
4. Analysis on Fractals

4.1 Renormalization Operator.

In this chapter we will investigate analysis on fractals. A large part of it is given in [P],
thus here we will only discuss the parts not discussed there. We will often refer to [P] for
the notation and result. However, we will recall some basic notation. We recall that we are
given a self-similar set Γ generated by finitely many contracting similarities ψi, i = 1, ..., k,
as stated in Section 3.3. We also assume O.S.C. holds. Let Pi be the fixed point of ψi.
We call V (0) a subset of the set of the fixed points {P1, ..., Pk}. By possibly changing the
indices we can assume V = V (0) := {P1, ..., PN}, and we suppose 2 ≤ N ≤ k. Usually, the
set V (0) is not arbitrary, but it is defined in an exact way. We can define it as the set of
essential fixed points, where a fixed point Pj is essential if there exists j

′ ̸= j, i, i′ = 1, ..., k
such that ψi(Pj) = ψi′(Pj′). Another way is to define V (0) geometrically as the extrema

of Â, where Â is the open set given by O.S.C., that is Γ = co(V (0)). This is essentially the
definition given in [P]. Since in the most of cases, such definitions are equivalent, we will
not investigate further this point. We will define n-cell a set of the form Vii,...,in , and put

V (n) =
k∪

i1,...,in=1

Vii,...,in . Note that V (= Vø) is the unique 0-cell. Recall that V (n) is an

increasing sequence of sets and Γ =
+∞∪
n=0

V (n). In the fractals we will consider, we require

the following properties:

a) Pj /∈ Vi when i ̸= j
b) V (1) is connected in the sense that any two points in V (1) can be connected by a path
whose any edge belongs to a 1-cell, which, of course depends on the edge.
c) If i1, ..., in, i

′
1, ..., i

′
n = 1, ..., k and (i1, ..., in) ̸= (i′1, ..., i

′
n), then Vi1,...,in ̸= Vi′1,...,i′n , and

Vi1,...,in ∩ Vi′1,...,i′n = Γi1,...,in ∩ Γi′1,...,i
′
n
.

Property c) is called nesting axiom or finite ramification. See [P] for more details. A
nested fractal is a self-similar set with the above property which, furthermore, satisfies the
following symmetry property.

d) The contraction factors σi are all equal. Moreover, if P,Q ∈ V , P ̸= Q, then the
symmetry SP,Q with respect to H(P,Q) = {z : ||z − P || = ||z − Q||}, maps n-cells to
n-cells for n ≥ 0, and any n-cell containing elements on both sides of H(P,Q) is mapped
to itself.

Examples of nested fractals are the Sierpinski Gasket, the Vicsek set, and the Lindstrøm
Snowflake. As stated above, we will always require properties a), b), c), not necessarily d).
We now recall the definition of the renormalization operator Λr. For the definition of D
and D̃ see [P]. For every u ∈ RV (0)

, for every E ∈ D̃ and for every r : {1, ..., k} →]0,+∞[,
let

Λr(E)(u) = inf
{ k∑

i=1

riE(v ◦ ψi) : v ∈ L(u)
}
, L(u) =

{
v ∈ RV (1)

, v = u on V (0)
}
.
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It is well known that the infimum is attained at a unique function. In the following, we will
put Λ := Λ1, where 1 denotes r such that ri = 1 for all i, and we will usually only consider
this case. Note that in [P], a different notation (M1) is used to denote the renormalization

operator. Recall that E ∈ D̃ is said to be an eigenform if there exists ρ > 0 such that
Λ(E) = ρE, in other words an eigenform is an eigenvector of the (nonlinear) operator Λ.

4.2 Nested Fractals

From now on, we will assume that the fractal considered is a nested fractal. Although it
is possibly not strictly necessary we will assume further

e) #(Vi1 ∩ Vi2) ≤ 1 for every i1, i2 = 1, ..., k with i1 ̸= i2.
Note that e) is satisfied by all nested fractals mentioned here, and, to my knowledge, there
are no known examples of nested fractals not satisfying e).

Remark 4.2.1. We note that the symmetry property of nested fractals (d) in previous
section) implies for example that, fixing a positive number d̄, every vertex Pj has the same
number of vertices having distance d̄ from it. In fact, given Pj , Pj′ ∈ V (0), the symmetry
SPj ,Pj′ maps V (0) into itself by d), as it contains the points Pj and Pj′ on different sides

of H(Pj , Pj′), so that, with every vertex Ph such that d(Pj , Ph) = d̄ there exists a vertex
SPj ,Pj′ (Ph) and

d(Pj′ , SPj ,Pj′ (Ph)) = d
(
SPj ,Pj′ (Pj), SPj ,Pj′ (Ph)

)
= d(Pj , Ph) = d̄ .

Let di < d2 < · · · < dm be the distance between different elements of V (0), and mi =
#{P ∈ V (0) : d(P, Pj) = di}. In such a definition Pj is any element of V (0), and the
definition makes sense as by Remark 4.2.1, such a number mi is independent of j. We
define Gmin to be the graph on V (0) whose edges are {Pj1 , Pj2} such that d(Pj1 , Pj2) = d1,
in other words the different points of minimum distance. For notions about graphs see [P].

Lemma 4.2.2. The graph Gmin is connected.

Proof. Note that by the definition of the symmetry SP,Q, we have

d(Q1, Q2) ≥ d(Q1,H(P,Q)) + d(Q2,H(P,Q)) (4.2.1)

if Q1 and Q2 lie in opposite sides of H(P,Q), and

d(Q1, Q2) ≥ |d(Q1,H(P,Q))− d(Q2,H(P,Q))|

if Q1 and Q2 lie in the same side of H(P,Q). Moreover, if Q1 and Q2 lie in opposite
sides of H(P,Q) and d(Q1, H(P,Q)) = d(Q2,H(P,Q)), then the equality d(Q1, Q2) =
2d(Q1,H(P,Q)) holds if and only if Q2 = SP,Q(Q1).

Suppose now the Lemma is false. Let

A :=
{
P ∈ V (0) : P is connected to P1

}
,
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B :=
{
P ∈ V (0) : P is not connected to P1

}
,

where by connected we mean connected in Gmin. The set A is nonempty, as it contains P1,
and the set B is nonempty as, if all elements of Gmin would be connected to P1, then the
graph Gmin would be connected, contrary to our assumption. Of course, any two elements
of A are connected in Gmin, any two elements of B are connected in Gmin, and an element
of A is not connected in Gmin to an element of B. There exist Pj1 ∈ A and Pj2 ∈ B
of minimum distance, and, clearly d(Pj1 , Pj2) > d1, as if d(Pj1 , Pj2) = d1, then Pj1 is
connected to Pj2 . Let P ∈ V (0) be such that d(P, Pj1) = d1. Then, P is connected to Pj1 ,
thus is in A, and d(P, Pj2) ≥ d(Pj1 , Pj2) by the definition of Pj1 , Pj2 . Note that Pj1 and P
lie in the same side of H, as, otherwise, d(Pj1 , Pj2) < d(Pj1 , P ) = d1, a contradiction. Let
S := SP,Pj2

, H := HP,Pj2
. We have

2d(Pj2 ,H) = d(P, Pj2) ≥ d(Pj1 , Pj2) ≥ d(Pj2 ,H) + d(Pj1 ,H) (4.2.2)

hence d(Pj1 , H) ≤ d(Pj2 ,H), and in fact the strict inequality holds, as, if d(Pj1 ,H) =
d(Pj2 ,H), then the inequalities in (4.2.2) are in fact equalities, in particular, d(Pj1 , Pj2) =
d(Pj2 ,H) + d(Pj1 ,H), which implies Pj1 = S(Pj2), but by definition of S, S(Pj2) = P , a
contradiction. Let now P̄ := S(Pj1). As d(P̄ , Pj2) = d(S(Pj1), S(P )) = d(Pj1 , P ) = d1,
then P̄ is connected in Gmin to Pj2 , thus P̄ ∈ B. Moreover,

d(Pj1 , P̄ ) = 2d(Pj1 ,H) < d(Pj2 ,H) + d(Pj1 ,H) ≤ d(Pj1 , Pj2)

and as Pj1 ∈ A and P̄ ∈ B, this contradicts the definition of Pj1 , Pj2 .

As every form E ∈ D is uniquely determined by its coefficients, we can in some sense
identify E with the set of its coefficients The coefficients are objects of the form cj1,j2 with
(j1, j2) ∈ {1, ..., N} × {1, ..., N}, j1 ̸= j2. We thus have N2 −N = N(N − 1) coefficients,
and the set of the coefficients, being a set of N(N −1) real numbers, can be identified with
an element of RN(N−1). In the following we will denote by H the set of c ∈ RN(N−1) such
that

i) cj1,j2 = cj2,j1 ≥ 0,

ii)
∑
j2 ̸=j

cj,j2 = 1 for all j = 1, ..., N ,

iii) cj1,j2 ≤ cj3,j4 when ||Pj1 − Pj2 || ≥ ||Pj3 − Pj4 ||.
Property ii) is in some sense a normalization property. Property iii) states that the coef-
ficients are decreasing with respect to the distance, in particular they only depend on the
distance (that is, if ||Pj1 − Pj2 || = ||Pj3 − Pj4 ||, then cj1,j2 = cj3,j4). Then, using Remark
4.2.1, by iii), in order that ii) holds it suffices it holds for one j = 1, ..., N .

Lemma 4.2.3 Every E whose set of coefficients lies in H, is in D̃.

Proof. By iii) the biggest coefficient cj1,j2 is when ||Pj1 − Pj2 || = d1 and by ii) such
a coefficient is strictly positive. By Lemma 4.2.2, the graph on V (0) whose edges are
{Pj1 , Pj2} such that cj1,j2 > 0 is connected, and this means that E ∈ D̃ (see [P]).
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Remark 4.2.4. Note that the coefficients cj1,j2(Λ(E)) of Λ(E) continuously depend on
those of E. Recall (see [P]) that

cj1,j2(Λ(E)) =
1

4

(
Λ(E)(χPj1

− χPj2
)− Λ(E)(χPj1

+ χPj2
)
)
. (4.2.3)

Moreover, note that Λ(E)(u) = S1(H1;E(u)), and H1;E(u) is the solution of a linear system
in #(V (1)) unknown variables of the kind Ax = b where the entries ai,j of the matrix A
and the components bi of b are linear combinations of cj1,j2(E) and u(Pj) (see [P] again).
The solution to such a system is the quotient of two determinants which are polynomial,
thus continuous functions of ai,j and bi, therefore continuous functions of cj1,j2(E), then
H1;E(u) continuously depend on cj1,j2(E). Using u = χPj1

± χPj2
, in view of (4.2.3), we

thus get that the coefficients of Λ(E) continuously depend on cj1,j2(E), as claimed.

It is easy to see that H is nonempty, compact and convex, so that we will get the existence
of an eigenform by proving that the continuous map E 7→ Λ(E), normalized, dividing it
by a suitable quantity depending on E, takes values into H, therefore it does have a fixed
point.

Remark 4.2.5. If the set of coefficients of E ∈ D̃ lies in H, then the coefficients
cj1,j2(Λ(E)) only depend on the distance ||Pj1 − Pj2 ||. We will hint the proof of this
fact, which is a symmetry argument. Suppose first ||Pj1 − Pj2 || = ||Pj1 − Pj3 ||, and prove
that cj1,j2

(
Λ(E)

)
= cj1,j3

(
Λ(E)

)
. The symmetry SPj2 ,Pj3

leaves Pj1 fixed, exchanges Pj2

and Pj3 , maps 1-cells into 1-cells. Therefore, SPj2
,Pj3

sends H1;E(u) into H1;E(u◦SPj2
,Pj3

).
As the coefficients of E only depend on the distance by the hypothesis iii), we have

Λ(E)(u) = S1(E)
(
H1;E(u)

)
= S1(E)

(
H1;E

(
u ◦ SPj2 ,Pj3

))
= Λ(E)

(
u ◦ SPj2 ,Pj3

)
As χPj1

◦ SPj2 ,Pj3
= χPj1

, and χPj2
◦ SPj2 ,Pj3

= χPj3
, by (4.2.3) we have cj1,j2

(
Λ(E)

)
=

cj1,j3
(
Λ(E)

)
, as claimed. Suppose now,

||Pj1 − Pj2 || = ||Pj4 − Pj3 || (4.2.4)

with j4 ̸= j1, and prove cj1,j2
(
Λ(E)

)
= cj4,j3

(
Λ(E)

)
By what we have just proved, for

given j1, j2, j4 it suffices to prove it for a specific j3 satisfying (4.2.4), as we have proved
that the coefficient cj4,j3

(
Λ(E)

)
is independent of such j3. We can consider the symmetry

SPj1 ,Pj4
and put Pj3 = SPj1 ,Pj4

(Pj2), and repeat the same symmetry argument as before,

so that in fcat cj1,j2
(
Λ(E)

)
= cj4,j3

(
Λ(E)

)
.

Remark 4.2.6. It follows from Remark 4.2.5 and Remark 4.2.1 that the quantity∑
j ̸=j1

cj,j1

(
Λ
(
E
))

is independent of j1.
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4.3 Probabilistic Interpretation of Λ.

Given E ∈ D̃, we put c(Q,Q) = 0,

c(Q1, Q2) =

{
cj1,j2 if ∃ i = 1, .., k, j1, j2 = 1, .., N, j1 ̸= j2 : Q1 = ψi(Pj1), Q2 = ψi(Pj2)

0 otherwise

for every Q1, Q2 ∈ V (1), where, of course, cj1,j2 are the coefficients of E. Note that, in
view of e), there exists at most one i satisfying the previous requirements, thus such a
definition is correct. The number c(Q1, Q2) can be interpreted as the conductivity from
Q1 to Q2.

From now on we will assume that the coefficients of E are in H,
in particular, ii) in the definition of H holds. The coefficient cj1,j2 can be interpreted

as the probability that an object staying at Pj1 and moving through V (0), moves to Pj2 at
the successive step. In fact, the sum of the probabilities of moving from Pj1 to the different
points of V (0) is 1 by ii). We could guess that by this point of view, c(Q1, Q2) represents
the probability of moving in V (1) from Q1 to Q2. However, this is not precise, as simple
examples show that, for Q1 ∈ V (1), the sum

∑
Q2∈V (1)

c(Q1, Q2) is not necessarily 1. The

reason is that Q1 could belong to different 1-cells, thus the sum is 1 over every of the cells
it belongs to. Thus, we need a modification of the previous notion, namely we put

δ(Q1, Q2) :=
c(Q1, Q2)∑

Q∈V (1)

c(Q1, Q)
.

We clearly have ∑
Q2∈V (1)

δ(Q1, Q2) = 1 (4.3.1)

so that we can interpret δ(Q1, Q2) as the probability that a point staying at Q1 and
moving through V (1), moves to Q2. We put Q1 ∼

E
Q2 if c(Q1, Q2) = 0, that amounts to

δ(Q1, Q2) = 0, and in such a case we will say that Q1 is E-close to Q2. Note that if Q1

and Q2 do not lie in a common 1-cell, then they are not E-close. However, when Q1 and
Q2 lie in a common cell, they are not necessarily E-close, as the coefficient relating them
could be 0. If there exists i = 1, ..., k such that Q1, Q2 ∈ Vi, we say that Q1 and Q2 are
close and write Q1 ∼ Q2. A trivial but important consequence of the previous discussion,
which directly follows from (4.3.1) is that

∀Q ∈ V (1) ∃Q′ ∈ V (1) : δ(Q,Q′) > 0 . (4.3.2)

We will now define the probability that a point staying at Q reaches a point Pj2 of V (0) not
necessarily at the successive step, but following an arbitrary path. The function U we will
now introduce is related to the notion of Markov chain. Given a path X = (X0, X1, ..., Xn)
we put
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U(X) =
n∏

i=1

δ(Xi−1, Xi)

where by a path we mean a finite sequence (Xi, i = 0, ..., n) of elements Xi of V
(1), such

that Xi−1 ∼ Xi for every i = 1, ..., n. The last condition is not strictly necessary, but
it is useful, and does not affect the definitions and results in the sequel as, if it does not
hold then U(X) = 0. If n = 0, we put U(X) = 1. In this situation, we say that n is the
length of X and put n = |X|. We define Xn to be the set of the paths of length n and

X :=
+∞∪
n=1

Xn. Moreover when Q,Q′ ∈ V (1), A ⊆ V (1), we put

Xn(Q) = {X ∈ Xn : X0 = Q}, X (Q) =
+∞∪
n=1

Xn(Q) ,

Xn(Q,Q
′) = {X ∈ Xn : X0 = Q,Xn = Q′}, X (Q,Q′) =

+∞∪
n=1

Xn(Q,Q
′) ,

Xn(Q;A) = {X ∈ Xn : X0 = Q,Xi /∈ A ∀ i < n}, X (Q;A) =
+∞∪
n=1

Xn(Q,Q
′) ,

Xn(Q,Q
′;A) = {X ∈ Xn : X0 = Q,Xn = Q′, Xi /∈ A ∀ i < n} ,

X (Q,Q′;A) =

+∞∪
n=1

Xn(Q,Q
′;A) .

Moreover, for every path X we define X(m) := (X0, X1, ..., Xm) if m ≤ |X|.

Lemma 4.3.1. We have
∑

X∈Xn(Q)

U(X) = 1 for every positive integer n and for every

Q ∈ V (1).

Proof. We proceed by induction on n. If n = 1, everyX ∈ Xn(Q) has the formX = (Q,Q′)
with Q′ ∈ V (1), thus we have∑

X∈Xn(Q)

U(X) =
∑

Q′∈V (1)

δ(Q,Q′) = 1

by (4.3.1). We now prove that, if the Lemma holds for n, it holds for n + 1 as well. If
X ∈ Xn+1(Q), then X = (X0, X1, ..., Xn+1), where X0 = Q, X1 is an arbitrary element
of V (1), and Y := (X1, ..., Xn+1) is an arbitrary element of Xn(X1).With this notation we
have U(X) = δ(Q,X1)δ(X1, X2) · · · δ(Xn, Xn+1) = δ(Q,X1)U(Y ), thus

∑
X∈Xn+1(Q)

U(X) =
∑

X1∈V (1)

∑
Y ∈Xn(X1)

δ(Q,X1)U(Y ) =
∑

X1∈V (1)

δ(Q,X1)
( ∑

Y ∈Xn(X1)

U(Y )
)
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=
∑

X1∈V (1)

δ(Q,X1) by the inductive hypothesis

= 1 by (4.3.1). Thus, the inductive step is proved, and the proof is complete.

Lemma 4.3.2. Given Q,Q′ ∈ V (1), there exists X ∈ X (Q,Q′) such that U(X) > 0.

Proof. It suffices to prove that there exists a path X ∈ X (Q,Q′) such that Xi−1 and
Xi are E-close for every i = 1, ..., |X|, in other words that any two points of V (1) are
E-connected, using notation of [P]. To see this, it suffices to use the proof of Lemma 3.8
in [P]. There, it is proved that Q and Q′ are E-connected and the hypothesis Q′ ∈ V (0),
which was mentioned there, is in fact never used in the proof.

Lemma 4.3.3. There exists a positive integer M such that, for every Q,Q′ ∈ V (1), we
have

∑
X∈XM (Q;{Q′})

U(X) < 1.

Proof. For every Q,Q′ ∈ V (1) there exists Y ∈ X (Q,Q′) such that U(Y ) > 0, by Lemma
4.3.2, and of course for every M > |X| there exists X ∈ XM (Q) such that Xn = Q′, and
U(X) > 0, where n = |X|, as it suffices to take X such that Xi = Yi for i ≤ n, and for
i > n we choose, using (4.3.2), Xi ∈ V (1) inductively in such a way that δ(Xi−1, Xi) > 0.
The path X and its length |X| =: n(Q,Q′), a priori, depend on Q,Q′. We take M >
max{n(Q,Q′) : Q,Q′ ∈ V (1)}. Then for every Q,Q′ ∈ V (1), there exists X̄ ∈ XM (Q) such
that X̄n = Q′ for some n < M , and U(X̄) > 0. Thus, X̄ ∈ XM (Q) \ XM (Q; {Q′}), and, in
view of Lemma 4.3.1,∑

X∈XM (Q;{Q′})

U(X) ≤
( ∑

X∈Xn(Q)

U(X)
)
− U(X̄) = 1− U(X̄) < 1 .

Let αn := max
Q1,Q2∈V (1),Q1 ̸=Q2

∑
X∈Xn(Q1;{Q2})

U(X). By Lemma 4.3.1 we have αn ≤ 1 for all

n. We have

Lemma 4.3.4.
i) The sequence αn is decreasing.
ii) αn+m ≤ αnαm for every natural numbers n,m.

Proof. We prove ii). Let n,m > 0 and let X ∈ Xn+m(Q1; {Q2}), Y (X) = (X0, X1, ..., Xn),
Z(X) = (Xn, Xn+1, ..., Xn+m). Then, U(X) = U(Y (X))U(Z(X)), and Y (X) ∈ Xn(Q1; {Q2}),
Z(X) ∈ Xm(Q(X); {Q2}). Hence∑

X∈Xn+m(Q1;{Q2})

U(X) =
∑

X∈Xn(Q1;{Q2})

U(Y (X))U(Z(X)) ≤

∑
Y ∈Xn(Q1;{Q2}),Z∈Xm(Yn;{Q2})

U(Y )U(Z) =

∑
Y ∈Xn(Q1;{Q2})

(
U(Y )

∑
Z∈Xm(Yn;{Q2})

U(z)
)
≤
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∑
Y ∈Xn(Q1;{Q2})

(
U(Y ) max

Q3∈V (1)\{Q2}

∑
Z∈Xm(Q3;{Q2})

U(Z)
)

≤
∑

Y ∈Xn(Q1;{Q2})

αmU(Y ) ≤ αnαm ,

and ii) is proved. As α1 ≤ 1, we have αn+1 ≤ αnα1 ≤ αn and i) is proved.

Fix now Pj1 , Pj2 ∈ V (0) with j1 ̸= j2 and define W (=Wj1,j2) : V
(1)R by

W (Q) :=
+∞∑
n=0

Wn(Q) (4.3.3)

Wn(Q) :=
∑

X∈Xn(Q,Pj2
;V (1)\{Pj1

})

U(X) ∀Q ∈ (V (1) \ V (0)) ∪ {Pj1} , (4.3.4)

Wn(Pj2) =

{
1 if n = 0

0 if n > 0
, Wn(Pj) = 0 ∀j ̸= j1, j2 . (4.3.5)

The meaning of such a function W is that W represents the probability for a point staying
at Q and moving through V (1), that the first element of V (0) \Pj1 it meets is Pj2 . By this
point of view, formulas in (4.3.5) are natural. We have to check that the series in (4.3.3)
is convergent. In fact, the sum in (4.3.3) is not bigger than

+∞∑
n=0

αn . (4.3.6)

On the other hand, by Lemma 4.3.3 we have αM := l̄ < 1, and by Lemma 4.3.4 ii), we have
αMh ≤ l̄h. Thus, by Lemma 4.3.4 i), we have αn ≤ 1 if n < M , αn ≤ l̄ if M ≤ n < 2M ,
αn ≤ l̄2 if 2M ≤ n < 3M and so on, therefore the sum in (4.3.6) is

α0 + · · ·+ αM−1 + αM + · · ·+ α2M−1 + α2M + · · ·+ α3M−1 + · · ·

≤M +Ml̄ +Ml̄2 +Ml̄3 + ..... < +∞ ,

as we have a geometric series of ratio l̄ < 1. Now note that, when n = 0 we have no
summand in (4.3.4), as X = (X0), but X0 = Q and X0 = Xn = Pj2 ̸= Q, as Pj2 ∈ V (0)

and Pj2 ̸= Pj1 , thus Pj2 /∈ (V (1) \ V (0)) ∪ {Pj1}. Therefore, W0(Q) = 0, and in the sum in
(4.3.3) we can consider n ≥ 1.

Lemma 4.3.5. We have

W (Q) =
∑

Q′∈V (1)

δ(Q,Q′)W (Q′) ∀Q ∈ (V (1) \ V (0)) ∪ {Pj1} .

Proof. Let Q ∈ (V (1) \ V (0)) ∪ {Pj1}. Every summand in (4.3.4) with n > 0, is U(X)
where X = (Q,X1, ..., Xn) and
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U(X) = δ(Q,X1)U(X1, ..., Xn), Xn = Pj2 . (4.3.7)

It follows

Wn(Q) =
∑

Q′∈V (1)

δ(Q,Q′)Wn−1(Q
′) (4.3.8)

for every n > 0. In order to prove (4.3.8), we split the sum in (4.3.4) into three sums,
Σ1 + Σ2 + Σ3, where Σ1 is the sums of those summands in (4.3.4) with X such that
X1 ∈ (V (1) \ V (0))∪ {Pj1}, Σ2 is the sums of those summands in (4.3.4) with X such that
X1 = Pj2 and Σ3 is the sums of those summands in (4.3.4) with X such that X1 = Pj ,
j ̸= j1, j2. By (4.3.7) and the definition of Wn−1, we have

Σ1 =
∑

Q′∈(V (1)\V (0))∪{Pj1}

δ(Q,Q′)Wn−1(Q
′) . (4.3.9)

In the summands in Σ2, we have n = 1, as by definition of

Xn(Q,Pj2 ;V
(1) \ {Pj1}) ,

we have Xi /∈ V (1) \ {Pj1}, thus, in particular, Xi ̸= Pj2 for all i < n, and on the other
hand, X1 = Pj2 . Therefore,

Σ2 = δ(Q,Pj2) = δ(Q,Pj2)Wn−1(Pj2) . (4.3.10)

There are no summands in Σ3, as, on one hand, we have n = 1 for the same reason as
before, so that X1 = Xn = Pj2 , and on the other, X1 ̸= Pj2 by the definition of Σ3.
Therefore

Σ3 = 0 =
∑

Q′∈V (0)\{Pj1 ,Pj2}

δ(Q,Q′)Wn−1(Q
′) . (4.3.11)

By summing up (4.3.9), (4.3.10) and (4.3.11), we get (4.3.8), thus the Lemma.

We note that

S1(E)(v) =

k∑
i=1

E(v ◦ ψi) =

k∑
i=1

∑
j1<j2

cj1,j2

(
v
(
ψi(Pj1)

)
− v

(
ψi(Pj2)

))2

=

⇒ S1(E)(v) =
∑

Q1,Q2∈V (1)

c(Q1, Q2)
(
v(Q1)− v(Q2)

)2
(4.3.12)

by the definition of c(Q1, Q2). We have

Theorem 4.3.6. The function Wj1,j2 is the unique function that minimizes S1(E) on the
set
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L′
j1,j2 := {v ∈ RV (1)

: v(Pj2) = 1, v(Pj) = 0 ∀ j ̸= j1, j2} .

Proof. (Hint) In the same way as in the proof thatH1;E(u) is the function in L(u) satisfying
formula (3.5) in Lemma 3.9 of [P], in view of (4.3.12), we can prove that the unique function
that minimizes S1(E) in L′

j1,j2
is the function v satisfying∑

Q∈V (1)

c(Q̄,Q)
(
v(Q̄)− v(Q)

)
= 0 ∀ Q̄ ∈ (V (1) \ V (0)) ∪ {Pj1} .

But, for every Q̄ ∈ (V (1) \ V (0)) ∪ {Pj1}, the previous formula amounts to

v(Q̄) =
∑

Q∈V (1)

c(Q̄,Q)∑
Q′∈V (1)

c(Q̄,Q′)
v(Q) =

∑
Q∈V (1)

δ(Q̄,Q)v(Q) . (4.3.13)

Now, by Lemma 4.3.5, Wj1,j2 satisfies (4.3.13), and by its definition Wj1,j2 ∈ L′
j1,j2

, hence
v =Wj1,j2 .

Corollary 4.3.7. The restriction W̃ of Wj1,j2 to V (0), minimizes Λ(E) on the set

L′′
j1,j2 := {u ∈ RV (0)

: u(Pj2) = 1, u(Pj) = 0 ∀ j ̸= j1, j2} .

Proof. Let v ∈ L(W̃ ). Then, as v = W̃ = Wj1,j2 on V (0), and Wj1,j2 ∈ L′
j1,j2

, by the
definition of L′

j1,j2
, we have v ∈ L′

j1,j2
. Thus, by Theorem 4.3.6, S1(E)(v) ≥ S1(E)(Wj1,j2).

Then, by definition of Λ, we have

S1(E)(Wj1,j2) = Λ(E)(W̃ ) . (4.3.14)

Given u ∈ L′′
j1,j2

, we have H1;E(u) ∈ L′
j1,j2

, hence

Λ(E)(u) = S1(E)(H1;E(u)) ≥ S1(E)(Wj1,j2) by Theorem 4.3.6

= Λ(E)(W̃ ) by (4.3.14)

We put E′ = Λ(E), and we want to evaluate W̃ at all points of V (0). As the values of
W̃ (Pj) =Wj1,j2(Pj), by the definition of Wj1,j2 are prescribed for all j ̸= j1, we have only

to evaluate Wj1,j2(Pj1). By proceeding as in Theorem 4.3.6, we have that W̃ satisfies∑
j ̸=j1

cj1,j(E
′)
(
W̃ (Pj1)− W̃ (Pj)

)
= 0

that amounts to
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Wj1,j2(Pj1) = W̃ (Pj1) =
∑
j ̸=j1

cj1,j(E
′)∑

j′ ̸=j1

cj1,j′(E
′)
W̃ (Pj) =

∑
j ̸=j1

cj1,j(E
′)∑

j′ ̸=j1

cj1,j′(E
′)
Wj1,j2(Pj) =

cj1,j2(E
′)∑

j′ ̸=j1

cj1,j′(E
′)

recalling that Wj1,j2(Pj2) = 1 and Wj1,j2(Pj) = 0 if j ̸= j1, j2. Now, suppose

Wj1,j2(Pj1) = cj1,j2 ∀ j1, j2 . (4.3.15)

Then we have cj1,j2
(
Λ(E)

)
= ρcj1,j2(E), where ρ =

∑
j′ ̸=j1

cj1,j′(E
′), which, by Remark

4.2.6, is independent of j, hence E is an eigenform. Thus, the problem of the existence of
an eigenform is reduced to the problem of the existence of a fixed point of the map

(cj1,j2) 7→
(
Wj1,j2(Pj1)

)
(4.3.16) .

The nontrivial point consists in proving that such a map in fact sends H into itself, and
this will be the aim of next section. We are now giving a probabilistic interpretation of the
fixed points of the map in (4.3.16). Recalling the meaning of Wj1,j2(Q), (cj1,j2) is a fixed
point of the map in (4.3.16) if the probability for a point staying at Pj1 that the first point
of V (0) it reaches is Pj2 is the same if the point moves through V (0) and if the points moves
through V (1), and it is not difficult to prove that this implies that the probability is the
same if the point moves through V n), for every natural n, in other words the probability
of a point staying at Pj1 that the first point of V (0) it reaches is Pj2 is independent of the
scale. Those considerations have suggested the notion of Brownian motion on the fractal.
However, we will not insist on this point.

4.4 Lindstrøm Theorem.

In this Section, we will prove the Lindstrøm Theorem, that is that, on any nested fractal
there exists an eigenform. By the previous considerations, it suffices to prove that given
(cj1,j2) ∈ H, then

(
Wj1,j2(Pj1)

)
∈ H. The only nontrivial point is iii) of the definition

of H, i) being a consequence of iii), and ii) being a consequence of the previously proved
formula

Wj1,j2(Pj1) =
cj1,j2(E

′)∑
j′ ̸=j1

cj1,j′(E
′)
, E′ := Λ(E) , (4.4.1)

Theorem 4.4.1. If (cj1,j2) ∈ H, then
(
Wj1,j2(Pj1)

)
∈ H.

Proof. As noted above, it suffices to prove that
(
Wj1,j2(Pj1)

)
satisfies iii) in the definition

of H. By (4.4.1), Remarks 4.2.5 and 4.2.6, Wj1,j2 only depends on ||Pj1 − Pj2 ||, hence it
suffices to prove that if
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||Pj1 − Pj3 || > ||Pj1 − Pj2 || > 0 (4.4.2)

then

Wj1,j2(Pj1) ≥Wj1,j3(Pj1) . (4.4.3)

Let H = HPj2 ,Pj3
S = SPj2 ,Pj3

, let A be the closed half-space bounded by H containing
Pj2 and B be the closed the half-space bounded by H containing Pj3 . By (4.4.2), Pj1 ∈ A.
Note that

Q1 ∼ Q2 ⇒ S(Q1) ∼ S(Q2)

as, if Q1 ∼ Q2 then Q1, Q2 ∈ Vi for some i = 1, ..., k, and S(Q1), S(Q2) ∈ S(Vi), but d)
of the definition of nested fractal implies that S(Vi) is a 1-cell, so that S(Q1) ∼ S(Q2), as
claimed. Let T be defined by

T (x) =

{
x if x ∈ A

S(x) if x ∈ B

and let Y2 = X (Pj1 , Pj2 ;V
(0) \ {Pj1}), Y3 = X (Pj1 , Pj3 ;V

(0) \ {Pj1}). By the definition of
Wj1,j2 , then (4.4.3) amounts to ∑

X∈Y2

U(X) ≥
∑

X∈Y3

U(X) (4.4.4)

Now,

Q1 ∼ Q2 ⇒ T (Q1) ∼ T (Q2) (4.4.5)

In fact, if Q1, Q2 ∈ A, then (4.4.4) is trivial. If Q1, Q2 ∈ B then T (Q1) = S(Q1) ∼
S(Q2) = T (Q2). If Q1 /∈ B, Q2 /∈ A, then T (Q1) = Q1, T (Q2) = S(Q2), and the 1-cell Vi
containing Q1 and Q2, contains then points on both sides on H, thus by the hypothesis,
S maps Vi into itself, hence T (Q2) = S(Q2) ∈ Vi, and T (Q1) = Q1 ∈ Vi by hypothesis, so
that T (Q1) ∼ T (Q2), and (4.4.5) is proved. Moreover,

Q1 ∼ Q2 ⇒ δ(T (Q1), T (Q2)) ≥ δ(Q1, Q2) (4.4.6)

In fact, (4.4.6) is trivial if Q1, Q2 ∈ A, but it is also clear if Q1, Q2 ∈ B. In fact, c(Q1, Q) =
c
(
S(Q1), S(Q)

)
for every Q ∼ Q1, as S preserves the distance and the coefficients cj,j′ only

depend on the distance. If finally, Q1 /∈ B, Q2 /∈ A, then, Q1, Q2, S(Q2), as previously
seen, lie in a common 1-cell, and by the definition of S, ||S(Q2)−Q1|| ≤ ||Q2−Q1||, so that
c
(
T (Q1), T (Q2)

)
= c

(
Q1, S(Q2)

)
≥ c(Q1, Q2), and (4.4.6) is proved. Given X ∈ Y2 ∪ Y3,

X = (X0, X1, ..., Xn), we put T (X) = (T (X0), T (X1), ..., T (Xn)). Note that T (X) ∈ Y2

for every X ∈ Y2 ∪ Y3. Now, for any Y ∈ Y2 such that Yi ∈ A for each i, let n = |Y |, and
put

Y2(Y ) = {X ∈ Y2 : T (X) = Y }, Y3(Y ) = {X ∈ Y3 : T (X) = Y } .
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Note that the hypothesis on Y implies T (Yi) = Yi for each i. Clearly, in order to prove
(4.4.4), hence the Theorem, it suffices to prove∑

X∈Y2(Y )

U(X) ≥
∑

X∈Y3(Y )

U(X) (4.4.7)

Note that every X ∈ Y2(Y ) ∪ Y3(Y ) has the form Xi = Sαi,X (Yi), where αi,X = 0, 1.
We use the convention that, if Xi ∈ A ∩ B, so that S(X) = X, and αi,X thus can be
arbitrary, then αi,X = αi−1,X . Note that, if X ∈ Y2(Y ) ∪ Y3(Y ), then X0 = Pj1 = Y0,
thus α0,X = 0. On the other hand, If X ∈ Y2(Y ), then, Xn = Pj2 = Yn, thus αn,X = 0,
while if X ∈ Y3(Y ), then, Xn = Pj3 = S(Yn), thus αn,X = 1. Thus, putting

JX = {i : αi(X) ̸= αi−1(X)} ,
then #(JX) is even if X ∈ Y2(Y ), and odd if X ∈ Y3(Y ). However JX is not an arbitrary
subset of {1, ..., n}, Namely it is a subset of

J :=
{
i = 1, ..., n : Yi /∈ A ∩B,S(Yi) ∼ Yi−1

}
and, conversely, it is easy to see that, for every subset of J̃ of J , there exists exactly
one X ∈ Y2(Y ) ∪ Y3(Y ) such that JX = J̃ , and moreover X ∈ Y2(Y ) if J̃ is even, and
X ∈ Y3(Y ) if J̃ is odd. Moreover, if X ∈ Y2(Y ) ∪ Y3(Y ), we have

U(X) = U(Y )
∏

i∈J(X)

ηi, ηi =
δ(Yi−1, S(Yi))

δ(Yi−1, Yi)
≤ 1

We have ηi ≤ 1 as T (S(Yi)) = Yi, thus by (4.4.6), δ(Yi−1, Yi) = δ
(
T (Yi−1), T (S(Yi))

)
≥

δ
(
Yi−1, S(Yi)

)
by (4.4.6). Thus,∑

X∈Y2

U(X)−
∑

X∈Y3

U(X) = U(Y )
( ∑

J̃⊆J, #(J̃) even

∏
i∈J̃

ηi −
∑

J̃⊆J, #(J̃) odd

∏
i∈J̃

ηi

)
= U(Y )

(
1−

∑
i∈J

ηi +
∑

i1,i2∈J

ηi1ηi2 −
∑

i1,i2,i3∈J

ηi1ηi2ηi3 + · · ·
)

= U(Y )
∏
i∈J

(
1− ηi

)
≥ 0

where in the sums we mean that i1, i2, i3 are mutually different, and (4.4.7) holds, thus the
Theorem is proved. To be precise, the previous argument does not hold when U(Y ) = 0,
as ηi could contain a 0-denominator, but in such a case, the same argument shows that
every U(X) is 0, so (4.4.7) holds in this case too.

Corollary 4.4.2. There exists an eigenform on every nested fractal.

Proof. By Theorem 4.4.1, the map (cj1,j2) 7→
(
Wj1,j2(Pj1)

)
maps H into itself. Such a map

is continuous, by Remark 4.2.4 and (4.4.1). As previously observed, the set H is compact,
convex and nonempty, therefore it has a fixed point. By the considerations in the end of
Section 4.3, Λ has an eigenform.
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