
3. Geometry of Fractals

3.1 Hausdorff Measures

Recall that an outer measure (or exterior measure) on a set X is a function µ defined
on P(X) (the set of the subsets of X) with values in [0,+∞], satisfying the following
properties:
i) µ(ø) = 0.
ii) If A ⊆ B, then µ(A) ≤ µ(B).

iii) For every sequence Ai of subsets of X, we have µ
(+∞∪

i=1

Ai

)
≤

+∞∑
i=1

µ(Ai).

There are two main differences between the notion of outer measure, and the notion of
measure. One is that an outer measure is a function defined on all P(X), while a measure
is defined on a σ-algebra. The other difference is that an outer measure is σ-subadditive
(property iii) ), but not necessarily additive. If µ is an outer measure on a set X, then a
subset E of X is called mesasurable (with respect to µ) if it satisfies

µ(A) = µ(A ∩ E) + µ(A \ E) ∀A ⊆ X . (3.1.1)

As well known from the general measure theory, the set M of the measurable sets is a
σ-algebra, and the restriction of µ to M is a measure.

We are now going to define the Hausdorff measure. For every subset A of a metric
space X and E ⊆ P(X), for every α ≥ 0, δ > 0, we put

H ′
α,δ;E(A) = inf

{
hα((Si))|(Si) ∈ Sδ,A,E

}
Sδ,A,E :=

{
(Si) : Si ∈ E ,

+∞∪
i=1

Si ⊇ A,diam(Si) ≤ δ
}
, hα((Si)) :=

+∞∑
i=1

(
diam(Si)

)α
,

H ′
α;E(A) = lim

δ→0+
H ′

α,δ;E(A)

with the usual convention inf(ø) = +∞, where we intend in ((Si)) that i = 1, 2, 3, ....
When E = P(X), we could omit E and simply write H ′

α,δ(A), H
′
α(A), Sδ,A. Note that

the limit in the definition of H ′
α;E(A) does exist as we can easily verify that H ′

α,δ;E(A) is
decreasing with respect to δ. The α dimensional (or simply α) Hausdorff measure Hα is
given by

Hα = KαH
′
α

where Kα is a suitable positive constant. Such a constant is chosen so that the n-
dimensional Hausdorff measure in Rn amounts to Lebesgue measure. Note that, at this
point, we cannot state that such a positive constant really exists, as we could also guess
that H ′

n is identically 0 on Rn. However, as we will see in Section 3.3, H ′
n is in fact a

positive multiple of Lebesgue measure so that such a constant Kn really exists. The value
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of the constant for positive, not integer α, is not important for our considerations. Note
that in the definition of H ′ we take the infimum with countable coverings of A. If we would
take the infimum with finite coverings, every unbounded set A would have measure +∞,
as it cannot be covered by finitely many sets of diameter not greater than δ. Note however,
that the finite coverings are included in Sδ,A,E as it suffices to consider (Si) with Si = ø
for i > n̄. It is a standard fact from general measure theory that in fact H ′

α,δ;E , thus H
′
α

and Hα, are outer measures. In the following, we will often give results about H ′
α, the

corresponding ones for Hα being immediate consequences. Note that H ′
0 is the measure

counting the points, where we intend that 00 = 1, with the exception that (diam(ø))0 = 0.

Remark 3.1.1. If

E ′ ⊆ E (3.1.2)

then trivially,

H ′
α,δ;E(A) ≤ H ′

α,δ;E′(A) ⇒ H ′
α;E(A) ≤ H ′

α;E′(A) . (3.1.3)

If moreover,

∀E ∈ E ∃E′ ∈ E ′ : E′ ⊇ E,diam(E′) = diam(E) (3.1.4)

then H ′
α,δ;E(A) = H ′

α,δ;E′(A), therefore H ′
α;E(A) = H ′

α;E′(A). In fact, put D(E) to be
the set E′ given by (3.1.4), then for every (Si) ∈ Sδ,A,E , then (D(Si)) ∈ Sδ,A,E′ and
hα(D(Si)) ≤ hα((Si)). As an important particular case, defining F to be the set of the
closed sets in X and putting E = P(X), E ′ = F , we have

H ′
α,δ(A) = H ′

α,δ;F (A) (3.1.5)

that is, in the definition of H ′
α,δ we can assume that the sets are closed. It suffices in fact,

to put E′ = E in (3.1.4). If (3.1.4) is replaced by the more general

∀ η > 0 ∀E ∈ E ∃E′ ∈ E ′ : E′ ⊇ E,diam(E′) ≤ diam(E) + η , (3.1.6)

then

H ′
α;E(A) = H ′

α;E′(A) . (3.1.7)

To see this, in view of (3.1.3) it suffices to prove that ≥ holds in (3.1.7) and we can clearly
assume H ′

α;E(A) < +∞. Let ε > 0 and let δ̄ > 0 be such that if 0 < δ < δ̄, then

H ′
α,δ;E(A) < H ′

α;E(A) + ε . (3.1.8)

Put D(η,E) to be the set E′ given by (3.1.6). For every A ⊆ X and (Si) ∈ Sδ,A,E , by the
continuity of the map t 7→ tα, we have (diam(Si)+ ηi)

α < (diam(Si))
α + ε

2i for sufficiently
small, positive ηi. Let S

′
i = D(ηi, Si), so that (diam(S′

i))
α < (diam(Si))

α + ε
2i . Therefore,

by the definition of hα we have
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hα((S
′
i)) ≤ hα((Si)) +

+∞∑
i=1

ε

2i
= hα((Si)) + ε (3.1.9)

Now, for every δ such that 0 < δ < δ̄, if (Si) ∈ S δ
2 ,A,E , and ηi <

δ
2 , then (S′

i) ∈ Sδ,A,E′ ,

thus, H ′
α,δ;E′(A) ≤ hα((S

′
i)) ≤ hα((Si)) + ε. As this holds for every (Si) ∈ S δ

2 ,A,E , in view

of (3.1.8), we have

H ′
α,δ;E′(A) ≤ H ′

α, δ2 ;E
(A) + ε ≤ H ′

α;E(A) + 2ε .

Hence, H ′
α;E′(A) ≤ H ′

α;E(A) + 2ε. By the arbitrarity of ε > 0, ≥ holds in (3.1.7). As an
important particular case, defining O to be the set of the open sets in X, and putting
E = P(X), E ′ = O, we have

H ′
α,δ(A) = H ′

α,δ;O(A) (3.1.10)

that is, in the definition of H ′
α,δ we can assume that the sets are open. In fact, for every

subset E of X, the set E η
2
:= {x ∈ X : d(x,E) < η

2} is open and contains E (cf. K 1
h
in

Lemma 1.8.1), and moreover, diam
(
E η

2

)
≤ diam(E) + η, as, given two points x, x′ ∈ E η

2
,

then there exist y, y′ ∈ E such that d(x, y) < η
2 , d(x

′, y′) < η
2 , thus

d(x, x′) ≤ d(x, y) + d(y, y′) + d(y′, x′) ≤ η

2
+ diam(E) +

η

2
= diam(E) + η .

Note that, if A is compact, by the very definition of compactness, we can consider in the
definition of H ′

α,E only finite open coverings.

Remark 3.1.2. By the essentially same argument we see that in the definition of H ′
α;E(A)

we can require that the sets Si are subsets of A. In fact, hα((Si ∩ A)) ≤ hα((Si)). This
means that the definition of H ′

α(A) can be given considering A as a metric space, and not
as a metric subspace of X. As a consequence, the definition of H ′

α(A) does not depend on
the metric space X.

We now want to prove that the Borel sets are measurable with respect to the outer measure
H ′

α. We define dist(A,B) := inf{d(x, y) : x ∈ A, y ∈ B}. This notion, clearly, is very
different from that of Haurdorff distance. In particular, dist(A,B) = 0 if A∩B ̸= ø. Note
also that if A and B are nonempty disjoint compact sets, then dist(A,B) > 0.

Lemma 3.1.3. If A and B are nonempty subsets of X, and dist(A,B) > 0, then

Hα(A ∪B) = Hα(A) +Hα(B) .

Proof. We will prove the analogous result for H ′
α, which is clearly equivalent. Let δ ∈]

0,
dist(A,B)

2

[
. Then, if
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(
U ∩A ̸= ø, V ∩B ̸= ø, diamU < δ,diamV < δ

)
⇒ U ∩ V = ø . (3.1.11)

In fact, in the opposite case, there would exist x̄ ∈ U ∩ V , thus for every x1, x2 ∈ U ∪ V ,
d(x1, x2) ≤ d(x̄, x1) + d(x̄, x2) ≤ δ+ δ. Hence, if x1 ∈ U ∩A, x2 ∈ V ∩B, then d(x1, x2) ≤
2δ < dist(A,B), a contradiction. Let (Si) ∈ Sδ,A∪B , let

J := {i = 1, 2, 3, ... : Si ∩ (A ∪B) ̸= ø} ,

J1 := {i = 1, 2, 3, ... : Si ∩A ̸= ø}, J2 := {i = 1, 2, 3, ... : Si ∩B ̸= ø}. Then, by (3.1.11), J
is the union of the disjoint sets J1 and J2, thus

hα((Si)) ≥
∑
i∈J

(diamSi)
α =

∑
i∈J1

(diamSi)
α +

∑
i∈J2

(diamSi)
α ≥ H ′

α,δ(A) +H ′
α,δ(B)

thus, as (Si) is an arbitrary element of Sδ,A∪B , we have H
′
α,δ(A∪B) ≥ H ′

α,δ(A)+H
′
α,δ(B)

and taking the limit, as δ → 0+,

H ′
α(A ∪B) ≥ H ′

α(A) +H ′
α(B)

and, as the opposite inequality is valid independently of A and B by the definition of outer
measure, we have proved the Lemma.

Theorem 3.1.4. Every Borel set is measurable with respect to Hα.

Proof. Since the set of the measurable sets is a σ-algebra, by the definition of Borel sets
(the elements of the smallest σ-algebra containing the open sets), it suffices to prove that,
for every nonempty open set E ̸= X, then E is measurable, that is (3.1.1) holds. In (3.1.1),
we have only to prove ≥, ≤ holding independently of A and E. Moreover, we can assume
Hα(A) < +∞, the opposite case being trivial. Let

A1 :=
{
x ∈ A : d(x,X \ E) ≥ 1

}
, Ah :=

{
x ∈ A :

1

h
≤ d(x;X \ E) <

1

h− 1

}
, h ≥ 2 .

It easily follows:

A ∩ E =
+∞∪
i=1

Ai . (3.1.12)

Hα

( ∪
i∈J

Ai

)
≤

∑
i∈J

Hα(Ai) ∀J ⊆ {1, 2, 3, ...} , (3.1.13)

Hα(A) ≥ Hα

( ∪
i∈J

Ai

)
≥

∑
i∈J

Hα(Ai) ∀ J = J1 or J = J2 , (3.1.14)

where J1 = {1, 3, 5, 7, ...}, J2 = {2, 4, 6, 8, ...}. To prove (3.1.12), note that every x ∈ A∩E
has positive distance d from the closed set X \ E, thus either d ≥ 1 or 1

h ≤ d < 1
h−1 for
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some h ≥ 2. Formula (3.1.13) is obvious as Hα is an outer measure. The first inequality
in (3.1.14) immediately follows from (3.1.12). In order to prove the second inequality in
(3.1.14), observe that for j = 1, 2, 3, ... we have

dist
(
Aj+2,

∪
i≤j

Ai

)
≥ 1

j(j + 1)
(3.1.15)

Indeed, if x ∈
∪
i≤j

Ai and y ∈ Aj+2, then d(x,X \ E) ≥ 1
j and d(y,X \ E) ≤ 1

j+1 . As

d(x,X \ E) ≤ d(x, y) + d(y,X \ E), it follows d(x, y) ≥ 1
j − 1

j+1 = 1
j(j+1) and (3.1.15) is

proved. By (3.1.15) and Lemma 3.1.3, we have for every h ≥ 2,

Hα

(
(A2h) ∪

( ∪
i<h

A2i

))
= Hα(A2h) +Hα

( ∪
i<h

A2i

)
and, by induction, Hα

( ∪
i∈J2

Ai

)
≥ Hα

( ∪
i≤h

A2i

)
=

h∑
i=1

Hα(A2i) and, taking the limit for

h → +∞, we get (3.1.14) for J = J2, and the argument for J1 is essentially the same,
so that (3.1.14) is proved. By (3.1.14), as we have assumed Hα(A) < +∞, we have∑
i∈J,i>h

Hα(Ai) −→
h→+∞

0 for J = J1, J2. Therefore,

Hα

( +∞∪
i=h+1

Ai

)
≤

+∞∑
i=h+1

Hα(Ai) =
∑

i∈J1,i>h

Hα(Ai) +
∑

i∈J2,i>h

Hα(Ai) −→
h→+∞

0 . (3.1.16)

Since dist(A \ E,
h∪

i=1

Ai) ≥ 1
h by the definition of Ai, by Lemma 3.1.3 we have

Hα(A) ≥ Hα

(
(A \ E) ∪

( h∪
i=1

Ai

)
≥ Hα(A \ E) +Hα

( h∪
i=1

Ai

)
(3.1.17)

and, as A ∩ E =
( h∪

i=1

Ai

)
∪
( +∞∪

i=h+1

Ai

)
by (3.1.12), then

Hα(A ∩ E) ≤ Hα

( h∪
i=1

Ai

)
+Hα

( +∞∪
i=h+1

Ai

)
and, by (3.1.17) we have

Hα(A) ≥ Hα(A \ E) +Hα(A ∩ E)−Hα

( +∞∪
i=h+1

Ai

)
so that, taking the limit for h → +∞, by (3.1.16), the inequality ≥ in (3.1.1) is proved.
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3.2 Hausdorff Dimension.

In this Section, we will define the Hausdorff dimension of a set in a metric space. This will
turn out to be a nonnegative real number, not necessarily integer. We need a lemma.

Lemma 3.2.1 If A is a subset of a metric space and Hα(A) < +∞, then Hβ(A) = 0 for
every β > α.

Proof. Let (Si) ∈ Sδ,A. Then

hβ((Si)) =

+∞∑
i=1

(
diam(Ai)

)β
=

+∞∑
i=1

(
diam(Ai)

)α(
diam(Ai)

)β−α

≤ δβ−α
+∞∑
i=1

(
diam(Ai)

)α
= δβ−αhα((Si))

therefore, H ′
β,δ(A) ≤ δβ−αH ′

α,δ(A). As β − α > 0, we have δβ−α −→
δ→0+

0, thus the Lemma

easily follows taking the limit for δ → 0+.

We now put

MI(A) = {α ≥ 0 : Hα(A) ∈ I}, I ⊆ [0,+∞] .

As a consequence of Lemma 3.2.1, if α ∈M]0,+∞[(A) then every β > α lies inM{0}(A) and
every β < α lies inM{+∞}(A), so thatM]0,+∞[(A) is either empty or a singleton. Moreover,
M{0}(A) is an upper half-line, that is, if it contains α, then it contains every β > α,
therefore it has the form ]ᾱ,+∞[ or [ᾱ,+∞[ or is empty. Similarly, M{+∞}(A) is a lower
half-line, that is, if it contains α, then it contains every β < α, therefore it has the form [0, ᾱ[
or [0, ᾱ] or is empty, and, by Lemma 3.2.1 again, every element of M{0}(A) is greater than
every element of M{+∞}(A). It follows that infM{0}(A) = supM{+∞}(A) =: dimH(A),
and dimH(A) is called Hausdorff dimension of A. Here we use the standard convention
inf(ø) = +∞ and the less standard convention sup(ø) = 0. Clearly, if 0 < Hᾱ(A) < +∞,
then ᾱ is the unique element of M]0,+∞[(A) and amounts to dimH(A). Note that the
converse does not hold. In other words, if ᾱ = dimH(A), we could have Hᾱ(A) = 0 or
Hᾱ(A) = +∞. To see this, as we know that the n-Husdorff measure amounts to Lebesgue
measure, then Hn([−k, k]n) = (2k)n, then by Lemma 3.2.1 we have Hα([−k, k]n) = 0, thus
Hα(Rn) = 0 for every α > n, Hα([−k, k]n) = +∞, thus Hα(Rn) = +∞ for every α < n,
where we use the well known fact that the countable union of sets of 0-measure is a set of
0-measure and the countable union of sets of ∞-measure is a set of ∞-measure. Therefore,
by definition n = dimH(Rn), but Hn(Rn) = +∞.

We will now sketch the definition of topological dimension. The idea of the definition
of topological dimension consists of a notion of dimension of topological spaces (not neces-
sarily linear spaces), which is invariant under homeomorphisms, and amounts to the usual
notion of dimension in the standard cases such as, for example Rn, or manifolds. Moreover,
the topological dimension is always an integer number, while the Hausdorff dimension is
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not necessarily integer, and is not necessarily (in fact is not) invariant under homeomor-
phisms. There are different ways to define the topological dimension, that are however
equivalent in the case of separable metric spaces (in particular of subsets of Rn), not in the
case of arbitrary topological spaces. We will define when dim(X) ≤ n, thus dim(X) = n
will be defined by the obvious equivalence

dim(X) = n ⇐⇒
(
dim(X) ≤ n,dim(X) ̸≤ n− 1

)
.

The first notion of dimension is due to Poincaré, and is the following

dim(ø) = −1,
dim(X) ≤ n if and only if for every x ∈ X there exists a basis {Ui} of neighbourhoods of
x such that dim

(
∂Ui

)
≤ n− 1.

The idea of this definition is that for example in Rn every point has a basis of neighbour-
hoods (the balls centered at x), whose boundaries have dimension n−1. The second notion
is due to Lebesgue. We only see the (simplified) version when the space is a compact metric
space (recall that the compact metric spaces are separable).

dim(X) ≤ n if and only if for every ε > 0 there exists an open covering of X having mesh
smaller than ε such that the intersection of n+ 2 elements of it is empty.

This definition in inspired by the observation that we can cover a closed interval with
arbitrarily small intervals, such that any three of them have empty intersection, we can
cover a closed square with arbitrarily small open squares, such that any four of them have
empty intersection, and so on. Clearly, both the previous definitions are invariant under
homeomorphisms. Note that it is simple to prove that, with any of the previous definitions,
the dimension of any subset of Rn is ≤ n, but it is far from trivial that the dimension of
Rn is precisely n.

The notions of Hausdorff and topological dimension are not unrelated. Namely, it is
possible to prove that

dimH(X) ≥ dim(X) (3.2.1)

for every separable metric space X. There is no standard definition of a fractal. However,
one of the proposed definition is that a fractal is a set X such that in (3.2.1) the strict
inequality holds.

3.3 Hausdorff Dimension of Fractals

In this Section we will evaluate the Hausdorff dimension of self-similar sets. Here, we will
mean that a self-similar set is the unique nonempty compact Γ in Rν such that

Φ(Γ) = Γ, Φ(A) :=
k∪

i=1

ψi(A) ∀A ⊆ Rν , (3.3.1)

where ψi, i = 1, ..., k, k ≥ 2, are contracting similarities in Rν , that is, ψi are maps from
Rν into itself such that
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||ψi(x)− ψi(y)|| = σi||x− y|| ∀x, y ∈ Rν , 0 < σi < 1 .

We also assume that the fixed points Pi of ψi are all different, that is Pi1 ̸= Pi2 if i1 ̸= i2.
Note that in many cases we have σi = σ for every i, that is the contraction factors are all
equal. Put in the sequel σmax = max{σi, i = 1, ..., k}, σmin = min{σi, i = 1, ..., k}. We
have required k ≥ 2, the case k = 1 being trivial: in fact, if k = 1 Γ is the fixed point
of the unique contracting similarity. We will use in the sequel the following trivial fact :
diam(ψi(A)) = σidiam(A). In the sequel of this section we will denote by ᾱ the unique
positive real number satisfying

k∑
i=1

σᾱ
i = 1 . (3.3.2)

As the map t 7→
k∑

i=1

σα
i is continuous, strictly decreasing as σi < 1, and tends to 0 at +∞,

and to +∞ at 0, then such an ᾱ exists and is unique. Note that, if σi = σ for all i, then
(3.3.2) amounts to kσᾱ = 1, that in turns amounts to

ᾱ = logσ
(1
k

)
=

ln
(
1
k

)
ln(σ)

=
ln(k)

ln
(
1
σ

) ,
for example, in the case of the Cantor set, ᾱ = ln 2

ln 3 ; in the case of the Sierpinski Gasket,

ᾱ = ln 3
ln 2 ; in the case of the Sierpinski Carpet, ᾱ = ln 8

ln 3 . We will prove that ᾱ defined by
(3.3.2) is the Hausdorff dimension of Γ under a suitable condition (open set condition),
which we will now introduce.

Open Set Condition (shortly O.S.C.): there exists a nonempty bounded subset Â of Rν

such that the sets ψi(Â), i = 1, ..., k are mutually disjoint and contained in Â.

In order to prove the result on the Hausdorff dimension of Γ, we need some lemmas.

Lemma 3.3.1. If T : Rν → Rν satisfies

T (0) = 0, ||T (x)− T (y)|| = ||x− y|| , (3.3.3)

then T is linear, thus is a linear isomorphism and a homeomorphism.

Proof. Putting y = 0 in the second equality in (3.3.3), and using the first, we get ||T (x)|| =
||x||. In other words, T preserves the distance (and the norm). Hence, using the known
formula u ·v = 1

2

(
||u||2+ ||v||2−||u−v||2

)
, we see that T also preserves the scalar product,

namely

T (x) ·T (y) = 1

2

(
||T (x)||2+ ||T (y)||2−||T (x)−T (y)||2

)
=

1

2

(
||x||2+ ||y||2−||x−y||2

)
= x ·y
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so that, if ei, i = 1, ..., ν denotes the canonical basis, we have ei · ej = δi,j , hence T (ei) ·
T (ej) = δi,j , that is T (ei) form an orthonormal basis. We will now prove that, for any
ai ∈ R, we have

T
( ν∑
i=1

aiei
)
=

ν∑
i=1

aiT (ei) , (3.3.4)

so that T is linear. We have T
( ν∑
i=1

aiei
)
=

ν∑
i=1

biT (ei) for some bi, namely bi = T
( ν∑
i=1

aiei
)
·

T (ei), so that bi =
( ν∑
i=1

aiei
)
· ei = ai and (3.3.4) is proved, and T is linear. By (3.3.3),

T is one-to-one, thus a linear isomorphism. As any linear map between finite-dimensional
linear spaces is continuous, both T and T−1 are continuous, thus T is a homeomorphism.

Corollary 3.3.2. Every ψi is a homeomorphism from Rν onto Rν , hence ψi(Â) is open.

Proof. Put T (x) :=
ψi(x)− ψi(0)

σi
. Since ψi is a contraction of factor σi, we see that T

satisfies the hypothesis of Lemma 3.3.1, thus is a homeomorphism. As ψi = β ◦ T , where
β(y) = σy + ψi(0), thus clearly β is a homeomorphism, then ψi is a homeomorphism as
well.

Recall that we put Ei1,...,in := ψi1,...,in(E) = ψi1 ◦ · · · ◦ ψin(E) for every subset E of Rν .
The definition of ᾱ in (3.3.1) is motivated by the following lemma

Lemma 3.3.3. For every bounded set E we have hᾱ((Ei1,...,in) : i1, ..., in = 1, ..., k) =
(diam(E))ᾱ.

Proof. We have

hᾱ((Ei1,...,in) : i1, ..., in = 1, ..., k) =
k∑

i1,...in=1

(
diamEi1,...,in

)ᾱ
=

k∑
i1,...in=1

(
σᾱ
i1 · · ·σ

ᾱ
in

)
(diamE)ᾱ = (diamE)ᾱ

( k∑
i1=1

σᾱ
i1

)
· · ·

( k∑
in=1

σᾱ
in

)
= (diamE)ᾱ

where in the last equality we have used (3.3.2).

Note that, in view of (3.3.1), we have

Φn(Γ) = Γ , (3.3.5)

and, on the other hand,

Φn(A) =

k∪
i1,...,in=1

Ai1,...,in ∀A ⊆ Rν . (3.3.6)
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Moreover, Φ(Â) ⊆ Â, by the definition of Â, so that also Φ(Â) ⊆ Â. It follows (see [P])

that Φn(Â) is a decreasing sequence of sets, and
+∞∩
n=0

Φn(Â) = Γ, thus

Γ ⊆ Â . (3.3.7)

Lemma 3.3.4. If the following hold

i) ∃ c1 > 0 | ∀ δ > 0 ∃(Ui) ∈ Sδ,Γ | hᾱ((Ui)) ≤ c1.
ii) There exists c2 > 0 so that for every finite open covering (Ui) of Γ we have hᾱ((Ui)) ≥ c2,

then 0 < Hᾱ(Γ) < +∞, thus ᾱ = dimH(Γ).

Proof. By i) we have Hᾱ,δ(Γ) ≤ c1 for every δ, hence Hᾱ(Γ) ≤ c1. By ii), in view of
(3.1.10), we have Hᾱ(Γ) ≥ c2.

Lemma 3.3.5. For every self-similar set Γ, i) of Lemma 3.3.4 holds.

Proof. By (3.3.5) and (3.3.6), S := (Γi1,...,in) : i1, ..., in = 1, ..., k, is a covering of Γ, and

by Lemma 3.3.3, hᾱ(S) =
(
diam(Γ)

)ᾱ
:= c1. On the other hand,

diam(Γi1,...,in) = σi1 · · ·σindiam(Γ) ≤ σn
maxdiam(Γ) ≤ δ ,

thus S ∈ Sδ,Γ, for sufficiently large n.

While i) of Lemma 3.3.4 is always valid, the validity of ii) essentially depends on O.S.C.
We need some further notation. We put

Dn =
{
(d1, ..., dn) : d1, ...dn = 1, ..., k

}
, D0 = ø, D =

+∞∪
n=0

Dn .

If d = (d1, ...., dn), then, for ever A ⊆ Rν we put Ad = Ad1,...,dn , Aø = A, σd = σd1 · · ·σin .
We also put n = l(d) (the length of d), d(m) = (d1, ..., dm) when m ≤ n.

Lemma 3.3.6. If O.S.C. holds, and (i1, ..., in), (i
′
1, ...., i

′
m) ∈ D and there exists j ≤

min{n,m} such that ij ̸= i′j , then Âi1,...,in ∩ Âi′1,...,i
′
m
= ø.

Proof. We can and do assume ih = i′h for every h < j, so that

Âi1,...,in = ψi1,...,ij−1

(
ψij

(
ψij+1,...,in(Â)

))
,

Âi′1,...,i
′
m
= ψi1,...,ij−1

(
ψi′

j

(
ψi′

j+1
,...,i′n

(Â)
))
.

On the other hand, by O.S.C., ψij

(
ψij+1,...,in(Â)

)
⊆ Âij , ψi′

j

(
ψi′

j+1
,...,i′m

(Â)
)
⊆ Âi′

j
, and

as the sets Âij and Âi′
j
are disjoint by O.S.C. again, the sets ψij

(
ψij+1,...,in(Â)

)
and

ψi′
j

(
ψi′

j+1
,...,i′m

(Â)
)
are disjoint too. As the map ψi1,...,ij−1 is one-to-one, Âi1,...,in and

Âi′1,...,i
′
m

are disjoint.
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Remark 3.3.7. if O.S.C. holds, we have Âd(m)
⊇ Âd for every m ≤ n := l(d). Indeed,

Âd(m)
= ψd1 ◦ · · · ◦ ψdm(Â) ⊇ ψd1 ◦ · · · ◦ ψdm

(
ψdm+1 ◦ · · · ◦ ψdn(Â)

)
= Âd

as, by O.S.C., we have ψdm+1 ◦ · · · ◦ ψdn(Â) ⊆ Â.

Theorem 3.3.8. If O.S.C. holds, then ii) of Lemma 3.3.4 holds, and, consequently,
0 < Hᾱ(Γ) < +∞, thus ᾱ = dimH(Γ).

Proof. Let (Ui), i = 1, ..., s, be an open covering of Γ, where we mean that Ui are open in
Rν . We prove that this covering satisfies ii) of Lemma 3.3.4 for some c2 > 0 independent
of the covering. Let

R̄ := diam(Â) > 0

let Br̄(x̄) ⊆ Â. Such a ball exists as Â is a nonempty open set. It follows

Br̄σd
(ψd(x̄)) ⊆ Âd . (3.3.8)

In fact, if y ∈ Br̄σd
(ψd(x̄)), as, by Corollary 3.3.2, the map ψd, a composition of maps of

Rν onto Rν , is onto Rν , there exists x′ ∈ Rν such that ψd(x
′) = y. We have

r̄σd > ||ψd(x̄)− ψd(x
′)|| = σd||x̄− x′||

hence, x′ ∈ Br̄(x̄), hence y ∈ ψd

(
Br̄(x̄)

)
⊆ ψd(Â) = Âd, and (3.3.8) is proved. We can

assume

diam(Ui) < R̄ ∀ i = 1, ..., s , (3.3.9)

as, in the opposite case, hᾱ((Ui)) ≥ r̄ᾱ. Put

W̃i =
{
d ∈ D : Âd ∩ Ui ̸= ø, diam(Âd) ≤ diam(Ui)

}
,

Wi =
{
d ∈ W̃i : d(n) /∈ W̃i ∀n < l(d)

}
.

For every d ∈ Wi we have l(d) = n > 0, as, in the opposite case, d = ø, Âd = Â,

diam(Âd) ≤ diam(Ui) by the definition of W̃i, but this contradicts (3.3.9). We have

d(n−1) /∈ W̃i, hence, as, by Remark 3.3.7 Âd(n−1)
∩ Ui ̸= ø, diam

(
Âd(n−1)

)
> diam(Ui). As

diam(Âd) = σdR̄, diam(Âd(n−1)
) = σd(n−1)

R̄, we have diam(Âd) = σdndiam
(
Âd(n−1)

)
. As

a consequence,

σmindiam(Ui) < diam(Âd) = R̄σd ≤ diam(Ui) ∀ d ∈Wi . (3.3.10)

Moreover, (
d, d′ ∈Wi, d ̸= d′

)
⇒ Âd ∩ Âd′ = ø . (3.3.11)
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In fact, if (3.3.11) does not hold, then, by Lemma 3.3.6, we have dj = d′j for every
j ≤ min{l(d), l(d′)}, and, if, for example l(d′) < l(d), we then have d′ = d(l(d′)), and
this contradicts the definition of Wi. We now prove that there exists L independent of
i = 1, ..., s and of the covering such that

#Wi ≤ L ∀ i = 1, ..., s . (3.3.12)

Pick a point x̃ ∈ Ui. Then we have∪
d∈Wi

Br̄σd
(ψd(x̄)) ⊆

∪
d∈Wi

Âd ⊆ B2diam(Ui)(x̃) (3.3.13)

In fact, if xi ∈ Âd∩Ui, y ∈ Âd. Then ||x̃−y|| ≤ ||x̃−xi||+||xi−y|| ≤ diam(Ui)+diam(Âd) ≤
2 diam(Ui) where we have used (3.3.10) in the last inequality. Moreover, by (3.3.8) and
(3.3.11), the sets Br̄σd

(ψd(x̄)) are mutually disjoint. Hence, putting β := r̄
R̄
σmin, we have

βdiam(Ui) ≤ r̄σd by (3.3.10), thus, by (3.3.13) we have

#Wic0,νβ
ν(diam(Ui))

ν = µ
( ∪

d∈Wi

Bβdiam(Ui)

(
ψd(x̄)

))
≤ µ

(
B2diam(Ui)(x̃)

)
= c0,ν2

ν(diam(Ui))
ν ,

where c0,ν is defined in Lemma 1.1.1, thus #Wi ≤
2ν

βν
and (3.3.12) is proved. Let

Vi =
{
Âd : d ∈Wi

}
,

(Vi)n̄ :=
{
Âd : n̄ = l(d), ∃n ≤ n̄, d(n) ∈Wi

}
=

{
Âd,il(d)+1,...,in̄ : d ∈Wi

}
where n̄ satisfies

n̄ > l(d) ∀ d ∈
s∪

i=1

Wi , (3.3.14)

R̄σn̄
max < min

i=1,...,s
diam(Ui) . (3.3.15)

Putting ÂDn̄ =
{
Âi1,...,in̄ : i1, ..., in̄ = 1, ..., k

}
, we have

ÂDn̄ =

s∪
i=1

(Vi)n̄ . (3.3.16)

In fact, let Âd ∈ ÂDn̄ , let x ∈ Γd, thus x ∈ Âd by (3.3.7). As (Ui) is a covering of Γ, there

exists i = 1, ..., s such that x ∈ Ui. Then, Âd ∩ Ui ̸= ø, thus, by Remark 3.3.7,

Â(dn) ∩ Ui ̸= ø . (3.3.17)

Moreover, diam(Âd) < diam(Ui), as
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diam(Âd) = σddiam(Â) = R̄σd ≤ R̄σn̄
max < diam(Ui)

by (3.3.15). As d(0) = ø and Âø = Â, in view of (3.3.9), then there exists n ≤ n̄ such

that diam(Âd(n)
) ≤ diam(Ui), but diam(Âd(n−1)

) > diam(Ui). Hence, in view of (3.3.17),

d(n) ∈Wi, thus Âd ∈ (Vi)n̄, and (3.3.16) holds. We now have

hᾱ(Vi) ≤ #Wi(diamUi)
ᾱ , (3.3.18)

hᾱ(Vi)n̄ =
∑
d∈Wi

k∑
in+1,...,in̄=1

(
diam(Âd,in+1,...,in̄)

)ᾱ
=

∑
d∈Wi

hᾱ
(
(Âd,in+1,...,in̄) : in+1, ..., in̄ = 1, ..., k

)
=

∑
d∈Wi

(diam(Âd))
ᾱ = hᾱ(Vi)

where we have used Lemma 3.3.3 in the third equality. Hence, in view of (3.3.18) and

(3.3.12) we have hᾱ
(
(Ui)

)
≥ 1

L

s∑
i=1

hᾱ(Vi), hence

hᾱ
(
(Ui)

)
≥ 1

L

s∑
i=1

hᾱ((Vi)n̄) ≥
1

L
hᾱ(ÂDn̄) =

1

L
(diamÂ)ᾱ

where we have used (3.3.16) in the second inequality and Lemma 3.3.3 again in the equality,
and the Theorem is proved.

Remark 3.3.8. By the definition of Hᾱ, It is easy to verify that Hᾱ(Ai) = (σᾱ
i )Hᾱ(A)

for every i = 1, ..., k and for every subset A of Rν . Hence,

k∑
i=1

Hᾱ(Γi) =
( k∑

i=1

σi

)ᾱ

Hᾱ(Γ) = Hᾱ

( k∪
i=1

Γi

)
where we have used (3.3.1), thus, we deduce that Hᾱ(Γi ∩ Γj) = 0 for every i, j = 1, ..., k,
i ̸= j.

Remark 3.3.9. For every set of (ai ∈ {0, 1}) : i = 1, ..., ν, we define the contracting

similarity of factor 1
2 , x 7→ 1

2x+
ν∑

i=1

ai

2 ei. The self-similar set corresponding to this set of

similarities is [0, 1]ν . We have 2ν similarities and σi =
1
2 , so that dimH(Γ) = ᾱ = ln(2ν

ln(2) = ν.

Moreover 0 < H ′
ᾱ(Γ) < +∞. Since, as easily verified, H ′

ν is invariant under translations, it
is a multiple of Lebesgue measure, by a well known result, and this multiple is positive and
finite. This is a result announced in Section 3.3.1, which allows us to define Hν = KνH

′
ν

where the constant Kν can be chosen so that Hν amounts to Lebesgue measure.
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