alpha_k}(k,k)$
- 3) Siano μ e ν due misure di Radon definite sui boreliani di ${\bf R}^2$ e supponiamo inoltre $\nu(\mathbf{R}^2) = 1 \ \mathrm{e} \ \mu([0,1] \times [0,1]) = 1.$
- a) Provare che se esiste $\bar{r} > 0$ tale che $\mu(A+v) = \mu(A)$ per ogni $v \in \mathbf{R}^2$ con $||v|| > \bar{r}$ e per ogni A boreliano di \mathbb{R}^2 , allora μ coincide con la misura di Lebesgue.
- b) Provare che se per ogni A boreliano di \mathbf{R}^2 esiste $\bar{r} > 0$ tale che $\mu(A+v) = \mu(A)$ per ogni $v \in \mathbf{R}^2$ con $||v|| > \bar{r}$, allora μ coincide con la misura di Lebesgue.
- c) Provare che se esiste $\bar{s} > 0$ tale che per ogni A boreliano di \mathbf{R}^2 e per ogni s tale che $0 < s < \bar{s}$ l'insieme

$$C_A := \{ v \in B_s : \mu(A+v) = \mu(A) \}$$

soddisfa $\nu(C_A) > \frac{1}{2}\nu(B_s)$, allora μ coincide con la misura di Lebesgue.

Scritto di CAM1 Anno Accademico 2012/13

13/02/2013

1) a) Provare che la funzione $f: \mathbf{R} \to \mathbf{R}$ definita da $f(x) = \ln\left(\sin\left(\frac{1}{10}x\right)\right) - \ln(x)$ è A.C.

b) Dire se esiste finito il limite $\lim_{a\to 0^+} V_a^3(f)$.

2) a) Data g definita da $g(x,y) = \frac{x^2}{y}$, dire per quali p > 1 $g \in L^p(B)$ ove B è la palla aperta centrata in (8, 10) di raggio 1.

b) Data g come in a), dire per quali p > 1 $g \in L^p(C)$, ove

$$C =: \{(x,y) \in [0,1] \times [0,3] : y > 1 - (x-1)^2 \}.$$

c) Sia $D = \{(x,y) \in \mathbf{R}^2 : x \ge 2, y \ge 2, x + 2y \le 8\}$. Calcolare, se esiste

$$\lim_{n \to +\infty} \int_{D} e^{\frac{(x+2y)^2}{n}} dx dy.$$

d) Calcolare, se esiste

$$\lim_{n \to +\infty} \int_{D} \frac{1}{n} \frac{1}{(x-20)^2 + (y-20)^2 - \cos^2(n)} \, dx \, dy.$$

e) Calcolare, se esiste

$$\lim_{n \to +\infty} \int_{D} n \left(e^{\frac{(x+y)^2}{n}} - 1 \right) dx \, dy.$$

3) Sia (X, \mathcal{A}, μ) uno spazio di misura, e sia $w: X \to \mathbf{R}$ misurabile.

a) Supponiamo $\mu(X) < +\infty$. Provare che per ogni d > 0 l'insieme $\left\{ t \in \mathbf{R} | \mu(w^{-1}(\{t\})) > d \right\}$ è finito (eventualmente vuoto).
b) Provare che se (X, \mathcal{A}, μ) è uno spazio di misura σ -finita, allora l'insieme H_w definito da $H_w := \left\{ t \in \mathbf{R} | \mu(w^{-1}(\{t\})) > 0 \right\}$ è finito o numerabile.

c) Supponiamo $X=\mathbf{R}^N,\,N=1,2,3,....,\,\mathcal{A}$ sia la σ -algebra dei boreliani di $\mathbf{R}^N,$ e μ sia la misura di Lebesgue. Sia G un qualunque sottoinsieme numerabile di ${\bf R}$. Provare che esiste una funzione continua $w: X \to \mathbf{R}$ tale che l'insieme H_w definito in b) coincide con G.

Anno Accademico 2012/13 13/02/2013

1) a) Provare che la funzione $f: \mathbf{R} \to \mathbf{R}$ definita da $f(x) = \ln\left(\sin\left(\frac{1}{11}x\right)\right) - \ln(x)$ è A.C.

b) Dire se esiste finito il limite $\lim_{a\to 0^+} V_a^2(f)$.

2) a) Data g definita da $g(x,y)=\frac{x^2}{y}$, dire per quali p>1 $g\in L^p(B)$ ove B è la palla aperta centrata in (9,11) di raggio 1.

b) Data g come in a), dire per quali p > 1 $g \in L^p(C)$, ove

$$C =: \{(x,y) \in [0,1] \times [0,4] : y > 1 - (x-1)^2 \}.$$

c) Sia $D = \{(x,y) \in \mathbf{R}^2 : x \ge 2, y \ge 2, 3x + y \le 10\}$. Calcolare, se esiste

$$\lim_{n \to +\infty} \int_{D} e^{\frac{(3x+y)^2}{n}} dx dy.$$

d) Calcolare, se esiste

$$\lim_{n \to +\infty} \int_{D} \frac{1}{n} \frac{1}{(x-20)^2 + (y-20)^2 - \sin^2(n)} \, dx \, dy.$$

e) Calcolare, se esiste

$$\lim_{n \to +\infty} \int_{D} n \left(e^{\frac{(x+y)^2}{n}} - 1 \right) dx dy.$$

3) Sia (X, \mathcal{A}, μ) uno spazio di misura, e sia $w: X \to \mathbf{R}$ misurabile.

a) Supponiamo $\mu(X) < +\infty$. Provare che per ogni d > 0 l'insieme

 $\left\{t \in \mathbf{R} | \mu(w^{-1}(\{t\})) > d\right\} \text{ è finito (eventualmente vuoto)}.$ b) Provare che se (X, \mathcal{A}, μ) è uno spazio di misura σ -finita, allora l'insieme H_w definito da $H_w := \left\{t \in \mathbf{R} | \mu(w^{-1}(\{t\})) > 0\right\}$ è finito o numerabile.

c) Supponiamo $X = \mathbb{R}^N$, N = 1, 2, 3, ..., A sia la σ -algebra dei boreliani di \mathbb{R}^N , e μ sia la misura di Lebesgue. Sia G un qualunque sottoinsieme numerabile di ${\bf R}$. Provare che esiste una funzione continua $w: X \to \mathbf{R}$ tale che l'insieme H_w definito in b) coincide con G.

Scritto di CAM1 Anno Accademico 2012/13 25/01/2013

- 1) Sia $A = \{(x,y) \in \mathbf{R}^2 : 2 \le x \le 3\}$ e sia $C_{v,r} = \{(x,y) \in \mathbf{R}^2 : r < ||(x,y) v|| < r + 3\}$ ove $v \in \mathbf{R}^2$ e r > 0.
- a) Provare che $A \cap C_{v,r}$ è un boreliano di misura di Lebesgue finita per ogni $v \in \mathbf{R}^2$ e
- b) Dire se esiste H > 0 tale che $m_2(A \cap C_{v,r}) \leq H$ per ogni $v \in \mathbb{R}^2$ e r > 0.
- 2) a) Calcolare, se esiste $\lim_{n \to +\infty} \int \frac{nx^2}{ny^{\frac{5}{4}} + 3} dx dy$. b) Calcolare, se esiste $\lim_{n \to +\infty} \int \frac{nx^2}{ny^{\frac{5}{4}} + 3} dx dy$.
- c) Calcolare, se esiste $\lim_{n \to +\infty} \int_{[0,\frac{1}{n}] \times [7,n+7]} \frac{n^2 x^2}{n^2 y^{\frac{5}{4}} + 3} dx dy$. d) Calcolare, se esiste $\lim_{n \to +\infty} \int_{[0,\frac{1}{n}] \times [0,n]} \frac{n x^2}{n y^{\frac{5}{4}} + 3} dx dy$.
- 3) a) Dire se la funzione f definita da $f(x) = |x^4 2|$ è B.V. su [-3, 3], e calcolare $V_{-3}^3(f)$.
- b) Provare che se (X, \mathcal{A}, μ) è uno spazio di misura con $\mu(X) = 3$ e $A_1, A_2, A_3 \in \mathcal{A}$ e $\mu(A_1) + \mu(A_2) + \mu(A_3) > 6$, allora $A_1 \cap A_3 \neq \emptyset$.
- c) Provare (piú generalmente) che se (X, \mathcal{A}, μ) è uno spazio di misura finita e A_i , i =
- 1,...,k sono k elementi di \mathcal{A} con k intero positivo, e $\sum_{i=1}^{k} \mu(A_i) > (n-1)\mu(X)$, allora esistono n elementi $A_{i_1},...,A_{i_n}$ con gli indici i_j tutti diversi tra loro tali che $\bigcap_{i=1}^n A_{i_j} \neq \emptyset$.
- Suggerimento: Si consiglia di considerare gli insiemi $\left(\bigcap_{i\in I}A_i\right)\cap\left(\bigcap_{i\notin I}A_i^c\right)$ ove A^c indica il
- complementare di A e I è un sottoinsieme di $\{1,...,k\}$, e poi unire bene tali insiemi.
- d) Provare che se g è una funzione continua da [2,3] in \mathbb{R} , limitata ma non B.V. allora esiste un numero reale a tale che l'equazione q(x) = a ha almeno 950 soluzioni.

Scritto di CAM1 Anno Accademico 2012/13 25/01/2013

- 1) Sia $A = \{(x,y) \in \mathbf{R}^2 : 5 \le x \le 6\}$ e sia $C_{v,r} = \{(x,y) \in \mathbf{R}^2 : r < ||(x,y) v|| < r + 3\}$ ove $v \in \mathbf{R}^2$ e r > 0.
- a) Provare che $A \cap C_{v,r}$ è un boreliano di misura di Lebesgue finita per ogni $v \in \mathbf{R}^2$ e
- b) Dire se esiste H > 0 tale che $m_2(A \cap C_{v,r}) \leq H$ per ogni $v \in \mathbb{R}^2$ e r > 0.
- 2) a) Calcolare, se esiste $\lim_{n \to +\infty} \int \frac{nx^2}{ny^{\frac{7}{6}} + 2} dx dy$. b) Calcolare, se esiste $\lim_{n \to +\infty} \int \frac{nx^2}{ny^{\frac{7}{6}} + 2} dx dy$.
- c) Calcolare, se esiste $\lim_{n \to +\infty} \int_{[0,\frac{1}{n}] \times [5,n+5]} \frac{n^2 x^2}{n^2 y^{\frac{7}{6}} + 2} dx dy$. d) Calcolare, se esiste $\lim_{n \to +\infty} \int_{[0,\frac{1}{n}] \times [0,n]} \frac{n x^2}{n y^{\frac{7}{6}} + 2} dx dy$.
- 3) a) Dire se la funzione f definita da $f(x) = |x^6 2|$ è B.V. su [-3, 3], e calcolare $V_{-3}^3(f)$.
- b) Provare che se (X, \mathcal{A}, μ) è uno spazio di misura con $\mu(X) = 4$ e $A_1, A_2, A_3 \in \mathcal{A}$ e $\mu(A_1) + \mu(A_2) + \mu(A_3) > 8$, allora $A_1 \cap A_3 \neq \emptyset$.
- c) Provare (piú generalmente) che se (X, \mathcal{A}, μ) è uno spazio di misura finita e A_i , i =
- 1,...,k sono k elementi di \mathcal{A} con k intero positivo, e $\sum_{i=1}^{k} \mu(A_i) > (n-1)\mu(X)$, allora esistono n elementi $A_{i_1},...,A_{i_n}$ con gli indici i_j tutti diversi tra loro tali che $\bigcap_{i=1}^n A_{i_j} \neq \emptyset$.
- Suggerimento: Si consiglia di considerare gli insiemi $\left(\bigcap_{i\in I}A_i\right)\cap\left(\bigcap_{i\notin I}A_i^c\right)$ ove A^c indica il
- complementare di A e I è un sottoinsieme di $\{1,...,k\}$, e poi unire bene tali insiemi.
- d) Provare che se g è una funzione continua da [5,6] in ${\bf R},$ limitata ma non B.V. allora esiste un numero reale a tale che l'equazione q(x) = a ha almeno 950 soluzioni.

Secondo esonero di CAM1 Anno Accademico 2012/13 21/12/2012

NOME:	COGNOME:

- 1) Sia f la funzione periodica di periodo 2 tale che f(x) = 2|x| + 5 per ogni $x \in [-1, 1]$.
- a) Provare che $f \in A.C.$ in $[0, \frac{1}{4}]$.
- b) Dire se f è B.V. in [-a, a] e se f è A.C. in [-a, a], al variare di a > 0
- c) Provare che se $g: \mathbf{R} \to \mathbf{R}$ è periodica di periodo 5 e non costante, allora, posto $g_n(x) = g(nx)$, si ha $V_0^1(g_n) \underset{n \to +\infty}{\longrightarrow} +\infty$. Nota: non si suppone a priori g continua, né g B.V.
- 2) a) Dire per quali $\alpha > 0$ la funzione h_{α} definita da $h_{\alpha}(x,y) = |x|^{-\alpha}$ appartiene a $L^{2}(B)$ ove $B = [1,2] \times [4,8] \cup ([-20,20] \times \{0\})$.
- b) Dire per quali $\alpha > 0$ la funzione h_{α} definita sopra appartiene a $L^{2}(C)$ ove $C = \left(\left[-\frac{1}{10}, \frac{1}{10}\right] \times [0, 1]\right) \setminus B_{1}(0, 1)$, ove ovviamente $B_{1}(0, 1)$ denota la palla (aperta) centrata in (0, 1) di raggio 1.
- 3) Diciamo che un boreliano A di [2,3[è 1-largo se ogni funzione continua su [2,3[a valori in $[0,+\infty[$ sommabile su A è anche sommabile su [2,3[, e che un boreliano A di [2,3[è debolmente 1-largo se ogni funzione continua e crescente su [2,3[a valori in $[0,+\infty[$ sommabile su A è anche sommabile su [2,3[.
- a) Provare che ogni intervallo della forma $a, 3 con a \in [2, 3]$ è 1-largo.
- b) Provare che se A è 1-largo, allora esiste $a \in]2,3[$ tale che l'insieme $]a,3[\setminus A$ ha misura di Lebesgue nulla.
- c) Dire se esiste $A \subseteq [2, 3[$ tale che sia A sia $[2, 3[\setminus A$ sono debolmente 1-larghi.

Secondo esonero di CAM1 Anno Accademico 2012/13 21/12/2012

NOME: COGNOME:

- 1) Sia f la funzione periodica di periodo 2 tale che f(x) = 4|x| + 3 per ogni $x \in [-1, 1]$.
- a) Provare che $f \in A.C.$ in $[0, \frac{1}{4}]$.
- b) Dire se f è B.V. in [-a, a] e se f è A.C. in [-a, a], al variare di a > 0
- c) Provare che se $g: \mathbf{R} \to \mathbf{R}$ è periodica di periodo 5 e non costante, allora, posto $g_n(x) = g(nx)$, si ha $V_0^1(g_n) \underset{n \to +\infty}{\longrightarrow} +\infty$. Nota: non si suppone a priori g continua, né g B.V.
- 2) a) Dire per quali $\alpha > 0$ la funzione h_{α} definita da $h_{\alpha}(x,y) = |x|^{-\alpha}$ appartiene a $L^{2}(B)$ ove $B = [3, 6] \times [2, 5] \cup ([-12, 26] \times \{0\})$.
- b) Dire per quali $\alpha > 0$ la funzione h_{α} definita sopra appartiene a $L^2(C)$ ove $C = \left(\left[-\frac{1}{10}, \frac{1}{10}\right] \times [0, 1]\right) \setminus B_2(0, 2)$, ove ovviamente $B_2(0, 2)$ denota la palla (aperta) centrata in (0, 2) di raggio 2.
- 3) Diciamo che un boreliano A di [2,3[è 1-largo se ogni funzione continua su [2,3[a valori in $[0,+\infty[$ sommabile su A è anche sommabile su [2,3[, e che un boreliano A di [2,3[è debolmente 1-largo se ogni funzione continua e crescente su [2,3[a valori in $[0,+\infty[$ sommabile su A è anche sommabile su [2,3[.
- a) Provare che ogni intervallo della forma $a, 3 \in [2, 3]$ è 1-largo.
- b) Provare che se A è 1-largo, allora esiste $a \in]2,3[$ tale che l'insieme $]a,3[\setminus A$ ha misura di Lebesgue nulla.
- c) Dire se esiste $A \subseteq [2, 3[$ tale che sia A sia $[2, 3[\setminus A$ sono debolmente 1-larghi.

Esonero di CAM1

Anno Accademico 2012/13 19/11/2012

NOME:

COGNOME:

1) Siano $A \in B_d$, $d \in \mathbf{R}$, insiemi definiti da

$$A = \{(x, y) \in \mathbf{R}^2 : y < \cos(x)\}; \quad B_d = \{(x, y) \in A : y \ge x^6 - d\}.$$

- a) Provare che A e B_d (per qualunque $d \in \mathbf{R}$) sono boreliani.
- b) Dire se A ha misura finita, e per quali $d \in \mathbf{R}$ B_d ha misura positiva (ossia > 0).
- **2)** Siano f_n definite da $f_n(x) = \frac{7n^{x+1} + 1}{n^{3x} + 1}$.
- a) Provare che la successione di integrali $\int_4^5 f_n dm_1$ è convergente.
- b) Provare che per ogni $u: \mathbf{R} \to \mathbf{R}$ continua la successione di integrali $\int_4^5 u \circ f_n \, dm_1$ è convergente.
- c) Dire se la successione $\int_0^1 f_n dm_1$ è convergente.
- 3) Sia $A = [4, 5] \times [6, 7]$. Sia data una misura μ definita sui boreliani di A tale che i) $\mu(A) = 1$.
 - ii) $\mu(\{P\}) = 0$ per ogni $P \in A$.
- a) Posto $B_n = \left\{ (x, y) \in \mathbf{R}^2 : (x, y) = (4 + t, 6 + t), t \in \left[0, \frac{1}{n}\right] \right\}$, provare che $\mu(B_n) \underset{n \to +\infty}{\longrightarrow} 0$
- b) Provare che esiste c > 0 tale che per ogni $\eta \in]0, \frac{1}{2}[$ esiste un quadrato Q_{η} della forma $Q_{\eta} := [a, a + \eta] \times [b, b + \eta]$ contenuto in A tale che $\mu(Q_{\eta}) \geq c\eta^2$.
- c) Provare che, per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che se D è un boreliano di A di diametro minore di δ , allora $\mu(D) < \varepsilon$. Ovviamente il diametro è inteso rispetto alla metrica euclidea.

Esonero di CAM1

Anno Accademico 2012/13 19/11/2012

NOME:

COGNOME:

1) Siano $A \in B_d$, $d \in \mathbf{R}$, insiemi definiti da

$$A = \{(x, y) \in \mathbf{R}^2 : y < \cos(x)\}; \quad B_d = \{(x, y) \in A : y \ge 3x^4 - d\}.$$

- a) Provare che A e B_d (per qualunque $d \in \mathbf{R}$) sono boreliani.
- b) Dire se A ha misura finita, e per quali $d \in \mathbf{R}$ B_d ha misura positiva (ossia > 0).
- **2)** Siano f_n definite da $f_n(x) = \frac{4n^{x+2} + 1}{n^{4x} + 1}$.
- a) Provare che la successione di integrali $\int_3^4 f_n dm_1$ è convergente.
- b) Provare che per ogni $u: \mathbf{R} \to \mathbf{R}$ continua la successione di integrali $\int_3^4 u \circ f_n \, dm_1$ è convergente.
- c) Dire se la successione $\int_0^1 f_n dm_1$ è convergente.
- 3) Sia $A = [8, 9] \times [2, 3]$. Sia data una misura μ definita sui boreliani di A tale che i) $\mu(A) = 1$.
 - ii) $\mu(\{P\}) = 0$ per ogni $P \in A$.
- a) Posto $B_n = \left\{ (x, y) \in \mathbf{R}^2 : (x, y) = (8 + t, 3 t), t \in \left[0, \frac{1}{n}\right] \right\}$, provare che $\mu(B_n) \underset{n \to +\infty}{\longrightarrow} 0$
- b) Provare che esiste c > 0 tale che per ogni $\eta \in]0, \frac{1}{2}[$ esiste un quadrato Q_{η} della forma $Q_{\eta} := [a, a + \eta] \times [b, b + \eta]$ contenuto in A tale che $\mu(Q_{\eta}) \geq c\eta^2$.
- c) Provare che, per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che se D è un boreliano di A di diametro minore di δ , allora $\mu(D) < \varepsilon$. Ovviamente il diametro è inteso rispetto alla metrica euclidea.