
2. General Topology

2.1 Fixed Points of Contractions.

In the present chapter, we will see some results in general topology, and, in particular,
some fixed points results. A fixed point theorem states that, under suitable conditions, a
map f has a fixed point, that is a point x such that f(x) = x. In this Section, we will
discuss the well known fixed point theorem for contractions in a complete metric spaces.

Theorem 2.1.1. Let (X, d) be a complete metric space. Suppose a map f : X → X is a
contraction in the sense that there exists c ∈]0, 1[ such that

d
(
f(x), f(y)

)
≤ c d(x, y) ∀x, y ∈ X . (2.1.1)

Then, there exsts a unique x̄ ∈ X such that f(x̄) = x̄. Moreover, for every x ∈ X the
sequence fn(x) := f ◦ f ◦ f ◦ · · · ◦ f(x) where f is composed n times, tends to x̄ as n tends
to infinity.

Proof. The uniqueness is trivial. Suppose x1, x2 are fixed points of f . Then, f(x1) = x1,

f(x2) = x2, thus d(x1, x2) = d
(
f(x1), f(x2)

)
≤ cd(x1, x2), hence d(x1, x2) = 0 and x1 =

x2. To prove the existence, pick a point x ∈ X, and we will prove that the sequence fn(x)
tends to a fixed point. We will prove that fn(x) is a Cauchy sequence. By (2.1.1) in fact
we have

d
(
fn(x), fn+1(x)

)
= d

(
f
(
fn−1(x)

)
, f

(
fn(x)

))
≤ cd

(
fn−1(x), fn(x)

)
thus, by induction, d

(
fn(x), fn+1(x)

)
≤ cnd

(
x, f(x)

)
. Hence, if n ≤ m,

d
(
fn(x), fm(x)

)
≤ d

(
fn(x), fn+1(x)

)
+ · · ·+ d

(
fm−1(x), fm(x)

)
≤

(
cn + · · ·+ cm−1

)
d
(
x, f(x)

)
≤

(+∞∑
i=n

ci

)
d
(
x, f(x)

)
=

cn

1− c
d
(
x, f(x)

)
−→

n→+∞
0 .

It immediately follows that fn(x) is a Cauchy sequence. As the space X is assumed to be
complete, then there exists x̄ := lim

n→+∞
fn(x). On the other hand, f is a Lipshitz map of

constant c by hypothesis, thus it is continuous. Therefore,

f(x̄) = f
(

lim
n→+∞

fn(x)
)
= lim

n→+∞
f
(
fn(x)

)
= lim

n→+∞
fn+1(x) = x̄

so that x̄ is a fixed point of f , and the Theorem is proved.

2.2. Simplexes
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We recall that a convex combination of points Pi, i = 1, ..., h in a linear space is a point

of the form Q =
h∑

i=1

tiPi with ti ≥ 0,
h∑

i=1

ti = 1. In particular, the convex combinations of

two points P1 and P2 are the points of the form tP1 +(1− t)P2 with t ∈ [0, 1]. We observe
the following trivial fact: If P1, ..., Ph lie in R, then we have

min
i=1,...,h

Pi ≤ Q ≤ max
i=1,...,h

Pi (2.2.1)

for every convex combination Q =
h∑

i=1

tiPi of Pi. In fact

min
i=1,...,h

Pi =
h∑

i=1

ti min
i=1,...,h

Pi ≤
h∑

i=1

tiPi ≤
h∑

i=1

ti max
i=1,...,h

Pi = max
i=1,...,h

Pi

We recall that a function f from a convex set C in a linear space with values in R is said
to be convex if, whenever we are given x1, x2 ∈ C, t ∈ [0, 1], we have

f
(
tx1 + (1− t)x2

)
≤ tf(x1) + (1− t)f(x2) .

As a consequence, whenever we are given x1, ..., xh ∈ C and t1, ..., th ∈ [0,+∞[ such that
t1 + · · ·+ th = 1, we have

f
( h∑

i=1

tixi

)
≤

h∑
i=1

tif(xi) .

This can be easily proved by induction on h.

Lemma 2.2.1. Let X be a linear normed space. Then, for every x ∈ X, the map defined
on X by y 7→ ||x− y|| is convex.
Proof. We have to prove that for every x1, x2 ∈ X and t ∈ [0, 1] we have

||x−
(
tx1 + (1− t)x2

)
|| ≤ t||x− x1||+ (1− t)||x− x2|| .

This is a simple consequence of the triangular inequality. In fact

||x−
(
tx1 + (1− t)x2

)
|| = ||t(x− x1) + (1− t)(x− x2)|| ≤

||t(x− x1)||+ ||(1− t)(x− x2)|| = t||x− x1||+ (1− t)||x− x2|| .

Recall that the convex hull of a subset A of a linear space, denoted by co(A), is the inter-
section of all convex sets containing it, in other words, the smallest convex set containing
it. For example, the convex hull of a set of two points is the segment-line of vertices the
two points, the convex hull of three points is the triangle of vertices the three points. The
convex hull of a set in a linear space can be characterized in terms of convex combinations.
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Lemma 2.2.2. If A is a nonempty subset of a linear space X, then

co(A) =
{ h∑

i=1

tiPi : h = 1, 2, 3, ...., Pi ∈ A, ti ≥ 0,

h∑
i=1

ti = 1
}
. (2.2.2)

Proof. Let B be the set defined in the right-hand side of (2.2.2). It is immediate to verify
that B is convex, that is, if Q1, Q2 ∈ B and τ ∈ [0, 1], then τQ1 + (1 − τ)Q2 ∈ B. Also,
A ⊆ B, as, if P ∈ A, we can write P in the form of (2.2.2), putting h = 1, P1 = P ,
t1 = 1. It remains to prove that, given a convex subset C of X containing A, then C

contains B. In other words, we have to prove that, if Q =
h∑

i=1

tiPi as in (2.2.2), that is,

ti ≥ 0,
h∑

i=1

ti = 1, then Q ∈ C. We will prove this by induction on h. If h = 1, then

Q = P1 ∈ A ⊆ C. Suppose the inductive hypothesis holds for h = h̄ and prove it holds for
h = h̄+ 1 as well. Suppose

Q =
h̄+1∑
i=1

tiPi

as in (2.2.2). Then, either ti = 0 for all i = 1, ..., h̄ and Q = Ph̄+1 ∈ A ⊆ C, or
h̄∑

i=1

ti > 0,

and
Q = t′Q′ + th̄+1Ph̄+1, (2.2.3)

t′ :=

h̄∑
i=1

ti, Q′ :=

h̄∑
i=1

τiPi, τi :=
ti
h̄∑

i=1

ti

.

Now, as
h̄∑

i=1

τi = 1, then Q′ ∈ C by the inductive hypothesis, and, as th̄+1 = 1− t′ by the

hypothesis in (2.2.2), and C is convex, by (2.2.3) Q ∈ C.

Corollary 2.2.3. If A is a set in a normed linear space X and x ∈ X, then for every
P ∈ co(A) there exists Q ∈ A such that ||x−Q|| ≥ ||x− P ||.

Proof. Let P =
h∑

i=1

tiPi be as in (2.2.2). By Lemma 2.2.1

||x− P || = ||x−
h∑

i=1

tiPi|| ≤
h∑

i=1

ti||x− Pi|| ≤ max
i=1,...,h

||x− Pi||

where in the last inequality we have used (2.2.1), and the Corollary is proved.

Remark 2.2.4. If, in particular, there exists a point in A of maximum distance from x,
and this case clearly occurs if A is finite, then ||x−P || ≤ max

Q∈A
||x−Q|| for every P ∈ co(A).
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We now recall the well-known result that a nonempty closed convex set in Rn has a unique
point of minimum distance from a given point in Rn. The result is true, more generally in
Hilbert spaces, but the proof is more complicated. Note that the existence proof does not
use the convexity of the set, while the convexity is essential for the uniqueness. In fact,
the center of a sphere has the same distance from every point in the sphere.

Theorem 2.2.5. Let y ∈ Rn and let C be a closed, convex nonempty subset of Rn. Then
there exists a unique P ∈ C such that ||y − P || = min

Q∈C
||y −Q||.

Proof. Let ϕ(x) := ||x − y||. Then, as well known, ϕ is continuous. Moreover, ϕ(x) ≥
||x|| − ||y||, so that ϕ has a minimum on C, in that it is a continuous function defined on
a closed subset of Rn satisfying ϕ(x) −→

||x||→∞
+∞. For the uniqueness, note the following

general inequality:

||x1 + x2

2
− y|| < ||x1 − y|| ∀x1, x2 ∈ Rn : x1 ̸= x2, ||x1 − y|| = ||x2 − y|| . (2.2.4)

There are different simple proofs of (2.2.4). Here, we merely note its geometrical inter-
pretation. The segment-lines with vertices x1, y, and x2, y are the two equal edges of an
isosceles triangle, and they are longer than the relative height. Now, if x1 and x2 are two
different points in C of minimum distance from y, then, in view of (2.2.4), the point x1+x2

2 ,
which lies in C too, as C is convex, has distance even smaller from y, a contradiction.

Definition 2.2.6. An h-simplex in Rn, h ≥ 1, is a set C of the form C = co
(
{P0, P1, ..., Ph}

)
,

where P0, P1,..., Ph are points in Rn.

In view of Lemma 2.2.2, we can characterize C as the set of

Q =

h∑
i=0

tiPi, ti ≥ 0,

h∑
i=0

ti = 1 . (2.2.5)

We say that the simplex is regular if P1 − P0,..., Ph − P0 are linearly independent. It is
important to note that in such a definition, we can replace P0 with any Pj , that is, the
following condition Aj

The points Pi − Pj, i = 0, ..., h, i ̸= j are linearly independent, with j = 0, ..., h fixed
is independent of j. Of course, to prove this, it suffices to prove that A0 ⇒ A1, the other
implications being completely analogous. Suppose A0 holds and a linear combination∑
i=0,2,...,h

di(Pi − P1) of Pi − P1 is 0, and prove that all coefficients di are equal to 0, thus

A1 holds. Noting that Pi − P1 = (Pi − P0)− (P1 − P0), we have

0 =
∑

i=0,2,...,h

di(Pi − P1) =
( h∑

i=2

di(Pi − P0)
)
− d(P1 − P0), d :=

∑
i=0,2,...,h

di .

As we have assumed A0, thus the points Pi − P0 are linearly independent, we have di = 0

for i = 2, ..., h, and d = 0, so that also d0 = d −
h∑

i=2

di = 0. Hence di = 0 for every
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i, as claimed. In the following, the simplexes will be always intended to be regular, un-
less differently specified. The points P0, ..., Ph are called vertices of the regular simplex
co
(
{P0, P1, ..., Ph}

)
. We will denote by V (C) the set of the vertices of a regular simplex

C.

Remark 2.2.7 If we have a regular h-simplex C of vertices P0, ..., Ph, then every point Q
of C can be written as in (2.2.5) for unique t0, ..., th, which depend continuously on Q. To
see this, note that if X denotes the linear spaces generated by P1 − P0, ..., Ph − P0, then
every point in x ∈ X can be written as

x =
h∑

i=1

pi(x)(Pi − P0)

for unique coefficients pi(x), and pi (the ”projections” on Pi − P0) are linear, and thus
continuous with respect to x. These are well known facts from linear algebra. Now, under

the condition
h∑

i=0

ti = 1, the equality Q =
h∑

i=0

tiPi amounts to Q − P0 =
h∑

i=1

ti(Pi − P0),

which in turns, amounts to Q − P0 ∈ X and ti = pi(Q − P0) for i = 1, .., h. Of course,

if (2.2.5) holds, then t0 = 1 −
h∑

i=1

ti, so that the numbers ti are unique, as claimed. The

numbers ti in (2.2.5) will be called the coefficients of Q, and h will be called the dimension
of the simplex. If, more specifically, h = n, then the points Pi −P0 form a basis of Rn and
X = Rn, and pi are defined on all of Rn.

Proposition 2.2.8. An h simplex C in Rn is compact. If C is regular and h = n, then
the interior of C is nonempty; moreover, for every Q ∈ C, then Q is an interior point of C
if and only if all coefficients of Q are positive.

Proof. Let P0, ..., Ph be the vertices of C. The set

T =
{
(t0, t1, ..., th) ∈ Rh+1 : ti ≥ 0,

h∑
i=0

ti = 1
}

is closed and bounded in Rh+1, thus compact. Then, as C is the image of the continuous

map from T to Rn defined by (t0, ..., th) 7→
h∑

i=0

tiPi, then C is compact. If C is regular and

h = n, then we get that Q ∈ C if and only if

pi(Q− P0) ≥ 0 ∀ i = 1, .., n,

n∑
i=1

pi(Q− P0) ≤ 1 . (2.2.6)

Indeed, if Q ∈ C, and Q is written as in (2.2.5), then by the discussion in Remark 2.2.7,
we have

pi(Q− P0) = ti ≥ 0,
n∑

i=1

pi(Q− P0) =
n∑

i=1

ti = 1− t0 ≤ 1 .

5



We now prove that, conversely, if (2.2.6) holds, then Q ∈ C. In fact, putting ti = pi(Q−P0)

for i = 1, ..., n, and t0 = 1 −
n∑

i=1

ti ≥ 0, we have
n∑

i=0

ti = 1, so that, by the discussion in

Remark 2.2.7 again, we have Q =
n∑

i=0

tiPi ∈ C. Summarizing,

C = P0 +

( n∩
i=1

p−1
i ([0,+∞[) ∩

( n∑
i=1

pi

)−1

(]−∞, 1])

)
⊇

P0 +

( n∩
i=1

p−1
i (]0,+∞[) ∩

( n∑
i=1

pi

)−1

(]−∞, 1[)

)
.

The set E in the second line of last formula is clearly open, and is nonempty as contains

the points Q with positive coefficients. In fact, for some ti > 0 with
n∑

i=0

ti = 1, we have

Q =
n∑

i=0

tiPi = P0 +
n∑

i=1

ti(Pi − P0) with ti > 0,
n∑

i=1

ti < 1, and, on the other hand,

ti = pi(Q− P0), so that Q ∈ E. If instead, at least one coefficient of Q, e.g., t1, is 0, then
p1(Q−P0) = 0, and for every ε > 0 the point Qε := Q−ε(P1−P0) /∈ C as p1(Qε−P0) = −ε
(see (2.2.6)), hence Q is not in the interior of C.

We will call interior points of a regular h-simplex C in Rn the points of C having positive
coefficients, even if h < n. In such a case, however, they are not interior points in the
topological sense. Note that, if C and C ′ are two regular simplexes and C ⊆ C ′, and at
least one point of C is interior to C ′, then every interior point of C is interior to C ′, in
particular Bar(C) lies in the interior of C ′. Indeed, in such a case, for every vertex P of
C ′ at least one vertex of C has positive P -coefficient. Hence, the P -coefficient of every
interior point of C is positive.

Proposition 2.2.9. The diameter of a simplex C amounts to the maximum of the distance
of its vertices.

Proof. Let P,Q be two points of C. Then, by Corollary 2.2.3, there exists a vertex Pi of
C such that ||P −Q|| ≤ ||P −Pi||. For the same reason, there exists a vertex Pj of C such
that ||P − Pi|| ≤ ||Pj − Pi||.

The barycenter of the simplex C of vertices P0, ..., Ph, denoted by Bar(C), or also by

Bar({P0, P1, ..., Ph}), is by definition the point 1
h+1

h∑
i=0

Pi. Such a point is a convex com-

bination of Pi, thus it is an element of C. We have

Lemma 2.2.10. With the above notation ||Bar(C) − P || ≤ h
h+1 max

i,j=0,...,h
||Pi − Pj || for

every P ∈ C.

Proof. We have ||Bar(C)− P || ≤ ||Bar(C)− Pj || for some j = 0, ..., h by Corollary 2.2.3.
On the other hand,
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||Bar(C)− Pj || = ||
( 1

h+ 1

h∑
i=0

Pi

)
− Pj || =

|| 1

h+ 1

h∑
i=0

(Pi − Pj)|| = || 1

h+ 1

∑
i:i ̸=j

(Pi − Pj)||

≤ 1

h+ 1

∑
i:i ̸=j

||Pi−Pj || ≤
1

h+ 1

∑
i:i̸=j

(
max

i,j=0,...,h
||Pi−Pj ||

)
=

h

h+ 1
max

i,j=0,...,h
||Pi−Pj || .

A k-face of an h-simplex of C, k ≤ h is a k-simplex whose set of vertices is a subset of the
set of the vertices of C, and we say that the face is proper if k < h.

Remark 2.2.11. An element of C lies in a proper face if and only if at least one of
its coefficients is 0, hence, in view of Prop. 2.2.8, the boundary of C is the union of its
proper faces or also is the union of its (h − 1)-faces, as every proper face is contained in
an (h− 1)-face. As a consequence, Bar(C) is contained in no proper face of C.

It is possible, and not very difficult, to prove that a regular n-simplex in Rn is homeomor-
phic to a closed ball in Rn. However, we will never use this fact.

2.3 Barycentric Subdivisions and Sperner Lemma.

Given a regular simplex C = co
(
{P0, ..., Ph}

)
, fixed in the following of this Section, we

define

A(C)(= A) =
{
(A0, A1, ..., Ah) : ø ̸= A0 ( A1 ( A2 · · · ( Ak = {P0, ..., Ph}

}
,

C(C)(= C) =
{
co
({

Bar(A0), Bar(A1), ..., Bar(Ah)
})

: (A0, A1, ..., Ak) ∈ A
}
.

In other words, C(C) is the set of the simplexes obtained by taking the barycenters of a
sequence of increasing faces of C. C is called the barycentric subdivision of C. Note that
Bar(A0), Bar(A1), ..., Bar(Ah) are points in C, so that every element of C(C) is contained
in C. Moreover, it is not difficult to prove that every element of C(C) is regular, provided
C is regular.

Remark 2.3.1. The elements of the set of the interiors of the (not necessarily proper)
faces of the elements of C(C) are mutually disjoint. Note that the generic elements of C(C)
is given by

co
({

Bar(Pu(0))
}
, Bar

{
Pu(0), Pu(1)

}
, ..., Bar

{
Pu(0), Pu(1), ..., Pu(h)

})
,
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where u is a permutation of the indices 0, ..., h, and a face of it is given by

co
({

Bar(Pu(0))
}
, Bar

{
Pu(0), Pu(1)

}
, ..., Bar

{
Pu(0), Pu(1), ..., Pu(k)

})
,

k ≤ h. Now, if P is in the interior such a face, then

P =
k∑

i=0

ci
1

i+ 1

( i∑
j=0

Pu(j)

)

with ci > 0, and
k∑

i=0

ci = 1. Then, clearly, putting P =
h∑

i=0

diPi where di are the coefficients

of P , we have du(0) > du(1) > · · · > du(k) > 0 = du(k+1) = · · · = du(h). This chain of
inequalities univocally determines the dimension k of the face, and u(0), u(1), ..., u(k), that
is the face of the element of C(C).

The mesh of a set of subsets of Rn is by definition the supremum of the diameters of those
subsets. We have

Lemma 2.3.2. mesh(C(C)) ≤ h

h+ 1
diam(C).

Proof. We use the above notation and take T ∈ C(C). We have to prove that diamT ≤
h

h+1diam(C). Let T = co
({

Bar(A0), Bar(A1), ..., Bar(Ah)
})

. By Prop. 2.2.9, it suffices
to prove that

||Bar(Ai)−Bar(Aj)|| ≤
h

h+ 1
diam(C) . (2.3.1)

In (2.3.1) we can and do assume i < j. By definition, Bar(Ai) ∈ co(Ai) ⊆ co(Aj), thus,
by Lemma 2.2.10,

||Bar(Ai)−Bar(Aj)|| ≤
h

h+ 1
diam(co(Aj)) ≤

h

h+ 1
diam(C)

as Aj ⊆ Ah, hence co(Aj) ⊆ co(Ah) = C.

We now define the m-barycentric subdivision Cm(C) inductively.

C0(C) = {C}, Cm+1(C) =
∪

D∈Cm(C)

C(D) .

Corollary 2.3.3. We have mesh
(
Cm(C)

)
≤

( h

h+ 1

)m

diam(C).

Proof. This follows at once, by induction on m, from Lemma 2.3.2.

Remark 2.3.4. The construction of the barycentric subdivision implies that the restric-
tion of the barycentric subdivision to a (h−1)-face F , i.e., the intersection of the simplexes
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of the barycentric subdivision with F , is the barycentric subdivision of F , and similarly
for the m-barycentric subdivision. Note that
i) A face F of an element of C(C) lies in an (h − 1)-face of C if and only if it does not
contain Bar(C) as a vertex. In such a case we will say that F is a boundary face of C(C),
in the opposite case that F is an interior face of C(C).
ii) The interior of the faces of the elements of Cm(C) are mutually disjoint. This can be
proved by induction on m using Remark 2.3.1.
iii) By induction on m, we can also prove that the barycenter of any element of Cm(C) lies
in the interior of C.
iv) As a consequence, the barycenter of an element of Cm(C) cannot belong to another
element of Cm(C).

Lemma 2.3.5. Let F be an (h − 1)-face of an element of Cm(C). If F is contained in
an (h − 1)-face of C, then it is an (h − 1)-face of exactly one element of Cm(C); if F is
contained in no (h − 1)-face of C, then it is an (h − 1)-face of exactly two elements of
Cm(C).

Proof. This result has a clear geometrical interpretation. However, we are going to give
a formal proof, which will turn to be a bit technical. Consider first the case m = 1. An
element of C1(C) has the form

D = co
({

B0, B1, ..., Bh

})
, Bj := Bar(Aj), Aj := {Pu(0), Pu(1), ..., Pu(j)}

where u is a permutation of {0, 1, ..., h}. Note that Bh = Bar(C). An (h− 1)-face of it is
given by removing one of the Bj , that is, F = co

({
B0, B1, ...Bj−1, Bj+1, ..., Bh

})
. If the

index removed is h, then

F = co
({

B0, B1, ..., Bh−1

})
⊆ co

({
Pu(0), Pu(1), ..., Pu(h−1)

})
that is F is a boundary face of C. Moreover, D is the only element of C(C) whose F is
a face. In fact, every element of C(C) contains Bh = Bar(C) as a vertex. If the index
removed j is different from h, then F contains Bar(C), thus is an interior face of C.
Moreover, as Aj+1 is obtained by Aj−1 adding two elements Pu(j) and Pu(j+1), then F is a
face of two elements of C(C), namely those where Aj is replaced by a set obtained adding
either Pu(j) or Pu(j+1) to the vertices of Aj−1. Thus, the Lemma is proved if m = 1.

If m > 1, assume the Lemma is true for m− 1. By the hypothesis, F is an (h− 1)-face
of an element of C(C ′), where C ′ is an element of Cm−1(C). If F is an interior face of
C(C ′), then it is a face of two elements of C(C ′) by what we have proved in the case m = 1,
and, as it contains the barycenter of C ′, by Remark 2.3.4 iv) C ′ is the face of this only two
elements of Cm(C). Moreover, by Remark 2.3.4 iii), it is contained in no (h− 1) face of C.

If, on the contrary, F is a boundary face of C(C ′), by the case m = 1, F is a face of
exactly one element C1 of C(C ′). Moreover, it is contained in a face F ′ of C ′ and Bar(F ′)
is a vertex of F . By the inductive hypothesis, if F ′ is contained in an (h − 1)-face of C,
then C ′ is the only elements of Cm−1(C) whose F ′ is a face, thus C1 is the only elements
of Cm(C) whose F is a face. If, instead F ′ is contained in no (h− 1)-face of C, then there
are exactly two elements of Cm−1(C) whose F ′ is a face, and one of these is C ′, and we call
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the other C ′′. Every element of Cm(C) whose F is a face is necessarily contained either in
C ′ or in C ′′, and by the case m = 1 both C ′ and C ′′ contain exactly one element of Cm(C)
whose F is a face. Moreover, as F ′ contains interior points of C, thus Bar(F ′), which is
a vertex of F , is an interior point of C, also F contains interior points of C, thus it is
contained in no (h− 1)-face of C. Thus, the inductive step is completed, and the Lemma
is proved.

Theorem 2.3.6. (Sperner Lemma) Let C be a regular h-simplex, h ≥ 1, m ≥ 1, let

V :=
∪

T∈Cm(C)

V (T ), W := V (C) ,

and let α be a map from V to W , such that, if Q belongs to a face F of C, then α(Q) is
one of the vertices of F . Then there exists T ∈ Cm(C) such that α(T ) = W .

Proof. Note that the hypothesis on α means, for example, that if Q ∈ W , then α(Q) = Q,
if, more generally, Q ∈ co

({
Pj0 , ..., Pjs

})
, then α(Q) = Pjk for some k = 0, ..., s. Here

P0, ..., Ph are the vertices of C. We will say that T ∈ CM (C) is normal if α(T ) = W . The
statement of this Theorem is that there exists at least one normal T ∈ Cm(C).

We will prove by induction on h a stronger result. Namely, the set of normal T ∈ Cm(C)
is odd. If h = 1, then W = {P0, P1}. The elements of Cm(C) are {Qi−1, Qi}, with
i = 1, ..., 2m, and Q0 = P0, Q2m = P1. This can be easily seen by induction on m. By
hypothesis we have α(Q0) = P0, α(Q2m) = P1. Also, {Qi−1, Qi} is normal if and only
if α(Qi−1) ̸= α(Qi). Thus, the number of normal {Qi−1, Qi} is the number of times α
changes value. As α attains different values at the extremum points Q0 and Q2m , such a
number must be odd. Suppose now the statement holds for h− 1 and prove it holds for h.
Let

R :=
{
(T, F ) : T ∈ Cm(C), F (h− 1)-face of T, α

(
V (F )

)
= {P1, ..., Ph}

}
.

We will evaluate the number of elements of R in two different ways. Define

A1 :=
{
F : ∃T such that (T, F ) ∈ R,F ⊆ co({P1, ..., Ph})

}
,

A2 :=
{
F : ∃T such that (T, F ) ∈ R,F * co({P1, ..., Ph})

}
.

We have

#R = #A1 + 2#A2 . (2.3.2)

To prove (2.3.2), observe that, if F ∈ A2, then F is contained in no (h− 1)-face of C, as if

F ⊆ co({Pj : j ̸= j̄}) , (2.3.3)

then by the hypothesis on α,

α(V (F )) ⊆ {Pj : j ̸= j̄} ,
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but by the definition of R, α(V (F )) = {P1, ..., Ph}, so that j̄ = 0. Then (2.3.3) contradicts
the definition of A2. Hence, by Lemma 2.3.5, every F ∈ A2 is a face of two T ∈ Cm with
(T, F ) ∈ R. For a similar reason, every F ∈ A1, F being contained in the (h − 1)-face
co({P1, ..., Ph}), is a face of one T ∈ Cm with (T, F ) ∈ R. Now, (2.3.2) easily follows. Let
now

B1 =
{
T ∈ Cm(C) : α

(
V (T )

)
= {P0, P1, P2, ..., Ph}

}
,

B2 =
{
T ∈ Cm(C) : α

(
V (T )

)
= {P1, P2, ..., Ph}

}
.

Every T ∈ B1 has one face F such that (T, F ) ∈ R, namely, as α is a bijection from V (T )
to W , the face having for vertices the vertices of T that α sends to P1, P2, ..., Ph. On the
other hand, if T ∈ B2, then α maps two vertices Q1, Q2 of T to the same element P̄ of W ,
and the other vertices of T to mutually different (and different from P̄ ) elements of W .
Thus, T has exactly two faces F such that (T, F ) ∈ R, namely those omitting one of the
two vertices mapped to P̄ . It follows

#R = #B1 + 2#B2 . (2.3.4)

Now, the restriction of α to the vertices of them-barycentric subdivision of co
({

P1, ..., Ph

})
clearly inherits the properties of α, thus by the inductive hypothesis, it has an odd number
of normal simplexes. But such normal simplexes, by definition are the elements of A1, and
the normal elements of Cm(C) are by definition the elements of B1. As A1 has an odd
number of elements, in view of (2.3.2) and (2.3.4), B1 has an odd number of elements as
well.

2.4 Brouwer and Schauder Fixed Point Theorems.

In this section we prove some important fixed point theorems. Such theorems, unlike the
fixed point theorem for contractions, state the existence, but not the uniqueness of the
fixed point. More precisely, we will prove that every continuous map from a nonempty
compact convex set in Rn (or more generally in a Banach space) into itself has a fixed
point. The general result is known as Schauder Theorem, while the case where the convex
set is a closed ball in Rn is called Brouwer Theorem.

Theorem 2.4.1. Let D be a nonempty compact convex subset of Rn. Let f be a contin-
uous map from D into D. Then F has (at least) a fixed point.

Proof. Suppose for the moment D is a regular n-simplex with vertices P0, ..., Ph. By
contradiction, suppose f has no fixed points. We can then easily construct a continuous
map ϕ from D to ∂D, with the property that ϕ(x) = x if x ∈ ∂D. The point ϕ(x) can be
defined as the intersection of the open half-line with origin at f(x) and passing through x,
with ∂D. This definition is correct as, by the assumption, f(x) ̸= x. Put now

x =
n∑

i=0

ci(x)Pi ∀x ∈ D
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where ci : D → [0, 1] are continuous and
n∑

i=0

ci(x) = 1 (cf. Remark 2.2.7). Of course, for

every J ⊆ {0, 1, ..., n} we have

x ∈ co({Pj : j ∈ J}) ⇐⇒ cj(x) = 0 ∀ j /∈ J . (2.4.1)

Put γi = ci ◦ ϕ. Then, ϕ(x) =
n∑

i=0

γi(x)Pi and at least one γi(x) is 0 as ϕ(x) ∈ ∂D (see

Remark 2.2.11). On the other hand, as
n∑

i=0

γi(x) =
n∑

i=0

ci(ϕ(x)) = 1, then max
i=0,...,n

γi(x) ≥
1

n+1 . By the uniform continuity of γi on D, there exists δ > 0 such that, if

A ⊆ D, diamA < δ

then |γi(x) − γi(y)| < 1
n+1 for every x, y ∈ A. Therefore, let x̄ ∈ A and ī be such that

γī(x̄) = 0, then γī(x) <
1

n+1 for every x ∈ A. As a consequence, defining

α(x) = Pî : γî(x) = max{γi(x), i = 0, ..., n}, î = 0, ..., n

for every x ∈ D, then,

α(x) ̸= Pī ∀x ∈ A . (2.4.2)

Note that in the definition of α the maximum could be taken at different points, but
clearly, this is not a problem as we can choose in some way one of the maximum points.
Now, in view of Corollary 2.3.3, we can take the m-barycentric subdivision of D with m
such that mesh

(
Cm(D)

)
< δ. Such m exists by Corollary 2.3.3. Then α, restricted to

V :=
∪

T∈Cm(D)

V (T ) satisfies the hypothesis of the Sperner Lemma. In fact, if

x ∈ co({Pj : j ∈ J}), J ( {0, ..., n} ,

then, by (2.4.1) and the definition of α we have α(x) = Pj for some j ∈ J . By the Sperner
Lemma, then, there exists A ∈ Cm(D) such that α maps V (A) onto {P0, ..., Pn}. But, as
diamA < δ, this contradicts (2.4.2), and the Theorem is proved in the case D is a regular
n-simplex.

In the general case, By Prop. 2.2.8, we can find, by possibly translating a given regular
n-simplex, a regular n-simplex having 0 as an interior point, i.e., containing a ball centered
at 0 of radius r > 0. By multiplying it by R

r , we obtain a regular n-simplex S containing
the ball B centered at 0 of radius R where R is such that B ⊇ D. Such ball exists as D
is bounded. Thus S ⊇ D. Let p : S → D be the projection given by Theorem 2.2.5, that
p(x) is the point of D of minimum distance from x. It is well known (and easy to prove)
that p is continuous. Now, let g = f ◦ p : S → S. Then g is continuous, and really maps
S into S as, for every x ∈ S, we have p(x) ∈ D and f(p(x)) ∈ D ⊆ S. Since we already
proved the Theorem for S, g has a fixed point x, that is f(p(x)) = x ∈ D, so that p(x) = x
and f(x) = x.
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Theorem 2.4.2. Let D be a nonempty convex compact subset of a linear normed space
X. Then every continuous f from D to D has (at least) a fixed point.

Proof. For every ε > 0 there exist P0, ..., Ph ∈ D such that

min
i=0,...,h

||x− Pi|| < ε (2.4.3)

for every x ∈ D. This is a simple consequence of the compactness of D, for example
the set of the balls of radius ε has a finite subcovering. Let V := sp({Pi : i = 0, ..., h}).
Then V inherits from X a norm equivalent to the euclidean norm, as in finite-dimensional
spaces all norms are equivalent. Let F := co({Pi : i = 0, ..., h}), so that, by Lemma 2.2.2,

F =
{ h∑

i=0

tiPi, ti ≥ 0,
h∑

i=0

ti = 1
}
, and by the same proof as in Prop. 2.2.8, F is compact.

Moreover, F ⊆ D as D is convex. Note that F is not necessarily a regular simplex, in
that the vectors Pi − P0 are not necessarily linearly independent. We will now construct
an ”approximation of identity” from D to F , more precisely, a continuous map β : D → F
such that

||β(x)− x|| < 2ε ∀x ∈ D . (2.4.4)

Let α : [0,+∞[→ [0,+∞[ be continuous and such that α(t)

{
= 1 if t ≤ ε

= 0 if t ≥ 2ε
. Let di(x) =

||x−Pi||, and let δi := α ◦ di, β(x) =
h∑

i=0

(
δi(x)
h∑

i=0

δi(x)

)
Pi. We have

h∑
i=0

δi(x) > 0 by (2.4.3).

Moreover, β(x), as a convex combination of Pi, belongs to F . More precisely, as when
||x − Pi|| ≥ 2ε, then δi(x) = 0, β(x) is in fact a convex combination of those Pi having
distance from x smaller than 2ε, thus, by Remark 2.2.4 we have ||β(x) − x|| < 2ε and
(2.4.4) holds. Now, the map fε := β ◦ f , restricted to F , is a continuous map from F to
F . As F is a nonempty convex compact subset of a finite-dimensional space, where the
topology the euclidean one, we can apply Theorem 2.4.1 and conclude that fε has a fixed
point x ∈ F ⊆ D. We have

||x− f(x)|| = ||fε(x)− f(x)|| = ||β(f(x))− f(x)|| ≤ 2ε . (2.4.5)

As the map x 7→ ||x− f(x)|| is continuous from the compact set D with values to R, it has
a minimum. By (2.4.5) and the arbitrarity of ε, such a minimum is 0. Then there exists
x̄ ∈ D such that ||x̄− f(x̄)|| = 0, and thus f has a fixed point.

The hypothesis of convexity is essential in Theorems 2.4.1 and 2.4.2. In fact, if D is an
annulus centered at the origin, then every nontrivial rotation has no fixed points on D.
On the other hand, if D ⊆ Rn is nonempty compact and not convex but homeomorphic
to a convex subset of Rn, then every continuous map from D into itself has a fixed point,
as clearly, such a property is invariant under homeomorphisms.
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