- 1. Determinare $\lim_{x\to 0^+} \frac{x^{\alpha}}{f(x)}$, $\alpha \in \mathbf{R}$, e $\lim_{x\to 0^-} \frac{x^{\alpha}}{f(x)}$, $\alpha \in \mathbf{N}$, quando f è una delle seguenti funzioni: $f(x) = \ln(1-8x^2) \cos(4x) + 1$, $f(x) = \ln\left(\frac{\sin(x)}{x}\right)$, $f(x) = \ln\left(\frac{\sin(x)}{x}\right) \ln\left(\frac{\tan(x)}{x}\right)$, $f(x) = \sin\left(x\sin(e^x 1)\right) x^2$.
- **2.** Calcolare la derivata della funzione f definita da $f(x) = |x^2 + |3x 1||$.
- **3.** Calcolare la derivata delle funzioni f definite da $f(x) = \int_{0}^{x} e^{-t^2} dt$, $f(x) = \int_{0}^{\sin(x)} e^{-t^2} dt$,

$$f(x) = \int_{x}^{\sin(x)} e^{-t^2} dt.$$

- **4.** Dire per quali numeri reali a la funzione f definita da $f(x) = |\sin(x) ax|$ è derivabile in 0. Provare inoltre che se $|a| \ge 1$ f è derivabile in tutti i punti $x \ne 0$.
- **5.** Determinare l'equazione della retta tangente al grafico della funzione f nel punto (1,1), quando $f(x)=x^6$, $f(x)=\frac{1}{\cos(1)}\cos(x)$, $f(x)=e^{x^2}-e^2+\ln(x)+x$.
- **6.** Provare che $e^x \ge 1 + x$ e che $e^x \ge 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$ per ogni numero reale x.
- **7.** Calcolare i seguenti integrali indefiniti $\int \frac{t}{t^2 + 2t + 5} dt$, $\int \frac{5t 2}{t^2 + 2t 3} dt$, $\int \frac{t}{t^3 + 1} dt$, $\int \frac{t}{t^6 3t^3 + 1} dt$, $\int \frac{1}{t(\ln^4(t) + 1)} dt$, $\int \sqrt{t^2 5t + 6} dt$.
- 8.* (Già iniziato in classe). Dopo avere calcolato gli integrali $J_n = \int\limits_0^{\frac{\pi}{2}} \sin^n(t) \, dt$, notando

che $J_0 = \frac{\pi}{2}$, $J_1 = 1$, e, integrando per parti, $J_{n+2} = \frac{n+1}{n+2}J_n$, e dopo avere notato che J_n è una successione decrescente, provare che la successione

$$\left(\frac{2}{1}, \frac{2}{1} \cdot \frac{2}{3}, \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3}, \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5}, \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5}, \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7}, \dots\right)$$

tende a $\frac{\pi}{2}$.

9.* Provare che π è irrazionale. Suggerimento: Supponiamo per assurdo $\pi=\frac{p}{q}$ con p e q interi positivi, e scriviamo

$$A_n := \int_{0}^{\pi} \frac{x^n (p - qx)^n}{n!} \sin(x) dx.$$

Provare che $A_n > 0$, A_n è un numero intero (questa è la parte piú delicata), e $A_n \underset{n \to +\infty}{\longrightarrow} 0$, e arrivare a una contraddizione.

Gli esercizi che seguono sono presi da quelli che ho dato in passato nei corsi tenuti a biotecnologie. Sono su vari argomenti e di varia difficoltà. Alcuni sono molto facili, altri chiaramente difficili, altri di livello intermedio. Ho evitato di mettere esercizi molto facili dal 30 in poi.

- **10.** a) Sia g una funzione tale che $g'(x) = \sin(x^7)\cos(x)$. Calcolare la derivata della funzione h definita da $h(x) = g(x^3)$.
- b) Trovare gli intervalli di crescenza e decrescenza della funzione α definita da $\alpha(x) = (x^2 + 4x + 700)^{\sqrt{2}}$.
- 11. Provare che la successione a_n definita da $a_n = \ln (\sin(n) + 7)e^{\sin n}$ è limitata.
- 12) a) Calcolare l'integrale definito $\int_1^3 \left(2 + \frac{x^{\sqrt{5}\sqrt{10}}}{x^{5\sqrt{2}}}\right) dx$ mostrando che il risultato è un numero intero.
- b) Calcolare $\int (e^{6x} \ln(e^{6x} + 1)) dx$.
- 13) Sia f la funzione definita da $f(x) = 3^{5 \cdot 2^x + 2} 81$.
- a) Calcolare la derivata della funzione g definita da $g(x) = x^3 f(x)$.
- b) Risolvere la disequazione f(x) < 0.
- c) Risolvere la disequazione $f(x)\sqrt{7-x^2} < 2f(x)$.
- **14)** Calcolare l'integrale indefinito $\int \left(\sqrt{x}\left(\sqrt[3]{x}+1\right)^2+x\sqrt{3x+1}\right)dx$.
- 15) Calcolare il dominio e la derivata della funzione f definita da

$$f(x) = \sqrt[4]{7 - \sqrt{2x+6}} \ln\left(-(5x-2)(x^2-3)\right).$$

- **16)** Posto $f(x) = \frac{1}{2} |\sin x| + \frac{1}{3} |\cos x|$, provare che $f(x) \ge \frac{1}{8}$ per ogni $x \in \mathbf{R}$.
- 17) Calcolare, per un opportuno numero reale $a \neq 0$, l'integrale indefinito

$$\int (7x^2 + 1)\cos\left(ax^3 + x\right) dx.$$

18) Sia α la funzione definita da

$$\alpha(x) = \frac{\frac{x^2}{3+x} + \frac{1}{x^3}}{\frac{x^3}{x+2} \frac{2}{x^5} + 1}.$$

- a) Scrivere α come quoziente di due polinomi.
- b) Calcolare la derivata della funzione β definita da $\beta(x) = \alpha(x) \cos\left(x^2 \sin\left(\frac{1}{\ln(x)}\right) 3\right)$.
- 19) a) Calcolare gli integrali indefiniti

$$\int \frac{x^3 - x^5}{x^3 - x^2} dx \qquad e \qquad \int \frac{x}{(3x^2 + 1)^2} (x^3 + x) dx.$$

- b) Posto $F(x) = \int_{a}^{x} (7 \cos(t^2)) dt$, provare che $F(x) \xrightarrow[x \to +\infty]{} +\infty$.
- **20)** a) Sia f la funzione definita da $f(x) = 3x^2e^x + 2e^x$. Dire se esiste $x \in \mathbf{R}$ tale che f(x) = 100 e se esiste $x \in \mathbf{R}$ tale che f(x) = -1.
- b) Provare che per ogni funzione $u: \mathbf{R} \to \mathbf{R}$ esiste un numero reale a tale che l'equazione

$$u(f(x)) = a$$

nell'incognita x ha almeno due soluzioni distinte.

- **21)** Calcolare, se esiste, $\lim_{n \to +\infty} 5 \sqrt[n]{n!} n^2 + \cos(n)$.
- **22)** Sia α la funzione data da $\alpha(x) = \frac{\sqrt{x}\sqrt[7]{x} + \sqrt{x}}{x\sqrt[7]{x} + x}$. Calcolare l'integrale definito $\int \alpha(x) dx$ e l'integrale indefinito $\int \alpha(x^2+7) x dx$.
- **23)** a) Determinare il dominio e gli intervalli di crescenza e decrescenza della funzione f definita da $f(x) = \sqrt{\frac{1}{x+2} \frac{1}{x+1}} + 4$.
- b) Sia g la funzione definita da $g(x) = \ln (f(x) + x^3 \cos(x))$. Calcolare la derivata di g.
- **24)** Date le disequazioni (D_1) e (D_2)

$$-(x-4)(x-5) \le 0 (D_1)$$

$$-(x-4)(x-5) + 6^x u(x) \le 0 \tag{D_2}$$

ove $u(x) = 30 + \sin\left(\frac{-x^4 + \cos(x^2 + x)}{2 + x^4}\right)$. Dire se tutte le x che risolvono (D_1) risolvono anche (D_2) e dire se tutte le x che risolvono (D_2) risolvono anche (D_1) .

25) Sia α la funzione data da

$$\alpha(x) = \left(\frac{(3(x+2))^6}{3^4(x+2)^5}\right)^2.$$

Calcolare l'integrale definito $\int_{1}^{2} \alpha(x) dx$ e l'integrale indefinito $\int_{1}^{2} \cos\left(\frac{\alpha(x)}{\pi}\right) \alpha'(x) dx$.

26) a) Sia s una funzione da ${\bf R}$ in ${\bf R}$ periodica di periodo 1. Provare che la funzione rdefinita da $r(x) = s(\frac{x}{5})$ è periodica. Ricordo che una funzione f si dice periodica se esiste un numero reale a > 0 tale che f(x + a) = f(x) per ogni $x \in \mathbf{R}$. In tal caso si dice che a è un periodo di f.

- b) Provare che se f è una funzione continua da \mathbf{R} in \mathbf{R} tale che f(2x) = f(x) per ogni $x \in \mathbf{R}$, allora f è costante.
- **27)** a) Calcolare $\sum_{n=0}^{107} 5\frac{3^{\frac{n}{2}}}{2^n}$. Si suggerisce di tenere conto della formula $\sum_{n=0}^k x^n = \frac{x^{k+1}-1}{x-1}$, valida per ogni numero naturale k e per ogni $x \neq 1$.
- b) Sia a_n una successione tale che $a_{n+3}=a_n$ per ogni numero intero positivo n. Provare che la successione b_n definita da

$$b_n = \frac{1}{n} \sum_{k=1}^n a_k$$

è convergente (ricordo che convergente significa che ha un limite che è un numero reale).

28) Provare che se g è una funzione da \mathbf{R} a \mathbf{R} , derivabile in 0, tale che $x^2 \leq g(x) \leq x^2 + |x|$ per ogni numero reale x, allora g'(0) = 0.

29) FACILE

- a) Calcolare l'integrale indefinito $\int \frac{\left(\sqrt{x}(x+2)\right)^2}{2x+4} dx$.
- b) Calcolare l'integrale definito $\int_{2}^{3} \frac{x^{2}(\sqrt{x}+1)^{5}}{(-\sqrt{x}-1)^{4}} dx$.
- c) Calcolare l'integrale definito $\int_{1}^{4} \left(\sqrt{\sqrt{x}+1} \sqrt{\sqrt{x}-1} + \sqrt{x} \right) dx$.
- d) Calcolare l'integrale definito $\int_{1}^{2} \sqrt{x^2 + 1} \sqrt{x^2 + 1} \frac{\sqrt{2x^2 + 5}}{\sqrt{4x^2 + 10}} dx.$
- e) Calcolare l'integrale definito $\int_{1}^{3} \left(\frac{x^{x^{2}+2}}{x^{x+1}} (x^{1-x})^{x} + \sqrt{x^{\pi}} \right) dx$
- f) Calcolare l'integrale indefinito $\int \left(\left(\frac{x}{x^3 + 1} \right)^{\sqrt{5} 1} \left(\frac{x^3 + 1}{x} \right)^{\sqrt{5}} + \frac{1}{x^2} \right) dx.$
- g) Calcolare l'integrale definito $\int_{1}^{2} \left(\frac{x^{1+\sqrt{2}} + x^{\sqrt{2}}}{2+2x} \right) dx$.
- **30)** a) Dire per quali numeri reali a si ha $\int_{\frac{1}{x}}^{a} \cos\left(\frac{1}{x}\right) \frac{1}{x^2} dx = 1$.
- b) Provare che per ogni numro reale b esiste al massimo un numero finito di numeri reali $a \ge 10^{-7}$ tali che $\int_{\frac{1}{2}}^{a} \cos\left(\frac{1}{x}\right) \frac{1}{x^2} dx = b$.

31) Provare che, per ogni k intero positivo, si ha

$$\sum_{n=1}^{k} \frac{n^2 + n - 1}{(n+1)^2 (n+2)^2} = \frac{1}{4} - \frac{k+1}{(k+2)^2}.$$

32) Sia s definita da

$$s(x) = \begin{cases} x^2 & \text{se } x \in [-7, 7] \\ 49 & \text{se } x \notin [-7, 7]. \end{cases}$$

Risolvere la disequazione s(5-x) < 10

33) Siano
$$f(x) = \sin\left(\frac{\sin\left(x^3\cos(x) + 7\right)}{x^2 + 1}\right)$$
, $g(x) = x^7 - x^{15} - x$.
a) Dire se $g(50 + 10^{1000}) > g(10^{1000})$.

- b) Provare che esiste un numero reale b tale che se x > b allora $f(x) \neq \frac{1}{10}$. Provare che, dato $a \neq 0$, esiste un numero reale b tale che se x > b allora $f(x) \neq a$.
- **34)** Determinare una funzione f tale che $\sin(x)f'(x) = 6\cos(x) 3f'(x)$.
- **35)** Siano $\alpha(x) = x^3 + 5^x$, $u(x) = 2(8x 1)^7 + x^4(1 8x)^7$. Risolvere le disequazioni

$$u(x) \le 0;$$
 $\alpha(x+2)u(x) \le \alpha(x)u(x);$ $u(x) \int_{2}^{x} e^{-t^{2}} dt \le 0.$

- **36)** Calcolare l'integrale indefinito $\int \left(-\cos\left(\frac{1}{x}+x\right)+\cos\left(\frac{1}{x}+x\right)\frac{1}{x^2}\right)dx$.
- **37)** Sia u la funzione definita da $u(x) = \frac{\left(x^3 + 6x^2 + x\right)^3}{\left(x^2 + 6x + 1\right)^2}$. Calcolare l'integrale indefinito

$$\int \left(u(x) + \left(\ln(x) + \cos(x) \right)^6 \left(-\sin(x) + \frac{1}{x} \right) \right) dx$$

e l'integrale indefinito

$$\int \left(u(x)\frac{1}{1+x^2} + u'(x)\arctan(x)\right)dx.$$

38) Sia α la funzione da ${\bf R}$ in ${\bf R}$ definita da

$$\alpha(x) = \begin{cases} x^7 - x^2 + 3x & \text{se } x \le 2\\ \ln(e^x - x + x^3) & \text{se } x > 2 \end{cases}.$$

- a) Calcolare, se esistono, $\lim_{x \to +\infty} \alpha(x)$, $\lim_{x \to 2} \alpha(x)$.
- b) Dire se la funzione α è derivabile in 2
- c) Determinare $b \in \mathbf{R}$ tale che l'equazione $\alpha(x) = b$ ha almeno due soluzioni.
- **39)** Calcolare l'integrale indefinito $\int x \left(8(x^2+1)^7 \ln(x^2+1) + (x^2+1)^7\right) dx$.

- **40)** Sia r una funzione derivabile da \mathbf{R} in \mathbf{R} tale che r(0) = 0, $r(1) = 18\pi$. Poniamo $s(x) = \sin(r(x))$.
- a) Provare che esiste $x \in \mathbf{R}$ tale che s'(x) = 0.
- b) Provare che esiste $x \in \mathbf{R}$ tale che $s'(x) \ge 1$.
- 41) Risolvere le disequazioni

$$\left(\left(\frac{13}{5 - \frac{x}{x+1}} \right)^4 - 81 \right) (x^{19} - 2) \le 0; \quad \left(\frac{13}{5 - \frac{\sqrt{x}+3}{\sqrt{x}+3+1}} \right)^4 < 81.$$

- **42)** Dire per quali numeri reali b la successione a_n definita (per n=1,2,3...) da $a_n=\frac{(1+2b^2)^{2-3n}}{7^{2-3n}}$ è crescente.
- **43)** Siano $\alpha(x) = \ln \left((1 5^x)(2x 11) \right)$ e $\beta(x) = \begin{cases} x 1 & \text{se } x \leq 2 \\ 3x 1 & \text{se } x > 2 \end{cases}$. Determinare il dominio della funzione $\alpha(x) + \sqrt{\beta(x)}$.
- **44)** Calcolare l'integrale indefinito $\int \cos \left(8\cos^2(x) + 7\sin^2(x)\right)\sin(x)\cos(x)\,dx$.
- **45)** Sia $g(x) = 2e^{3x^2} + 3e^{2x^2} 2e^{x^2}$. Risolvere la disequazione $-x^7g(x) < -2x^3g(x)$.
- **46)** a) Calcolare l'integrale indefinito $\int \left(\frac{1+\sqrt{x}}{\sqrt[3]{x}} + \frac{1}{x^2} \frac{\sqrt[7]{8+x}}{\sqrt[7]{x}}\right) dx$
- b) Provare che esiste un numero x > 0 tale che $\int_{-x}^{x} (e^{t^2} 2) dt = 0$.
- **47)** a) Risolvere la disequazione $(7x+1)^{2560} x^{1280} < 0$.
- b) Determinare un intervallo (a,b) con a e b numeri reali e a < b tali che la disequazione $(7x+1)^{2560} < x^{1280} + x^{26}$ è verificata da tutti gli $x \in (a,b)$.
- **48)** Calcolare l'integrale indefinito $\int e^{x^2} e^{x^4} (2x^3 + x) dx$.
- **49)** Calcolare l'integrale indefinito $\int \frac{x\sqrt{x^4 16}}{\sqrt[3]{2x^2 + 8}} dx.$
- **50)** Risolvere la disequazione $3^{x+5}(2x-6) < 5^{2x+1}(3x-9)$.
- 51) Calcolare l'integrale definito

$$\int_{1}^{2} \left(\left(\sqrt{2} + 1 \right)^{x^{2} + 1} \left(\sqrt{2} - 1 \right)^{x^{2} - 1} x^{2} \right) dx$$

- e l'integrale indefinito $\int \left(\ln(\sin(x)) + \ln(x) \right) (\sin(x) + x \cos(x)) dx$.
- **52)** a) Determinare gli intervalli di crescenza e decrescenza della funzione β definita da $\beta(x) = 7(3x+1)^{\sqrt{2}+1} (3x+1)^{2\sqrt{2}+1}$.. Sia $g(x) = \cos\left(\frac{1}{x^3}\right)$.

- b) Provare che g(x) + g(x+1) < 2 per ogni
 x > 0.
- c) Provare che $g(x) + g(x^2) < 2$ per ogni x > 0.
- **53)** a) Provare che per ogni a > 0 la funzione α definita da

$$\alpha(x) = ax^6 - x^{10}$$

non è strettamente crescente in \mathbf{R} .

b) Provare che per ogni a>0 la funzione β definita da

$$\beta(x) = a(x^{10} + 5x^4) - e^x$$

non è strettamente crescente in $(1, +\infty)$, ma che esiste a > 0 tale che la funzione β definita prima è strettamente crescente in $[3^{90}, 3^{99}]$.

- **54)** Calcolare l'integrale indefinito $\int ((\pi+1)x^{\pi} + (\pi-1)x^{\pi-2}) \arctan(x) dx$.
- **55)** a) Determinare due funzioni u e v da \mathbf{R} in \mathbf{R} tali che

$$u(x) \underset{x \to +\infty}{\longrightarrow} +\infty, \quad v(x) \underset{x \to +\infty}{\longrightarrow} +\infty, \quad v(x) - u(x) \underset{x \to +\infty}{\longrightarrow} +\infty,$$

ma non è vero che $\ln (v(x)) - \ln (u(x)) \xrightarrow[x \to +\infty]{} +\infty$.

b) Provare che, se u e v sono due funzioni da ${\bf R}$ in ${\bf R}$ tali che

$$u(x) \underset{x \to +\infty}{\longrightarrow} +\infty, \quad v(x) \underset{x \to +\infty}{\longrightarrow} +\infty, \quad v(x) - u(x) \underset{x \to +\infty}{\longrightarrow} +\infty,$$

e s è una funzione derivabile da \mathbf{R} in \mathbf{R} , e inoltre $s'(x) \underset{x \to +\infty}{\longrightarrow} 3$, allora

$$s(v(x)) - s(u(x)) \underset{x \to +\infty}{\longrightarrow} +\infty.$$

- **56)** a) Sia f(x) = 1 se $x \le 8$, f(x) = 2 se x > 8. Determinare una successione a_n tale che $a_n \xrightarrow[n \to +\infty]{} 8$, ma non è vero che $f(a_n) + 5a_n \xrightarrow[n \to +\infty]{} f(8) + 5 \times 8$.
- b) Provare che, se f è una funzione crescente da \mathbf{R} in \mathbf{R} , e $l \in \mathbf{R}$, e $f(a_n) + 5a_n \xrightarrow[n \to +\infty]{} f(l) + 5l$, allora $a_n \xrightarrow[n \to +\infty]{} l$.
- **57)** a) Provare che se ϕ è una funzione definita su \mathbf{R} tale che $\phi(x) > 0$ per ogni $x \in \mathbf{R}$, e inoltre ϕ è strettamente decrescente in $(-\infty, 5]$ e strettamente crescente in $[5, +\infty)$, allora per ogni numero reale a l'equazione $\beta(\phi(x)) = a$ ha al massimo un numero finito di soluzioni, ove $\beta(x) = x^5 + \frac{1}{x}$.
- b) Risolvere la disequazione $\left(\ln\left(x-\frac{1}{x}\right)-3\right)(x-7)<0$.

- **58)** Poniamo $g(x) = \begin{cases} x^4 4x + 8 & \text{se } x \ge 0 \\ \sin(x) + 3\sin(x^2) & \text{altrimenti.} \end{cases}$ Determinare un numero b tale che $g(x) \ne b$ per ogni $x \in \mathbf{R}$.
- **59)** Calcolare l'integrale indefinito $\int (2x\sin(x) + x^2\cos(x)) \ln(x) dx$.
- **60)** a) Determinare il dominio della funzione g_5 definita da $g_5(x) = \ln\left(\sqrt{\frac{2^x-8}{2^x-16}} 5\right)$. Provare inoltre che per ogni a > 0, posto $g_a(x) = \ln\left(\sqrt{\frac{2^x-8}{2^x-16}} a\right)$, il dominio di g_a è non vuoto, ossia esiste almeno un numero reale x tale che $g_a(x)$ è definita.

 b) Calcolare, se esiste. $\lim_{x \to 0} \ln\left(\ln(x)\right) (\ln(x))^2$.
- b) Calcolare, se esiste, $\lim_{x \to +\infty} \ln \left(\ln(x) \right) (\ln(x))^2$.
- **61)** Calcolare l'integrale indefinito $\int \sin\left(\ln(x)\right) \frac{\ln\left(3^{x^x}\right)}{\ln\left(7^{x^{x+1}}\right)} dx.$
- **62)** a) Risolvere la disequazione $x^8(x+2) < x^7(5x+1)$.
- b) Trovare il dominio della funzione g definita da

$$g(x) = \frac{\ln\left(x^8(x+2) - x^7(5x+1)\right)}{\alpha(x)}$$

ove
$$\alpha(x) = \begin{cases} x^2 - 10^{16} & \text{se } x > 10\\ (x - 3)(x - 15)\sin(x) & \text{se } x \le 10. \end{cases}$$

- c) Dire se esiste un numero reale a tale che la disequazione $x^8(x+2) < x^7(5x+1) + a$ è sempre verificata (ossia vale per ogni numero reale x).
- **63)** Determinare un numero reale x > 0 tale che $\int_{0}^{x} t \cos(t^2 + 1) dt = 0$.
- **64)** a) Siano $\alpha(x) = x(3x+1)^7$, $\beta(x) = (3x+1)^6$. Risolvere le disequazioni $\alpha(x) < \beta(x)$, $\ln(\alpha(x)) < \ln(\beta(x))$.
- b) Provare che la funzione α è inferiormente limitata.
- c) Provare che esiste un numero reale c tale che le disequazioni

$$\alpha(x) < \beta(x)$$
 e $\ln(\alpha(x) + c) < \ln(\beta(x) + c)$

hanno le stesse soluzioni.

- **65)** Calcolare gli integrali indefinito $\int \ln(x+3) \frac{x}{x+3} dx$.
- **66)** a) Determinare i punti di massimo relativo e i punti di minimo relativo della funzione g definita da $g(x) = (x^2 + 1)^5 e^{3x}$.
- b) Provare che la funzione h definita da $h(x) = e^{2-7\cos^2(x)} + \frac{1}{x^8+1}$ non ha minimo assoluto su \mathbf{R} .
- **67)** Sia $f(x) = (2x \frac{1}{2x})^{111} (2x \frac{1}{2x})^{106}$,

- a) Dire in quali intervalli f è decrescente.
- b) Determinare $\lim_{x \to +\infty} f(x)$, $\lim_{x \to 0^+} f(x)$.
- **68)** Sia $u(x) = e^x + e^{\frac{4}{x}}$.
- a) Provare che l'equazione $u(x) = \frac{3}{2}$ non ha soluzioni positive.
- b) Provare che esiste b > 0 tale che l'equazione u(x) = b ha almeno due soluzioni positive.
- c) Provare che l'equazione u(x) = b non ha soluzioni positive se $b < e^2$, e invece ha almeno due soluzioni positive se $b > 2e^2$.

Nota: Ovviamente per soluzione positiva dell'equazione u(x) = b intendiamo un numero x > 0 che risolve tale equazione.

- **69)** Provare che se f è una funzione continua da \mathbf{R} in \mathbf{R} tale che $f(x) \geq 9$ se $x \geq 5$, allora esiste un numero reale b tale che l'equazione $f(x^2(1+\cos(x))) = b$ non ha soluzioni reali.
- **70)** Provare che esiste a > 100 tale che $\int_{0}^{a^6} e^{\sin(x)} \cos(x) dx = 0.$
- **71)** Data la disequazione

$$(x-3)\sin(x^4 - 3x + 1) < 0 (D)$$

provare che per ogni numero reale b esiste x > b che risolve (D) ed esiste x' > b che non risolve (D).

- **72)** Calcolare l'integrale indefinito $\int x^{7x} D(x \ln(x)) dx$
- 73) a) Determinare il dominio della funzione

$$\sqrt{\frac{(x-1)(x-2)}{(x-3)}}\sin(x) + \ln\left((3x^2-1)^4-2)(x-7)\right)$$

b) Dire se esiste un numero reale
$$a$$
 tale che sia vuoto il dominio della funzione
$$\sqrt{\frac{(x-1)(x-2)}{(x-3)}}\sin(x) + \ln\left(\left((3x^2-1)^4-2\right)(x-7)\right).$$

$$\sqrt{-\frac{(x-a)(x-2)}{(x-3)}}\sin(x) + \ln\left(\left((3x^2-1)^4-2\right)(x^2-e^x-17)\right).$$

- **74)** Calcolare l'integrale indefinito $\int (x^2 3x)^{19\pi} (4x 6) dx$, $\int (x^2 3x)^{19\pi} (2x 3)^3 dx$.
- **75)** Determinare una funzione continua $g: \mathbf{R} \to \mathbf{R}$ tale che

$$\int_{x}^{x+1} g(t) dt = (x+1)\sin(x+1) - x\sin(x) \quad \forall x \in \mathbf{R}.$$

- **76)** a) Trovare gli intervalli di crescenza e decrescenza della funzione α definita da $\alpha(x)=$ $\sqrt{e^{2x} - 5e^x + 4}.$
- b) Dire per quali numeri reali a la funzione $\sqrt{e^{2x} + ae^x + 4} + \sqrt[3]{x}$ è definita in tutto **R**.
- c) Determinare una funzione continua $g:(0,+\infty)\to\mathbf{R}$ tale che $x\cos\left(g(x)\right)\underset{x\to+\infty}{\longrightarrow}5$.

- 77) Sia $u(x) = \frac{3^x}{2^x + \sin^2(x)}$. Provare che la disuguaglianza u(x+1) > u(x) vale per tutti gli x > 100, ma comunque scelto $a \in \mathbf{R}$, non è vero che vale in tutto l'intervallo $(-\infty, a)$.
- **78)** Calcolare l'integrale indefinito $\int \left(\ln(e^{2x} 1) \ln(e^x 1) \right) (e^x + 1) e^x dx$.
- **79)** Siano

$$f(x) = \cos\left(\frac{x^2}{3 + x\sin x}\right) \ln\left(x^8 + e^x x^6\right),$$
$$v(x) = (x^2 + 2x + 2)^{\pi} e^{-x}, \qquad u(x) = (x^2 + 2x + 2)^{\pi} (x + 1).$$

- a) Determinare i punti di massimo relativo e di minimo relativo di v.
- b) Calcolare, se esistono, $\lim_{x \to +\infty} (x^2 + x)^4 x^3$, $\lim_{x \to +\infty} \left(u(x) x^7 \right)$, $\lim_{x \to +\infty} u(x) \sin \left(\frac{1}{u(x)} \right)$. c) Determinare $\alpha > 0$ e $\beta > 0$ tali che $u(x) x^{\alpha} \underset{x \to +\infty}{\longrightarrow} +\infty$, $u(x) x^{\beta} \underset{x \to +\infty}{\longrightarrow} -\infty$. d) Provare che per ogni numero reale y esistono $x \in \mathbf{R}$ e $\gamma > 0$ tali che $u(x) x^{\gamma} = y$.

- a) Calcolare l'integrale indefinito $\int u(x) dx$, ove u è definita come nell'esercizio precedente.
- b) Provare che $\int_{7}^{10} (x^2 + 2x + 2)^{\pi} dx \ge \frac{1}{10}$.
- **81)** Sia $g(x) = \frac{1 + \sin^2(x)}{x^8 + 1}$.
- a) Provare che esiste $z \in (0, \pi)$ tale che $g'(z) = \frac{\frac{1}{\pi^8 + 1} 1}{1}$
- b) Provare che g ha almeno un massimo relativo nell'intervallo $[300\pi, 301\pi]$.
- c) Quanti punti di massimo relativo ha g su \mathbf{R} ?
- 82) a) Risolvere le disequazioni

$$(86^4 - (3x - 1)^4)(x^7 - 2) \le 0,$$

$$\frac{\sqrt{86^4 - (3x - 1)^4}}{\sqrt[4]{x^7 - 2} \sqrt[4]{17 - x}} > 0.$$

b) Dire per quali numeri reali x è positivo almeno uno dei due seguenti numeri

$$86^4 - (3x - 1)^4$$
, $(x^7 - 2)(17 - x)$.

83) a) Provare che esiste un unico numero reale a > 0 tale che $\sum_{n=1}^{823} \frac{1}{(an)^{\frac{3}{5}}} = \sum_{n=1}^{823} \frac{1}{n^2}$.

- b) Provare che esistono numeri interi m_n , per n=1,2,3,... tali che $\frac{1}{n} \left(\sum_{k=1}^n m_k \right) \underset{n \to +\infty}{\longrightarrow} \sqrt{8}$. c) Provare che esistono numeri interi M_n , per n=1,2,3,... tali che $\frac{1}{n} \left(\sum_{k=1}^n M_k^2 \right) \underset{n \to +\infty}{\longrightarrow} \sqrt{8}$.