
1. Notation

When we use a function f and we do not specify where it takes values, we intend it has
values in R. This for example in phrases like ”Let f be a function defined on A”.

µ will denote the Lebesgue measure.

In an integral we will sometimes omit the variable, for example
∫
f stands for

∫
f(x) dx.

Br(x) will denote the open ball with center x and radius r. We will not specify the space;
it will usually be Rn, n depending on the context .

We will use ”a.e.” for ”almost everywhere”.

C(X) will denote the set of continuous functions on a topological space X with values in
R, Cc(X) will denote the set of continuous functions on a topological space X with values
in R, with compact support.

Similarly, if U is an open set in RN and n = 1, 2, 3, ....,∞, then Cn(U) will denote the set
of functions on U with values in R, of class Cn, Cnc (U) will denote the set of functions on
U with values in R, of class Cn with compact support.

We will denote the scalar product of u and v by u · v.

1. Partial Differential Equations

1.1 Examples. The Laplace Operator

Examples of P.D.E. (short for Partial Differential Equations).

∆u = 0 Laplace equation

utt = c∆xu, c > 0 Heat equation

utt = c2∆xu, c > 0 Wave equation

Recall that the Laplace operator (or Laplacian) ∆ is defined by ∆u(x) =
n∑
i=1

∂2u(x)

∂x2i
.

We denote by ∆xu the Laplace operator with respect to the variables x, in other words,
when we have a function u of n space variables x1, ..., xn and a time variable t, by defini-

tion, ∆xu(x, t) =
n∑
i=1

∂2u(x, t)

∂x2i
. We now give a geometrical interpretation of the Laplace

operator. We need a Lemma.

Lemma 1.1.1. For every k ∈ R and positive integer n there exists a constant ck,n > 0
such that, for every x̄ ∈ Rn
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∫
Br(x̄)

||x− x̄||k dx = ck,nr
k+n

Proof. We have ∫
Br(x̄)

||x− x̄||k dx = rk
∫

Br(x̄)

||x− x̄

r
||k dx =

rkrn
∫

Br(x̄)

||x− x̄

r
||k 1

rn
, dx = rk+n

∫
B1(0)

||y||k dy

where we use the variable change y = x−x̄
r , with the factor change (given by the mod. of

Jacobian determinant) equal to 1
rn . Now, it suffices to put ck,n =

∫
B1(0)

||y||k dy.

Theorem 1.1.2. We have

∆(u)(x̄) =
1

c′n
lim
r→0

1

µ
(
Br(x̄)

) ∫
Br(x̄)

u(x) dx− u(x̄)

r2

for every u : Ω → R of class C2, where Ω is any domain in Rn and c′n is a suitable positive
constant only depending on n.

Proof. We use the Taylor expansion of order 2, and get

u(x) = u(x̄) +
n∑
i=1

∂u

∂xi
(x̄)(xi − x̄i) +

∑
i1,i2=1,...,n,i1 ̸=i2

∂2u

∂xi1∂xi2
(x̄)(xi1 − x̄i1)(xi2 − x̄i2)

+
1

2

n∑
i=1

∂2u

∂x2i
(x̄)(xi − x̄i)

2 +R(x, x̄)

where R(x, x̄) is o(||x − x̄||2). Now, if we integrate over Br(x̄) (where r is chosen so that
Br(x̄) ⊆ Ω), by a symmetry argument, the integrals of the summands in the first two sums
amount to 0, thus we get

∫
Br(x̄)

u(x) dx = µ
(
Br(x̄)

)
u(x̄)+

1

2

n∑
i=1

∂2u

∂x2i
(x̄)

∫
Br(x̄)

(xi− x̄i)2 dx+
∫

Br(x̄)

R(x, x̄) dx . (1.1.1)

Now, by another symmetry argument the integrals
∫

Br(x̄)

(xi− x̄i)
2 dx are all equal, so that

they amount to

1

n

n∑
i=1

∫
Br(x̄)

(xi − x̄i)
2 dx =

1

n

∫
Br(x̄)

||x− x̄||2 dx =
c2,n
n
r2+n
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(by Lemma 1.1.1). On the other hand, it is easy to see that the last integral in (1.1.1) is
o(r2+n), by Lemma 1.1.1 again and the fact that the integrand there is o(||x − x̄||2) . In
conclusion, ∫

Br(x̄)

u(x) dx = µ
(
Br(x̄)

)
u(x̄) +

c2,n
2n

r2+n∆u(x̄) + o(r2+n),

so that, by dividing by
c2,n
2n r

2+n, taking into account that µ
(
Br(x̄)

)
= c0,nr

n, we get the
Theorem.

In view of the previous theorem, the Laplace operator at a point is a sort of rate of
increment of the average of the function near the point with respect to the value of the
function at the point. In other words, if the Laplace operator at a point is positive (resp.
negative) then the average of the function near the point is greater (resp. smaller) than
the function at the point. By this point of view, for example, the heat equation express the
intuitive idea that the temperature tends to increase (resp. decrease) at the points where
the temperature is smaller (resp. greater) than in the surrounding points. The Laplace
equation for example, represents the temperature in a thermically stable situation.

1.2 Recalls of Integration Theory

In this section, I recall some known results from integration theory. We recall the notion
of hypersurface in Rn. We are given a finite set of maps ϕd : Ād → Rn, d = 1, ..., k, where
each Ad is an open set in Rn−1 such that its boundary has measure 0, and ϕd is of class
C1 on some open set containing Ād, and the Jacobian matrix Jϕd

(x) of ϕd has rank equal
to n−1 on Ād. We also suppose that the sets ϕd(Ad) are mutually disjoint. In such a case
we say that the set B

B :=
k∪
d=1

Bd, Bd = ϕd(Ād)

is a hypersurface. If f : B → R is continuous, then∫
B

f :=
k∑
d=1

∫
Bd

f ,

∫
Bd

f =

∫
Ad

(
f ◦ ϕd

)
||ψd||

where ψd(x) is a vector in Rn having components equal (up to the sign) to the determinants
of the square submatrices of rank n − 1 of Jϕd

(x), more precisely, the h-components of

ψd(x) is the determinant of the matrix given by
(
∂(ϕd)i(x)
∂xj

)
, i ̸= h, multiplied by (−1)h+n.

Note that ψd(x) is normal to B at ϕd(x). In fact, the columns of Jϕd
(x) form a basis of the

tangent space to B at ϕd(x), and the scalar product of ψd(x) and a fixed column of Jϕd
(x)
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amounts to the determinant of the matrix obtained by Jϕd
(x) adding an n-column equal

to that column, as can be seen calculating the determinant in terms of the n-column. Such
a determinant amounts to 0, as this matrix has two columns identical. We call νB(u) the

normal unit vector to B at u ∈ B, for example its amounts to ψd(x)
||ψd(x)|| , where u = ϕd(x).

Note that this vector depends on the representation of the surface, up to a factor ±1.

Lemma 1.2.1. Let ϕ : U → Rn be a C1 diffeomorphism from the open subset U of
Rn to its image in Rn. Let Ā × [t1, t2] ⊆ U , where A is an open set in Rn−1 such
that its boundary has measure 0. Let Σt = ϕt(Ā), where we put ϕt(x) = ϕ(x, t). Put

rt(ϕt(x)) =
∣∣∣ ∂∂t (ϕt(x)) · νΣt(ϕt(x))

∣∣∣. Then
∫

ϕ
(
Ā×[t1,t2]

) u =

t2∫
t1

(∫
Σt

urt

)
dt .

Proof. Define ψt(x) as in the previous definition. Note that

rt(ϕt(x))||ψt(x)|| =
∣∣∣det(Jϕ(x, t))∣∣∣ . (1.2.1)

In fact, by definition

rt(ϕt(x))||ψt(x)|| =
∣∣∣ ∂
∂t

(ϕ(x, t)) · ψt(x)
∣∣∣ .

Now, (1.2.1) easily follows from the expression of det(Jϕ(x, t)) in terms of the last column
of the matrix Jϕ(x, t)), that is

∂
∂t (ϕ(x, t)). Using (1.2.1),

t2∫
t1

(∫
Σt

urt

)
dt =

t2∫
t1

(∫
Ā

u(ϕ(x, t))
∣∣∣det(Jϕ(x, t))∣∣∣) dt

=

∫
Ā×[t1,t2]

u(ϕ(x, t))
∣∣∣det(Jϕ(x, t))∣∣∣) dx dt

∫
ϕ
(
Ā×[t1,t2]

) u(x, t) dx dt
where in the second equality we use the Fubini Theorem, and in the third the rule of
variable change for multiple integrals.

Corollary 1.2.2. If u is continuous on Br(x̄) with values in R, then
r∫

0

( ∫
∂Bt(x̄)

u(x) dx
)
dt =

∫
Br(x̄)

u(x) dx .
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Proof. We can split ∂B1(0) into finitely many pieces, represented in the form φ(Ā). Then,
put ϕ(x, t) = x̄ + tφ(x). Of course, ||φ(x)|| = 1. Using the notation of Lemma 1.2.1, we
have

rt(ϕt(x)) =
∣∣∣φ(x) · νΣt(ϕt(x))

∣∣∣ = 1

as νΣt(ϕt(x)) amounts to the unit normal vector to ∂Bt(x̄) at ϕ(x, t), that is ±φ(x). By
Lemma 1.2.1 we have

∫
ϕ
(
Ā×[a,t]

) u =

t∫
a

(∫
Σt

u
)
dt ,

and summing up the pieces,

r∫
a

( ∫
∂Bt(x̄)

u(x) dx
)
dt =

∫
Br(x̄)\Ba(x̄)

u(x) dx ,

for every a ∈]0, r[. Hence we get the result, taking the limit for a→ 0. Note that we have
not integrated directly from 0 to r as the map ϕ would be singular at (0, 0).

Corollary 1.2.3. For every x ∈ Rn, we have µ
(
Br(x)

)
=
r

n

∫
∂Br(x)

1.

Proof. We have

µ
(
Br(x)

)
=

∫
Br(x)

1 =

r∫
0

( ∫
∂Bt(x)

1
)
dt =

r∫
0

tn−1

∫
∂B1(x)

1 dt =
rn

n

∫
∂B1(x)

1 =
r

n

∫
∂Br(x)

1 .

We finally recall the statement of the divergence Theorem. Let u be a function of class C1

from the open subset Ω of Rn to Rn, and suppose A is an open set such that Ā ⊆ Ω, and
the boundary of A is of class C1, then∫

A

divu(x) dx =

∫
∂A

u(x) · ν∂A(x) dx

where ν∂A(x) (or simply ν(x)) denotes the outward unit normal vector to ν∂A at x. The
requirement on the regularity of ∂A can be relaxed. If we use the divergence Theorem,

with u defined by uj =

{
0 if j ̸= i

v if j = i
with v of class C1 on Ω, we get
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∫
A

∂v

∂xi
(x) dx =

∫
∂A

v(x)νi(x) dx

We will often use such a form of the divergence Theorem.
In the following we will say that A is div-regular if both A and every set of the form
A \ Br(x), with Br(x) ⊆ A satisfy the hypothesis of the divergence theorem. For example
every A with boundary of class C1 is div-regular.

1.3 Harmonic Functions

Definition 1.3.1. A function u defined from an open set Ω in Rn with values in R is
said to be harmonic if it is of class C2 and satisfies

∆u = 0 in Ω .

Examples of harmonic functions. Every linear (or affine) function, that is a function

of the form
n∑
i=1

aixi + b is harmonic. The real and the imaginary part of a holomorphic

f unction is harmonic (where of course we interpret a subset of the complex plane as a
subset of R2). If n = 1, the harmonic functions are the affine functions. Indeed, in such
a case, ∆u = u′′. We now see what radial functions are harmonic, in other words, we are
searching for harmonic functions of the form u(x) = f(||x||), defined on Rn \ {0}. At first
glance, it could appear to be unnatural to exclude 0, but the following calculations will
show there are no nonconstant harmonic radial functions on all of Rn. A simple calculation
shows that, when u(x) = f(||x||), then

∆u(x) =
f ′′

(
||x||

)
||x||3 + nf ′

(
||x||

)
||x||2 − f ′

(
||x||

)
||x||2

||x||3
.

Hence, u is harmonic on Rn \ {0} if and only if, whenever x ̸= 0, we have f ′′
(
||x||

)
||x||3 +

(n− 1)f ′
(
||x||

)
||x||2 = 0, that is, if and only if we have

f ′′(ρ)ρ3 + (n− 1)f ′(ρ)ρ2 = 0 ∀ ρ > 0

that, putting z(ρ) = f ′(ρ), amounts to z′(ρ) = −(n− 1) z(ρ)ρ . This is a standard case of a
separable variables equation, and its solution is

z(ρ) = cρ1−n .

Hence, we have

f(ρ) =

{
c1ρ

2−n + c2 if n > 2

c1 ln(ρ) + c2 if n = 2
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and

u(x) =

 c1
1

||x||n−2
+ c2 if n > 2

c1 ln(||x||) + c2 if n = 2

Note that in particular, the gravitational potential generated by a point-mass, which we
suppose located at the origin, is a harmonic function, and, for symmetry reasons, has the
form f

(
||x||

)
, hence, by the previous discussion, has the form c1

1
||x|| as the actual space

has dimension 3. In this case c2 = 0, for example as we expect that the potential goes to
0 at infinity. Let now

ψ(ρ) =

{ 1
2−nρ

2−n if n > 2

ln(ρ) if n = 2

so that
ψ′(ρ) = ρ1−n .

PUT FOR THE FOLLOWING OF THIS CHAPTER

ψ(ρ) = d̄nψ(ρ), d̄n :=
(∫

∂B1(0)

1
)−1

,

ϕ(x) = ψ(||x||) .

Note that, by a homogeneity argument, the (n − 1)-dimensional measure of the sphere
centered at x̄ of radius r, ∂Br(x̄) is given by∫

∂Br(x̄)

1 =
1

d̄n
rn−1 . (1.3.1)

By the previous considerations, ϕ is harmonic on Rn \ {0}, and the choice of the constant
d̄n is motivated by the following lemma.

Lemma 1.3.2.
i) We have gradϕ(x) = ψ

′
(||x||) x

||x|| for every x ∈ Rn \ {0}.
ii)

∫
∂Bρ(x̄)

gradϕ(x− x̄) · ν = 1 for every ρ > 0 and for every x̄ ∈ Rn.

Proof. We have

∂ϕ(x)

∂xi
= ψ

′
(||x||) xi

||x||

and i) easily follows. Also, ψ
′
(ρ) = d̄nρ

1−n. Hence, as ν∂Bρ(x̄)(x) =
x−x̄

||x−x̄|| , we easily get

gradϕ(x− x̄) · ν∂Bρ(x̄) = d̄n||x− x̄||1−n (1.3.2)
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therefore, ∫
∂Bρ(x̄)

gradϕ(x− x̄) · ν =

∫
∂Bρ(x̄)

d̄n||x− x̄||1−n =

d̄nρ
1−n

∫
∂Bρ(x̄)

1 = 1 .

We have used (1.3.1) in the last equality.

In the following Ω will always denote a nonempty open connected subset of Rn.

Lemma 1.3.3. Suppose A is div-regular, A ⊆ Ω. Suppose u and v of class C2 on Ω.
Then, ∫

A

(
gradu · grad v + v∆u

)
=

∫
∂A

v gradu · ν . (1.3.3)

Proof. It suffices to apply the divergence Theorem to the function v gradu.

Corollary 1.3.4. If u is harmonic on Ω and A is as above, then∫
∂A

gradu · ν = 0 .

Proof. It suffices to put v = 1 in Lemma 1.3.3 and to observe that the integral on the
left-hand side amounts to 0.

Corollary 1.3.5. If u, v and A are as in Lemma 1.3.3, then∫
A

u∆v − v∆u =

∫
∂A

(
u grad v − v gradu

)
· ν .

Proof. We use (1.3.3) and its analog obtained exchanging u and v∫
A

(
grad v · gradu+ u∆v

)
=

∫
∂A

u grad v · ν

and then we take the difference.
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1.4 Mean Value Properties and Related Topics

Lemma 1.4.1. If u is harmonic on Ω and Br(x̄) ⊆ Ω, then

u(x̄) =
d̄n
rn−1

∫
∂Br(x̄)

u . (1.4.1)

Proof. We use Corollary 1.3.5 with A := Br(x̄) \ Br̄(x̄) where 0 < r̄ < r, and v(x) =
ϕ(x − x̄). Note that we cannot use A = Br(x̄), as v would be not defined there, thus we
have to remove a small ball around x̄. As u and v are harmonic, the left-hand side in
formula in Corollary 1.3.5 amounts to 0. Therefore,∫

∂Br(x̄)

(
u grad v − v gradu

)
· ν =

∫
∂Br̄(x̄)

(
u grad v − v gradu

)
· ν .

We have used the fact that ∂
(
Br(x̄) \ Br̄(x̄)

)
= ∂Br(x̄) ∪ ∂Br̄(x̄) and the fact that the

outer unit normal to ∂
(
Br(x̄) \ Br̄(x̄)

)
at the points of ∂Br̄(x̄) is the opposite of the

outer unit normal to ∂Br̄(x̄) at the same points. On the other hand, using Corollary
1.3.4 and the fact that, in our case, v is constant at the components of the boundary,∫
∂Br(x̄)

v gradu · ν =

∫
∂Br̄(x̄)

v gradu · ν = 0 . Hence,

∫
∂Br(x̄)

u grad v · ν =

∫
∂Br̄(x̄)

u grad v · ν . (1.4.2)

By (1.3.2) we have for ρ = r, r̄∫
∂Bρ(x̄)

u grad v · ν =

∫
∂Bρ(x̄)

d̄n ρ
1−nu (1.4.3)

Hence, in view of (1.4.2), ∫
∂Br(x̄)

d̄n r
1−nu =

∫
∂Br̄(x̄)

d̄n r̄
1−nu (1.4.4)

The integral in the right-hand side tends to u(x̄) as r̄ → 0. Indeed, by (1.3.1) we have
u(x̄) =

∫
∂Br̄(x̄)

d̄n r̄
1−nu(x̄), hence, for every ε > 0 we have∣∣∣u(x̄)− ∫

∂Br̄(x̄)
d̄n r̄

1−nu
∣∣∣ ≤

∫
∂Br̄(x̄)

d̄n r̄
1−n

∣∣∣u− u(x̄)
∣∣∣ ≤
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∫
∂Br̄(x̄)

εd̄n r̄
1−n = ε

for sufficiently small r̄, by (1.3.1) again. Taking the limit for r̄ → 0, we get the Lemma.

Remark 1.4.2. In view of (1.4.3), (1.4.1) amounts to

u(x̄) =

∫
∂Br(x̄)

u(x) gradϕ(x− x̄) · ν(x) dx

Note that, in view of (1.3.1), Lemma 1.4.1 states that u takes at a point x̄ the average of
the values on a sphere centered at x̄. The following theorem, simple consequence of the
previous lemma, states that u takes at x̄ the average of the values on a ball centered at x̄.
Such results are called mean value properties.

Theorem 1.4.3 (mean value Theorem). If u is harmonic on Ω and Br(x̄) ⊆ Ω, then

u(x̄) =
1

µ(Br(x̄))

∫
Br(x̄)

u . (1.4.5)

Proof. By Lemma 1.4.1 and (1.3.1) we have

u(x̄)

∫
∂Bt(x̄)

1 =

∫
∂Btx̄)

u

for every t ∈]0, r[, hence, in view of Corollary 1.2.2, we have

µ(Br(x̄))u(x̄) = u(x̄)

r∫
0

( ∫
∂Bt(x̄)

1
)
dt =

r∫
0

( ∫
∂Btx̄)

u
)
dt =

∫
Br(x̄)

u

and we conclude.

Theorem 1.4.4. (Strong maximum principle). If u is defined on Ω, continuous on Ω
and harmonic on Ω, and u takes its maximum or its minimum at a point of Ω (that is at
a point in the interior, not in the boundary, of Ω), then u is constant on Ω.

Proof. Let E :=
{
x ∈ Ω : u(x) = max

Ω
u
}
. This set is clearly closed. Moreover, as a

consequence of the mean value theorem, it is also open. Indeed, if x̄ ∈ E, take r > 0 such
that Br(x̄) ⊆ Ω. Then, by Theorem 1.4.3, we have∫

Br(x̄)

u(x̄) = u(x̄)

∫
Br(x̄)

1 =

∫
Br(x̄)

u .
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Therefore

∫
Br(x̄)

(
u(x̄)− u

)
= 0, and as the integrand is continuous, and nonnegative as

x̄ ∈ E, then u(x̄)− u(x) = 0 for every x ∈ Br(x̄), and E is open. If u takes its maximum
at a point of Ω, then E ̸= ø, and by the connectedness of Ω, E = Ω, hence u is constant
on Ω, and by a continuity argument, also on Ω. A similar argument works if u takes its
minimum at a point of Ω.

Corollary 1.4.5. Suppose Ω is bounded, and u is defined on Ω, continuous on Ω and
harmonic on Ω. Then

min
∂Ω

u ≤ u(x) ≤ max
∂Ω

u ∀x ∈ Ω . (1.4.6)

Proof. If u is constant on Ω, then the result is trivial. In the opposite case, then there
exist maximum and minimum of u on Ω, as Ω is compact, and they are attained at points
in ∂Ω by Theorem 1.4.4.

The statement of Corollary 1.4.5 is called (weak) maximum principle. In fact, Theorem
1.4.4 is a stronger version of such a statement, in that it states that the inequalities in
(1.4.6) hold and moreover are strict unless u is constant. Note also that, if Ω is not
bounded, then the maximum and minimum in (1.4.6) need not exist. However, the analog
of (1.4.6) with inf in place of min and sup in place of max, is in general false. It suffices to
take Ω = R×]0,+∞[ and u(x) = x2.

We will say that a continuous function from Ω to R has the mean value property if
(1.4.5) holds whenever Br(x̄) ⊆ Ω.

Remark 1.4.6. The strong maximum principle holds in fact for functions satisfying the
mean value property. Indeed, it is the only property of harmonic functions used in the
proof. It suffices in fact, that the mean value property holds locally, in the sense that, for
every x̄ ∈ Ω there exists r̄ > 0 such that (1.4.5) holds when 0 < r < r̄. Moreover, this
amounts to the fact that, for every x̄ ∈ Ω there exists r̄ > 0 such that (1.4.1) holds when
0 < r < r̄. In fact, the proof of the mean value Theorem shows that (1.4.1) and (1.4.5)
are equivalent for sufficiently small r.

Corollary 1.4.7. If Ω is bounded and u1 and u2 are functions defined on Ω, continuous
on Ω and harmonic on Ω, such that u1 = u2 on ∂Ω, then u1 = u2 on Ω.

Proof. Clearly, u1−u2 is harmonic on Ω, and amounts to 0 on ∂Ω, thus, by the maximum
principle, amounts to 0 on Ω.

Theorem 1.4.3 states that every harmonic function has the mean value property. We will
now see that also the converse holds, in other words, every (continuous, not necessarily
C2) function satisfying the mean value property is harmonic.

Theorem 1.4.8. If u is a continuous function from Ω to R satisfying the mean value
property, then u is harmonic on Ω.
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Proof. Note that, in view of Theorem 1.1.2, we simply need to prove that u is of class
C2. First of all, we prove that if u is a continuous function satisfying the mean property,
then so do its partial derivatives. Let x̄ ∈ Ω. As the balls with radius r have all the same
measure, we have

u(x̄+ tei)− u(x̄)

t
=

1

tµ(Br(x̄))

( ∫
Br(x̄+tei)

u−
∫

Br(x̄)

u
)
=

1

tµ(Br(x̄))

( ∫
Br(x̄+tei)\Br(x̄)

u−
∫

Br(x̄)\Br(x̄+tei)

u
)

(1.4.7)

for sufficiently small r and t. Now, suppose for simplicity t > 0 and i = n, and evaluate the
first integral in (1.4.7). Write x ∈ Rn in the form x = (y, z), y ∈ Rn−1, z ∈ R, x̄ = (ȳ, z̄).
Let

β(y) =
√
r2 − ||y||2 ,

At =
{
(y, z) : y ∈ Rn−1, z > t} ,

Ct =
{
(y, z) : y ∈ Br(ȳ), z ∈ ]z̄ + β(y − ȳ), z̄ + t+ β(y − ȳ)]

}
,

Dt =
{
(y, z) : z̄ < z ≤ z̄ + t, y ∈ Br(ȳ) \B√

r2−t2(ȳ)
}
.

Then, it is easy to verify that, for any r > 0, if 0 < t < r we have(
Br(x̄+ tei) \Br(x̄)

)
∩Az̄+t = Ct ∩Az̄+t , (1.4.8)((

Br(x̄+ tei) \Br(x̄)
)
\Az̄+t

)
∪
(
Ct \Az̄+t

)
⊆ Dt , (1.4.9)

1

t
µ
(
Dt

)
−→
t→0

0 . (1.4.10)

As a consequence of (1.4.8), (1.4.9), (1.4.10), we have

1

tµ(Br(x̄))

( ∫
Br(x̄+tei)\Br(x̄)

u−
∫
Ct

u
)
−→
t→0

0 . (1.4.11)

We used this device in order to integrate over Ct in place of over Br(x̄+ tei) \Br(x̄), and
we can evaluate the integral over Ct using Lemma 1.2.1. Namely, putting ∂± =

{
(y, z) ∈

∂Br(x̄) : ±(z− z̄) ≥ 0
}
, let ∂+ be represented as ψ(A). Then, putting ϕ(y, τ) = ψ(y)+τen,

we have Ct = ϕ(A×]0, t]). Hence, by Lemma 1.2.1,

∫
Ct

u =

t∫
0

( ∫
∂++τen

uν∂++τ · en
)
dτ .

12



Hence, differentiating and taking into account (1.4.11),

lim
t→0

1

t

∫
Br(x̄+tei)\Br(x̄)

u = lim
t→0

1

t

∫
Ct

u =

∫
∂+

uν∂+ · en

By a similar argument,

1

t

∫
Br(x̄)\Br(x̄+tei)

u−→
t→0

−
∫
∂−

uν∂− · en

Hence, using (1.4.7),

u(x̄+ tei)− u(x̄)

t
−→
t→0

1

µ(Br(x̄))

∫
∂Br(x̄)

uν∂Br(x̄) · en

Using the divergence Theorem for the function (0, 0, ..., u), we have

∃ ∂u

∂xi
(x̄) =

1

µ(Br(x̄))

∫
∂Br(x̄)

uν∂Br(x̄) · ei =
1

µ(Br(x̄))

∫
∂Br(x̄)

∂u

∂xi

thus ∂u
∂xi

exists on Ω and is continuous, and also has the mean value property. By induction,
u is of class C∞ (and the derivatives to u of any order have the mean value property), in
particular of class C2, and, by Theorem 1.1.2, u is harmonic.

Remark 1.4.9. Note that the proof of Theorem 1.4.8 shows that if u is harmonic, then
the derivatives of u of any order are also harmonic.

1.5 Dirichlet Problem on the Ball

Lemma 1.4.1 shows that the value of a harmonic at the center of a ball only depends on
the values on the boundary of the ball, and in fact, gives the value at the center in terms
of the values on the boundary. In this section, we will try to do an analog for points in
the ball different from its center, and also on open sets different from the ball. Note that
Corollary 1.4.7 states that in any case, the values of a harmonic function on an open set
only depend on its values on the boundary of the set, and the point is to explicitly find
such a dependence. We will now use the functions ψ̄, ϕ̄, defined in Section 1.3. Let E be
so that E ⊆ Ω and let x̄ ∈ E, and let r̄ > 0 be so that Br̄(x̄) ⊆ E. Suppose also E is a
connected open set, div-regular. We mimic the proof of Lemma 1.4.1. We proceed in the
same way, with E in place of Br(x̄), the unique difference being that, in the present case
the function v defined by v(x) = ϕ(x − x̄) is not necessarily constant on ∂E, so that the
integral

∫
∂E

(v gradu) · ν does not vanish. We thus obtain

u(x̄) =

∫
∂E

u(x) grad ϕ̄(x− x̄) · ν(x) dx−
∫
∂E

ϕ̄(x− x̄) gradu(x) · ν(x) dx (1.5.1)
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On the other hand, by Corollary 1.3.5, if v is any harmonic function on all of E (that is,
unlike ϕ̄(x− x̄), having no singularities in E), continuous on E, we have

0 =

∫
∂E

u(x) grad v(x) · ν(x) dx−
∫
∂E

v(x) gradu(x) · ν(x) dx .

Consequently, if

G(x, y) = ϕ̄(x− y) + h(x, y) , (1.5.2)

with h : E × E, harmonic on E and continuous on E, with respect to x, and such that

G(x, y) = 0 ∀x ∈ ∂E , (1.5.3)

summing the previous two identities, we get

u(x̄) =

∫
∂E

u(x) gradxG(x, x̄) · ν(x) dx , (1.5.4)

where of course, gradx denotes the gradient with respect to the variable x. Such a function
G, if exists, is called Green function on E. The Green function, if exists, is unique. In
fact, if G1, G2 are two functions having the previous properties, then, for given y ∈ E,
the function x 7→ G1(x, y)−G2(x, y) is defined over all E (in fact the difference does not
contain the singular term ϕ̄(x − y)), continuous on E, and harmonic on E, and attains
the value 0 on all of ∂E, so that, by the maximum principle is identically 0 on E. In
conclusion, we have in fact represented u on E in terms of the values of u on ∂E, provided
we know a Green function on E. Now, the point is to find a Green function. This is in
general a nontrivial problem. We will now consider the case of a ball, that is, E = BR(0).
In this specific case, we can find explicitly the Green function. Namely.

G(x, y) =

{
ϕ̄
(
x− y

)
− ϕ̄

(
||y||
R (x− ȳ)

)
if y ̸= 0

ϕ̄(x)− ψ̄(R) if y = 0
ȳ :=

R2y

||y||2
.

Note that ȳ is a sort of inverse of y with respect to BR(0), in the sense that y and ȳ are
in the same half-line with endpoint 0, and ||y|| ||ȳ|| = R2. As ||ȳ|| > R for y ∈ BR(0), the

argument ||y||
R (x − ȳ) of ϕ̄ in the definition of G is different from 0, so that ϕ̄ is defined

there. We will now prove that ϕ̄
(
x− y

)
− ϕ̄

(
||y||
R (x− ȳ)

)
= 0 if ||x|| = R, so that (1.5.3)

holds and G is in fact the Green function. It suffices to prove that, if ||x|| = R, then

||x− y|| =
∣∣∣∣∣∣ ||y||R (x− ȳ)

∣∣∣∣∣∣. This fact has also a simple geometrical interpretation. We have

||x− y||2 = ||x||2 + ||y||2 − 2x · y = R2 + ||y||2 − 2x · y ,

||x− ȳ||2 = ||x||2 + R4

||y||2
− 2x · R

2y

||y||2
= R2 +

R4

||y||2
− 2R2

||y||2
x · y ,
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thus, ||x− ȳ||2 =
(

R
||y||

)2

||x− y||2, and ||x− y|| =
∣∣∣∣∣∣ ||y||R (x− ȳ)

∣∣∣∣∣∣. In conclusion, G has all

properties required for a Green function. Note that the definition of G(x, y) for y = 0 is
in some sense natural, in that, by definition ϕ̄(x) = ψ̄(||x||), and∣∣∣∣∣∣ ||y||

R
(x− ȳ)

∣∣∣∣∣∣−→
y→0

R .

Note also that, a simple calculation shows that

G(x, y) = ψ̄
(√

||x||2 + ||y||2 − 2x · y
)
− ψ̄

(√
1

R2

(
||x||2||y||2 +R4 − 2R2x · y

) )
when y ̸= 0, but also when y = 0. This proves that G is symmetric (that is, G(x, y) =
G(y, x) whenever x ∈ BR(0), y ∈ BR(0), x ̸= y). In order to give an explicit representation
of the harmonic function u in terms of its values on the boundary via (1.5.4) in this specific
case, we need to give a formula for gradxG(x, x̄) · ν(x). It is possible to verify that

gradxG(x, y) · ν(x) =
R2 − ||y||2

d̄nR

1

||x− y||n
. (1.5.5)

Hence,

u(y) =
R2 − ||y||2

d̄nR

∫
∂BR(0)

u(x)
1

||x− y||n
dx . (1.5.6)

Note that, in some sense, formula (1.5.6) is an analog of the Cauchy formula for functions
of one complex variable. Putting u = 1 in (1.5.6), we get

1 =
R2 − ||y||2

d̄nR

∫
∂BR(0)

1

||x− y||n
dx . (1.5.7)

We will now consider a sort of an inverse problem, that is, given a continuous function f
on ∂BR(0), putting

u(y) =


R2 − ||y||2

d̄nR

∫
∂BR(0)

f(x)
1

||x− y||n
dx if y ∈ BR(0)

f(y) if y ∈ ∂BR(0)

(1.5.8)

can we state that u is continuous on BR(0) and harmonic on BR(0)? The answer to this
question is provided by the following theorem.

Theorem 1.5.1. Given f : ∂BR(0) → R, continuous, then the function u defined by
(1.5.8) is continuous on BR(0) and harmonic on BR(0).

Proof. We use the equivalent formula (see (1.5.5))
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u(y) =

∫
∂BR(0)

f(x)gradxG(x, y) · ν(x) dx

valid for y ∈ BR(0). It is easy to see that we can differentiate under integral, taking into
account that for y′ in a neighbourhood of y and x ∈ ∂BR(0), ||x − y′|| ≥ d > 0, so that
gradxG(x, y) is bounded (cf. Lemma 1.3.2 i). Thus

∆u(y) =

∫
∂BR(0)

f(x)∆y

( n∑
i=1

∂G(x, y)

∂xi
νi(x)

)
dx

=

∫
∂BR(0)

f(x)

n∑
i=1

∂

∂xi

(
∆yG(x, y)

)
νi(x) dx = 0

where in the second equality we have exchanged the differentiation operators, and this is
possible by the Schwarz Theorem, and in the third we have used that G is harmonic in x
and symmetric, thus harmonic in y. Therefore, u is harmonic on BR(0). We now prove
that u is continuous on BR(0). This is obvious on BR(0), and, since the restriction to
∂BR(0) is continuous by hypothesis, it suffices to prove

u|BR(0)(y)−→
y→ȳ

f(ȳ) ∀ȳ ∈ ∂BR(0) . (1.5.9)

For simplicity put P (x, y) =
R2 − ||y||2

d̄nR

1

||x− y||n
, where P stands for Poisson (in fact P

is called Poisson Kernel), so that u assumes the form

u(y) =

∫
∂BR(0)

f(x)P (x, y)dx . (1.5.10)

for y ∈ BR(0). Using (1.5.7), we get

u(y)− f(ȳ) =

∫
∂BR(0)

(f(x)− f(ȳ))P (x, y)dx . (1.5.11)

Given ε > 0, let δ > 0 be so that,

x ∈ ∂BR(0) ∩Bδ(ȳ) ⇒ |f(x)− f(ȳ)| < ε .

Then, ∣∣∣ ∫
∂BR(0)∩Bδ(ȳ)

(f(x)− f(ȳ))P (x, y)dx
∣∣∣

≤ ε

∫
∂BR(0)∩Bδ(ȳ)

P (x, y)dx
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≤ ε

∫
∂BR(0)

P (x, y)dx = ε ,

where in the last inequality, we used the fact that, by definition, P (x, y) > 0. On the other
hand, suppose now ||y − ȳ|| < δ

2 , so that, if x ∈ ∂BR(0) \ Bδ(ȳ), we have ||x − y|| ≥ δ
2 ,

hence, by the definition of P ,∣∣∣ ∫
∂BR(0)\Bδ(ȳ)

(f(x)− f(ȳ))P (x, y)dx
∣∣∣

≤
(2
δ

)nR2 − ||y||2

d̄nR
2M

∫
∂BR(0)

1−→
y→ȳ

0

where M := max |f |, as ||ȳ||2 = R2. By the previous inequalities we have∣∣∣ ∫
∂BR(0)

(f(x)− f(ȳ))P (x, y)dx
∣∣∣ < 2ε

for ||y − ȳ|| sufficiently small, and, in view of (1.5.11), (1.5.9) is proved.

In the following, we will denote by

HB(f)

the continuous function on the closure of the ball B, harmonic on B, that amounts to
the continuous function f on ∂B, as given by (1.5.8). The problem of finding a harmonic
function on Ω with prescribed (continuous) values on its boundary is called Dirichlet prob-
lem. Thus, Theorem 1.5.1 states that the function u given by (1.5.8) solves the Dirichlet
problem on the ball BR(0) with values f on the boundary. We will now see some conse-
quences of Theorem 1.5.1 and related results. First, we give another (and simpler) proof
of Theorem 1.4.8.

Given u as in Theorem 1.4.8, and B := BR(x̄) such that BR(x̄) ⊆ Ω, let v = HB(u). Then,
u − v has the mean value property on Ω, and is identically 0 on ∂BR(x̄), hence by the
maximum principle (cf. Remark 1.4.6), it is identically 0 on BR(x̄). Thus u amounts to v,
hence is harmonic on BR(x̄). Since B is an arbitrary ball, whose closure is contained in
Ω, u is harmonic on Ω.

Remark 1.5.2. The previous proof shows that, in order that u be harmonic, it suffices
that the mean property holds locally in the sense of Remark 1.4.6.

Corollary 1.5.3. If uh is a sequence of harmonic functions on Ω, such that uh −→
h→+∞

u,

uniformly on compact subsets of Ω, then u is harmonic on Ω.
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Proof. Let x̄ ∈ Ω and let r > 0 be such that Br(x̄) ⊆ Ω. Since every uh satisfies (1.4.5),
taking the limit, as uh −→

h→+∞
u uniformly on Br(x̄), then u satisfies (1.4.5) as well. By

Theorem 1.4.8 u is harmonic.

Theorem 1.5.4 (Harnack inequality. Let F be a nonempty connected and compact
subset of Ω. Then, there exists c > 0 such that for every nonnegative harmonic function u
on Ω, then sup

F
u ≤ c inf

F
u.

Proof. Suppose first F has the form F = Br(x̄), with x̄ ∈ Ω, and r so small that

B4r(x̄) ⊆ Ω . (1.5.12)

If x1, x2 ∈ F , by the definition of F (and the triangular inequality), we have ||x1−x2|| ≤ 2r.
Therefore, also using (1.5.12),

Br(x1) ⊆ B3r(x2) ⊆ B4r(x̄) ⊆ Ω . (1.5.13)

Now, we have µ(Br(x)) = ωnr
n, for every x ∈ Rn and for a suitable ωn > 0. Therefore, as

u is assumed to be nonnegative, and in view of the mean value Theorem, we have

u(x1) =
1

ωnrn

∫
Br(x1)

u ≤ 1

ωnrn

∫
B3r(x2)

u = 3n
1

ωn(3r)n

∫
B3r(x2)

u = 3nu(x2) . (1.5.14)

Thus, we have prove the Theorem for F of the previous form with c = 3n. In the general
case, by a compactness argument, F is covered by finitely many balls Fi = Bri(xi), i =
1, ..., N , satisfying (1.5.12), and we can assume Fi ∩ F ̸= ø for each i = 1, ..., N . We will
denote by F the set of all Fi. We will say that Fi is 1-connected to Fi′ if Fi ∩Fi′ ̸= ø, and
by induction that Fi and Fi′ are (h + 1)- connected if Fi is h-connected to some Fj that
is 1-connected to Fi′ . Finally, we say that Fi is connected to Fi′ if it is h-connected to Fi′
for some h. We have that Fi is connected to any Fi′ . In fact, in the opposite case, putting
V to be the union of Fi connected to F1, and V

′ to be the union of Fi not connected to
F1, we split F into the union of two nonempty sets, open in F , in the following way

F =
(
F ∩ V

)
∪
(
F ∩ V ′), (

F ∩ V
)
∩
(
F ∩ V ′) = ø

and this contradicts the connectedness of F . Using (1.5.14) and a recursive argument,
we get that if x1 ∈ F i1 and x2 ∈ F i2 , and Fi1 and Fi2 are h-connected, then u(x1) ≤
c(h+1)nu(x2). Since any two elements of F are connected, in fact (as every sequence of
different elements of F contains at most N elements), (N − 1)- connected, we have

u(x1) ≤ cNnu(x2)

and the Theorem is proved with c = Nn.

Remark 1.5.5. The important point in the previous theorem is that we can choose the
constant c independent of the function u. The constant, instead, depends on the subset F .
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The theorem would be false if we would replace F with all Ω. Moreover, note that the 1-
dimensional version of Theorem 1.5.4 is trivial. In fact, in this case the harmonic functions
are affine.

Corollary 1.5.6. If u is harmonic on Ω, and x̄ ∈ Ω, and Br(x̄) ⊆ Ω, then ||gradu(x̄)|| ≤
max
∂Br(x̄)

|u|nr .

Proof. We have (see last formula in proof of Theorem 1.4.8)

∂u

∂xi
(x̄) =

1

µ(Br(x̄))

∫
∂Br(x̄)

uν · ei

Hence,

gradu(x̄) =
1

µ(Br(x̄))

∫
∂Br(x̄)

uν ,

||gradu(x̄)|| ≤ 1

µ(Br(x̄))

∫
∂Br(x̄)

|u| ≤ max
∂Br(x̄)

|u|n
r
,

the last inequality being a consequence of Corollary 1.2.3.

Corollary 1.5.7. (Liouville Theorem). A bounded harmonic function u on Rn is
constant.

Proof. Fix x ∈ Rn. For any r > 0 we have Br(x) ⊆ Rn, so that, putting M = sup |u|,
we have M < +∞ by the hypothesis, and by Corollary 1.5.6, ||gradu(x)|| ≤ M n

r . Since
this inequality holds for every r > 0, we have gradu(x) = 0 for every x ∈ Rn, hence u is
constant.

Note that the Liouville Theorem has an analog in the theory of one complex variable. The
following theorem is a sort of Ascoli-Arzelà Theorem for harmonic functions. Note that,
unlike the general case, it suffices the harmonic functions are equibounded.

Theorem 1.5.8. Every sequence uh of harmonic functions on Ω, equibounded on every
compact subset of Ω, has a subsequence uniformly convergent on every compact subset of
Ω to a harmonic function on Ω.

Proof. It is a standard fact that Ω is the union of countably many compact subsets.
Namely,

Ω =
∞∪
m=1

Ωm, Ωm =:
{
x ∈ Rn : ||x|| ≤ m, d(x,Ωc) ≥ 1

m

}
.

where, in the case Ω = Rn we use the convention d(x,ø) = +∞. More precisely, it is
easy to verify that every compact subset of Ω is contained in some Ωm. Thus it suffices
to prove that, for every m, uh has a subsequence uniformly convergent on Ωm. In fact, by
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a diagonal argument, we then obtain a subsequence uniformly convergent on every Ωm.
Given a compact subset of Ω, as it is contained in some Ωm, such a subsequence is uniformly
convergent on K. Given x ∈ Ωm, we have B 1

2m
(x) ⊆ Ω2m. As uh are equibounded, say

|uh| ≤M on Ω2m, in view of Corollary 1.5.6 we have

||graduh(y)|| ≤ max
∂B 1

4m
(y)

|uh|4nm ≤ 4nmM

for every y ∈ B 1
4m

(x), as in such a case we have

B 1
4m

(y) ⊆ B 1
2m

(x) ⊆ Ω2m

Therefore,

|uh(x1)− uh(x2)| = |graduh(y) · (x1 − x2)| ≤ 4nmM ||x1 − x2||

for some y in the segment-line with endpoints x1 and x2, for every x1, x2 ∈ B 1
4m

(x). It

follows that the sequence uh is equibounded and equicontinuous on B 1
4m

(x), thus it has a

subsequence uniformly convergent on B 1
4m

(x), a fortiori on B 1
4m

(x). As, by a compactness

argument, Ωm is covered by finitely many balls of the form B 1
4m

(x) with x ∈ Ωm, uh has
a subsequence uniformly convergent on Ωm. The limit function is harmonic by Corollary
1.5.3.

1.6 Dirichlet Problem on General Domains

In this section, we will solve the Dirichlet problem for general domains. However, we will
have to require some relatively mild conditions on the domain. We will now introduce a
new class of functions, the subharmonic functions, which are a variant of the harmonic
function in the sense that they take at a point a value which is smaller than or equal to
the average on a ball centered at the point. In the one-dimensional case, as previously
seen, the harmonic functions are the affine ones. Instead, the subharmonic functions are
the convex ones.

Definition 1.6.1. A continuous function from Ω to R is said to be subharmonic if, for
every x ∈ Ω and for every r > 0 such that Br(x) ⊆ Ω, we have

u(x) ≤ 1

µ(Br(x))

∫
Br(x)

u . (1.6.1)

Lemma 1.6.2 (strong maximum principle). If Ω is bounded and u : Ω → R is
continuous and subharmonic on Ω, then max

Ω
u = max

∂Ω
u and if u attains a maximum value

on Ω, then it is constant on Ω.
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Proof. Suppose x̄ ∈ Ω and u(x̄) = max
Ω

u. Then, take r > 0 so that Br(x) ⊆ Ω. By

Definition 1.6.1, ∫
Br(x)

(u− u(x̄)) ≥ 0

and we proceed in the exactly same way as in proof of Theorem 1.4.4 (and Corollary 1.4.5).

Remark 1.6.3. Note that for subharmonic functions an analogous minimum principle
does not hold.

Lemma 1.6.4. Given a continuous function u : Ω → R, the following are equivalent:
i) u is subharmonic.
ii) For every x ∈ Ω there exists r̄ > 0 such that (1.6.1) holds for every r ∈]0, r̄[.
iii) For every x̄ ∈ Ω and every r > 0 such that Br(x̄) ⊆ Ω, if h is a continuous function on
Br(x̄), harmonic on Br(x̄) and h ≥ u on ∂Br(x̄), then h ≥ u on Br(x̄).

Proof. Clearly, i)⇒ ii). Prove ii)⇒iii). If ii) holds, given h as in iii), by (1.6.1) and the
mean value property, u−h satisfies ii) as well. Thus, u−h satisfies the maximum principle,
as the proof of Lemma 1.6.2 in fact, only uses ii). As u − h ≤ 0 on ∂Br(x̄), and u − h
attains its maximum on Br(x̄) at points in ∂Br(x̄), we thus have u− h ≤ 0 on Br(x̄), and
iii) holds. Prove now iii)⇒ i). Let r > 0 be such that Br(x̄) ⊆ Ω. Let h := HBr(x̄)(u)
so that, by definition, h = u on ∂Br(x̄), hence by iii), h ≥ u on Br(x̄). Then, by Lemma
1.4.1, we have

u(x̄)

∫
∂Bt(x̄)

1 ≤ h(x̄)

∫
∂Bt(x̄)

1 =

∫
∂Btx̄)

h =

∫
∂Btx̄)

u

for every t ∈]0, r[. Thus, integrating with respect to t ∈]0, r[, we get

µ(Br(x̄))u(x̄) = u(x̄)

r∫
0

( ∫
∂Bt(x̄)

1
)
dt ≤

r∫
0

( ∫
∂Btx̄)

u
)
dt =

∫
Br(x̄)

u

and u is subharmonic.

The harmonic functions are by definition the functions u of class C2 such that ∆u = 0.
A similar characterization holds for the subharmonic functions. Note however, that in the
present case the statement is slightly different from that for harmonic functions, that is,
we characterize only the subharmonic functions of class C2, not all subharmonic functions.

Lemma 1.6.5. A function u of class C2 on Ω is subharmonic if and only if ∆u ≥ 0 on Ω.

Proof. If u is subharmonic, then ∆(u) ≥ 0 on Ω by Theorem 1.1.2. Suppose now ∆u
is strictly positive on Ω. Then, u is subharmonic by Theorem 1.1.2 again and Lemma
1.6.4 (more precisely, condition ii) there.) Suppose now ∆u ≥ 0 on Ω, and put ut(x) =
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u(x) + t||x||2 for t > 0. We have ∆ut = ∆u + 2tn > 0. Thus, ut is subharmonic by the
previous considerations, and by passing to the limit as t → 0 in (1.6.1), we get that u is
subharmonic.

Lemma 1.6.6. If ui, i = 1, ..h are subharmonic functions on Ω, then u := max
i=1,...,h

ui is

subharmonic on Ω.

Proof. If x ∈ Ω, and Br(x) ⊆ Ω, we have u(x) = ui(x) for some i = 1, ..., h, thus

u(x) = ui(x) ≤
1

µ(Br(x))

∫
Br(x)

ui ≤
1

µ(Br(x))

∫
Br(x)

u .

Given a ball B whose closure in contained in Ω, and u subharmonic on Ω, we define the
function HB(u) (the harmonic lifting of u on B) as

HB(u)(x) =

{
HB(u)(x) if x ∈ B

u(x) if x /∈ B
.

Note that, by Lemma 1.6.4 and the definition of HB(u), we have HB(u) ≥ u on Ω.

Lemma 1.6.7. The function HB(u) is subharmonic on Ω.

Proof. We use ii) of Lemma 1.6.4. As the restrictions of u to B and to Ω \ B are
subharmonic, ii) clearly holds when x /∈ ∂B. If x ∈ ∂B, then, for every r > 0 such that
Br(x) ⊆ Ω we have

HB(u)(x) = u(x) ≤ 1

µ(Br(x))

∫
Br(x)

u ≤ 1

µ(Br(x))

∫
Br(x)

HB(u) .

We now show the Perron method to solve the Dirichlet problem on a region Ω. Let Ω be
bounded and let f be a continuous function on ∂Ω. We define the space of subsolutions of
the Dirichlet problem, namely let

Sf =
{
u : Ω → R, u continuous on Ω, subharmonic on Ω : u ≤ f on ∂Ω

}
.

Theorem 1.6.8. The function w defined by

w = sup
{
u : u ∈ Sf

}
is harmonic on Ω.

Proof. If u ∈ Sf , as u ≤ max f on ∂Ω, then u ≤ max f on Ω, by the maximum principle.
As a consequence, w ≤ max f . Also, note that, if B is a ball whose closure is contained in
Ω, and u ∈ Sf , then
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max{u,min f}, HB(u) ∈ Sf .

Fix x0 ∈ Ω, and we will prove that w is harmonic on a suitable ball centered at x0. As
a consequence, w will turn out to be harmonic on all of Ω. We will denote by B a ball
centered at x0 whose closure is contained in Ω. Let uh be a sequence of function in Sf such
that

uh(x0) −→
h→+∞

w(x0) , (1.6.2)

We can assume uh ≥ min f , as in any case we can replace uh by max{uh,min f} ∈ Sf .
Let Vh = HB(uh) ∈ Sf . As Vh are harmonic functions on B, and min f ≤ Vh ≤ max f , by
Theorem 1.5.8 there exist a subsequence Vhk

of Vh and a harmonic function V on B such
that Vhk

−→
k→+∞

V , uniformly on the compact subsets of B. As uhk
≤ Vhk

≤ w, in view of

(1.6.2), we have

V (x) ≤ w(x) ∀x ∈ B, V (x0) = w(x0) . (1.6.3)

As V is harmonic on B, it suffices to prove V (x) = w(x) for all x ∈ B. By contradiction,
suppose ∃x1 ∈ B : V (x1) < w(x1). Then,

∃v ∈ Sf : v(x1) > V (x1) . (1.6.4)

We set dh = max{Vh, v}, and Dh = HBdh. As min
Ω
v ≤ v ≤ Dh ≤ w ≤ max f on B, Dhk

is a sequence of functions, equibounded and harmonic on B, so that it has a subsequence,
uniformly convergent to a harmonic function D on the compact subsets of B. As Dh ≥ Vh
by definition, we have

V ≤ D ≤ w (1.6.5)

on B. On the other hand, by (1.6.3), D(x0) = V (x0), and by (1.6.5), the function D− V ,
harmonic on B, attains the minimum value 0 on B at x0, so that by the maximum principle
we have D = V on B. But, in contrast, D(x1) ≥ v(x1) > V (x1), a contradiction.

Our aim is to solve the Dirichlet problem. By this point of view, Theorem 1.6.8 does not
suffice as, in general, the equality w = f on ∂Ω is not necessarily valid. The validity of such
an equality depends on some specific properties of the boundary. To clarify this point, we
need the notion of barrier. We say that a continuous function u on Ω is superharmonic if,
for every x ∈ Ω and for every r > 0 such that Br(x) ⊆ Ω, we have u(x) ≥ 1

µ(Br(x))

∫
Br(x)

u,

in other words if −u is subharmonic. The previous results on subharmonic functions can
be easily converted into results on superharmonic functions.

Definition 1.6.9. A barrier at the point ξ ∈ ∂Ω is a continuous function b on Ω, super-
harmonic on Ω, such that b ≥ 0 on Ω, and b(x) = 0 ⇐⇒ x = ξ.
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A case where we have the existence of a barrier at a point ξ ∈ ∂Ω is when the exterior
sphere condition is satisfied, i.e.,

there exists a ball B := BR(x̄) such that B ∩ Ω = {ξ}.
In such a case, a barrier is given by the function b(x) = ϕ(x − x̄) − ϕ(ξ − x̄), where the
function ϕ is defined in Section 3. In fact, definitely x̄ /∈ Ω, as, in the opposite case,
B ∩ Ω would contain a point, hence a nonempty open set in Rn. Therefore, w is defined
and continuous on Ω, and harmonic on Ω. Moreover, if x ∈ Ω \ {ξ}, then x /∈ B, hence
||x − x̄|| > R = ||ξ − x̄||, and as ψ is strictly increasing, then b(x) > 0. As an important
and known particular case, the exterior sphere condition is satisfied at all points of ∂Ω
when ∂Ω is of class C2.

Theorem 1.6.10. If there exists a barrier at any point of ∂Ω, then the function w̃ defined
by

w̃(x) =

{
w(x) if x ∈ Ω

f(x) if x ∈ ∂Ω

where w is the function defined in Theorem 1.6.8, is continuous on Ω, harmonic on Ω,
hence solves the Dirichlet problem with values f on ∂Ω.

Proof. In view of Theorem 1.6.8, we have only to prove that, for every ξ ∈ ∂Ω, we have

w̃|Ω(x)−→
x→ξ

w̃(ξ) . (1.6.6)

Let ξ ∈ ∂Ω, and let b̄ be a barrier at ξ. Then, we have

∀ ε > 0 ∃ k > 0 : |f(ξ)− f(x)| ≤ ε+ kb̄(x) ∀x ∈ ∂Ω . (1.6.7)

In fact, by continuity, there exists δ > 0 such that every x ∈ ∂Ω ∩ Bδ(ξ) satisfies |f(ξ) −
f(x)| < ε, and a fortiori, satisfies (1.6.7) for any positive k. On the other hand, as by
definition b̄ > 0 on Ω \ {ξ}, by a compactness argument there exists η > 0 such that b̄ ≥ η
on Ω \ Bδ(ξ), and taking k such that kη > 2max |f |, also every x ∈ ∂Ω \ Bδ(ξ) satisfies
(1.6.7). By (1.6.7) the function f(ξ)− ε− kb̄, subharmonic on Ω, is an element of Sf , thus

f(ξ)− ε− kb̄(x) ≤ w(x) ∀x ∈ Ω . (1.6.8)

On the other hand, for every u ∈ Sf we have, in view of (1.6.7) again, u(x) ≤ f(x) ≤
f(ξ) + ε+ kb̄(x), thus u(x)−

(
f(ξ) + ε+ kb̄(x)

)
≤ 0 for all x ∈ ∂Ω, and, as the function

u−
(
f(ξ) + ε+ kb̄

)
is subharmonic, by the maximum principle, u −

(
f(ξ) + ε + kb̄

)
≤ 0 on Ω. Thus, u(x) ≤

f(ξ) + ε+ kb̄(x) for all x ∈ Ω, for all u ∈ Sf . By the definition of w we thus have

w(x) ≤ f(ξ) + ε+ kb̄(x) ∀x ∈ Ω . (1.6.9)

Since b̄ is continuous and b̄(ξ) = 0, there exists δ > 0 such that for all x ∈ Bδ(ξ) we have
b̄(x) = |b̄(x)| < ε

k , hence, in view of (1.6.8) and (1.6.9),
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|w(x)− f(ξ)| ≤ ε+ kb̄(x) < 2ε

and (1.6.6) immediately follows.

1.7 Other Boundary Conditions

We now wish to study the problem{
∆u = g on Ω

u = f on ∂Ω
Pf,g

with f continuous on ∂Ω, g continuous and bounded on Ω, and suppose Ω bounded. By
solution of Pf,g we mean a continuous function u on Ω, of class C2 on Ω, that satisfies
requirements of Pf,g. The first remark is that the solution to Pf,g, if exists, is unique.
Indeed, if u1 and u2 are solutions of Pf,g, then ū := u1−u2 is harmonic and satisfies ū = 0
on ∂Ω, thus, by the maximum principle, ū = 0 on Ω. We will now study the problem of
the existence of the solution of Pf,g. In general, we cannot obtain existence results with
the above conditions on f and g even if, for example, Ω is a ball. In fact there are cases
where Pf,g has no solutions. We need some preliminary considerations. Note the following
trivial fact, which will be useful in the following.

∂α(x− y)

∂xi
= −∂α(x− y)

∂yi
(1.7.1)

if α is a function defined in an open set E in Rn, and there exists
∂α(z)

∂zi
, with x̄−ȳ = z̄ ∈ E.

Lemma 1.7.1. The integral ∫
Br(x̄)

||x− x̄||α dx

is finite if and only if α > −n.
Proof. We have

∫
Br(x̄)

||x− x̄||α dx =

r∫
0

( ∫
∂Bt(x̄)

||x− x̄||α dx
)
dt =

r∫
0

tα
1

d̄n
tn−1 dt =

1

d̄n

r∫
0

tα+n−1 dt

where d̄n is defined in Section 1.3. Note that, to be precise, we should interpret the integrals
in the previous formula as limits for ε → 0 of integrals on [ε, r] as we are using Corollary
1.2.2, valid when the integrand is continuous, and the function ||x||α is not continuous at

0 for negative α. We conclude recalling that the integral
r∫
0

tβ dt is finite when β > −1.
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We will now estimate the derivatives of ϕ. We have for some positive constants c1,n, c2,n,

∂ϕ(x− y)

∂xi
= c1,n||x− y||1−n (x− y)i

||x− y||
, hence∣∣∣∂ϕ(x− y)

∂xi

∣∣∣ ≤ c1,n||x− y||1−n (1.7.2)

and, by similar considerations,∣∣∣∂2ϕ(x− y)

∂xi∂xj

∣∣∣ ≤ c2,n||x− y||−n (1.7.3)

when x ̸= y. Of course, when x = y, (1.7.2) and (1.7.3) do not make sense.

Corollary 1.7.2. The functions y 7→ ϕ(y), y 7→ ϕ(y)

||y||
and y 7→ ∂ϕ(y)

∂yi
are summable on

any ball with center at 0. The integral of such functions on Br(0) tends to 0 as r → 0.

Proof. The first statement easily follows from the definition of ϕ, (1.7.2), and Lemma
1.7.1. Note that in the case n = 2 we simply have to recall that the order of infinity, as
t→ 0+, of ln t, is smaller than that of t−α for any positive α, for example t−

1
2 . The second

statement could be directly verified. However, it also follows from the general result that
the integral of a summable function on a set, tends to 0 as the measure of the set tends to
0 (absolute continuity of the integral of a summable function).

Note that the same considerations as before, in view of Lemma 1.7.1 and (1.7.3), do not
permit to prove an analogous statement for the second derivatives, which in fact, is in
general false. We now define the Newtonian potential of g on Ω as the function u defined
by

u(x) =

∫
Ω

ϕ(x− y)g(y) dy . (1.7.4)

In some sense, this is a form of convolution of ϕ and g. Note that u is defined on all of
Rn, as for every x ∈ Rn the integral in (1.7.4) is finite. In fact, the only singular point is
y = x. Thus, it suffices to prove that the integral on a small ball with center at x is finite.
This follows from the boundedness of g and Corollary 1.7.2.

Theorem 1.7.3. If u is defined as in (1.7.4), then u is continuous. Moreover,

∂u

∂xi
(x) =

∫
Ω

∂ϕ

∂xi
(x− y)g(y) dy ∀x ∈ Rn . (1.7.5)

Proof. Note that this theorem states that we can differentiate in (1.7.2) under integral
sign. This is not trivial as the integrand function is singular. We introduce a function
η : R → R of class C∞ such that
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0 ≤ η ≤ 1 (1.7.6)

η = 0 on ]−∞, 1], η = 1 on [2,+∞[ (1.7.7)

0 ≤ η′ ≤ 2 (1.7.8)

Such a function can be easily constructed. Then, we put

ηε(x, y) = η
( ||x− y||

ε

)
,

uε(x) =

∫
Ω

ϕ(x− y)ηε(x, y)g(y) dy .

The advantage of introducing uε, is that the presence of the factor ηε(x, y) kills the singu-
larity in the integral, as, by (1.7.7), ηε(x, y) = 0 when ||x − y|| ≤ ε. Moreover, by (1.7.7)
again, when ||x − y|| ≥ 2ε, we have ηε(x, y) = 1, thus, in some sense, uε approximates u
for small ε. More precisely,

|uε(x)− u(x)| =
∣∣∣ ∫
Ω∩B2ε(x)

ϕ(x− y)
(
1− ηε(x, y)

)
g(y) dy

∣∣∣
≤

∫
Ω∩B2ε(x)

|ϕ(x− y)| sup |g| dy ≤ sup |g|
∫

B2ε(x)

|ϕ(x− y)| dy = sup |g|
∫

B2ε(0)

|ϕ(y)| dy−→
ε→0

0

where we have used (1.7.6) (in the inequality) and Corollary 1.7.2. As the last integral in
the previous formula does not depend on x, we have

uε → u uniformly .

By the way, this proves that u is continuous. In fact, every uε is continuous, as, in the
integral defining it, the factor ϕ(x− y)ηε(x− y) is continuous, thus bounded for (x, y) in
a bounded set, and g is bounded by hypothesis.

On the other hand, we have

∂uε
∂xi

(x) =

∫
Ω

∂

∂xi

(
ϕ(x− y)ηε(x, y)

)
g(y) dy

as in this case we can differentiate under integral sign, the integrand function being regular.
We put

v(x) :=

∫
Ω

∂ϕ

∂xi
(x− y)g(y) dy .

We have
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∣∣∂uε
∂xi

(x)− v(x)
∣∣ = ∣∣∣ ∫

Ω∩B2ε(x)

∂

∂xi

(
ϕ(x− y)

(
1− ηε(x, y)

))
g(y) dy

∣∣∣
≤ sup |g|

∫
B2ε(x)

(∣∣∣ ∂
∂xi

ϕ(x− y)
∣∣∣+ |ϕ(x− y)

∣∣2
ε

)
dy (by (1.7.6) and (1.7.8))

≤ sup |g|
( ∫
B2ε(x)

∣∣∣ ∂
∂xi

ϕ(x− y)
∣∣∣ dy + 4

∫
B2ε(x)

|ϕ(x− y)
∣∣

||x− y||
dy

)
=

sup |g|
( ∫
B2ε(0)

∣∣∣ ∂
∂xi

ϕ(y)
∣∣∣ dy + 4

∫
B2ε(0)

|ϕ(y)
∣∣

||y||
dy

)
−→
ε→0

0

by Corollary 1.7.2 and (1.7.1). In conclusion, we have proved that
∂uε
∂xi

−→
ε→0

v uniformly.

As uε−→
ε→0

u uniformly, by known results on the derivatives of a limit of functions, we have

∂u

∂xi
= v, that is the statement of the Theorem.

We now want to find the second derivatives of the function u defined in (1.7.4). Actually,
the formula defining the second derivatives is not the analog of Theorem 1.7.3, but is more
complicated. Such a difference is related to the fact that the first derivatives are summable
(Corollary 1.7.2), while the second derivatives are not. Moreover, we have to require an
additional hypothesis on g, for example the uniform local Lipshitz property.

Theorem 1.7.4. Suppose g : Ω → R, and

∃ δ > 0, ∃ k > 0 :
(
x, y ∈ Ω, ||x− y|| ≤ δ

)
⇒ |g(x)− g(y)| ≤ k||x− y|| . (1.7.9)

Then,

∂2u

∂xi∂xj
(x) =

∫
Ω0

∂2ϕ

∂xi∂xj
(x− y)

(
g(y)− g(x)

)
dy − g(x)

∫
∂Ω0

∂ϕ

∂xi
(x− y)νj(y) dy (1.7.10)

for every x ∈ Ω, where Ω0 is a connected, bounded, open, div-regular set containing Ω,
and g is extended to 0 on Ω0 \ Ω.
Proof. First, we prove that the first integral in (1.7.10) is defined. We have∣∣∣ ∂2ϕ

∂xi∂xj
(x− y)

(
g(y)− g(x)

)∣∣∣ ≤ c2,n||x− y||−nk||x− y||
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when y ∈ Bδ(x) with δ > 0 so small that Bδ(x) ⊆ Ω, by (1.7.3) and (1.7.9). As, moreover,
the integrand function is bounded in Ω0 \ Bδ(x), by Lemma 1.7.1 the first integral in
(1.7.10) is defined. We define η and ηε as in Theorem 1.7.3. We set

v(x) =
∂u

∂xi
(x) ,

vε(x) =

∫
Ω

∂

∂xi

(
ϕ(x− y)

)
ηε(x, y)g(y) dy .

By an argument similar to that used in Theorem 1.7.3, we get that

vε−→
ε→0

v uniformly . (1.7.11)

On the other hand, we can differentiate in vε under integral, as the integrand function has
no singularities. Hence

∂

∂xj
vε(x) =

∫
Ω0

∂

∂xj

( ∂

∂xi
ϕ(x− y)ηε(x, y)

)
g(y) dy

(1.7.12)

=

∫
Ω0

∂

∂xj

( ∂

∂xi
ϕ(x− y)ηε(x, y)

)(
g(y)− g(x)

)
dy + g(x)

∫
Ω0

∂

∂xj

( ∂

∂xi
ϕ(x− y)ηε(x, y)

)
dy

where we can integrate on Ω0 instead of on Ω as g is 0 on Ω0\Ω. Note that the integrand in
the second integral in the second line of (1.7.12) has the form ∂

∂xj
β(x−y) = − ∂

∂yj
β(x−y),

as both ∂
∂xi

ϕ(x− y) and, by the definition of ηε, ηε(x, y) can be expressed as functions of
x− y (see (1.7.1)). Thus such an integral amounts to

−
∫
Ω0

∂

∂yj

( ∂

∂xi
ϕ(x− y)ηε(x, y)

)
dy

which, in turn, by the divergence Theorem, amounts to

−
∫
∂Ω0

∂

∂xi
ϕ(x− y)ηε(x, y)νj(y) dy = −

∫
∂Ω0

∂

∂xi
ϕ(x− y)νj(y) dy

for sufficiently small ε, as it suffices to take ε < 1
2d(x, ∂Ω0) taking into account that

ηε(x, y) = 1 if ||x− y|| ≥ 2ε. Put now

γ(x) =

∫
Ω0

∂

∂xj

( ∂

∂xi
ϕ(x− y)

)(
g(y)− g(x)

)
dy − g(x)

∫
∂Ω0

∂ϕ

∂xi
(x− y)νj(y) dy .
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Then, by proceeding like in Theorem 1.7.3, in view of the previous considerations, we get∣∣∣ ∂
∂xi

vε(x)− γ(x)
∣∣∣ =

∣∣∣ ∫
Ω0

∂

∂xj

( ∂

∂xi
ϕ(x− y)

(
1− ηε(x, y)

))(
g(y)− g(x)

)
dy

∣∣∣
≤

∫
Ω0∩B2ε(x)

(∣∣∣ ∂
∂xi

ϕ(x− y)
∂

∂xj
ηε(x, y)

∣∣∣+ ∣∣∣ ∂2

∂xi∂xj
ϕ(x− y)

∣∣∣)k||x− y|| dy

≤
∫

Ω0∩B2ε(x)

(∣∣∣ ∂
∂xi

ϕ(x− y)
∣∣∣2
ε
+
∣∣∣ ∂2

∂xi∂xj
ϕ(x− y)

∣∣∣)k||x− y|| dy

by (1.7.6) and (1.7.8), provided

ε <
1

2
min

{
δ, d(x,Rn \ Ω)

}
, (1.7.13)

so that, if y ∈ B2ε(x), then y ∈ Ω and, also, we can use (1.7.9). Now, for y ∈ B2ε(x), we

have
2

ε
||x− y|| ≤ 4. Hence,∣∣∣ ∂
∂xi

vε(x)− γ(x)
∣∣∣ ≤ 4k

( ∫
B2ε(x)

∣∣∣ ∂
∂xi

ϕ(x− y)
∣∣∣ dy + c2,nk

∫
B2ε(x)

||x− y||1−n dy
)

= 4k
( ∫
B2ε(0)

∣∣∣ ∂
∂yi

ϕ(y)
∣∣∣ dy + c2,nk

∫
B2ε(0)

||y||1−n dy
)

−→
ε→0

0

by (1.7.1) and Corollary (1.7.2). Thus,
∂

∂xj
vε−→

ε→0
γ locally uniformly. In the present case,

the convergence is locally uniform and not (a priori) uniform, as we required that ε satisfies
(1.7.13), and, clearly such ε can be chosen independent of x locally, but not globally. In
any case, thanks to (1.7.11), this suffices to conclude the proof.

Theorem 1.7.5. If g satisfies (1.7.9), then

∆u(x) = g(x) ∀x ∈ Ω .

Proof. Let Ω0 be, e.g., an open ball containing Ω. Then, by Theorem 1.7.4 we have

∆u(x) =
n∑
i=1

∂2

∂xi2
u(x) =
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∫
Ω0

n∑
i=1

( ∂2ϕ
∂2xi

(x− y)
(
g(y)− g(x)

))
dy − g(x)

∫
∂Ω0

n∑
i=1

( ∂ϕ
∂xi

(x− y)νi(y)
)
dy

=

∫
Ω0

∆ϕ(x− y)
(
g(y)− g(x)

))
dy − g(x)

∫
∂Ω0

n∑
i=1

( ∂ϕ
∂xi

(x− y)νi(y)
)
dy =

− g(x)

∫
∂Ω0

n∑
i=1

( ∂ϕ
∂xi

(x− y)νi(y)
)
dy

as ϕ is harmonic. Let r be so that Br(x) ⊆ Ω. We then have:

− g(x)

∫
∂Ω0

n∑
i=1

( ∂ϕ
∂xi

(x− y)νi(y)
)
dy = − g(x)

∫
∂Ω0

gradxϕ(x− y) · ν(y) dy

= g(x)

∫
∂Ω0

gradyϕ(y − x) · ν(y) dy by (1.7.1)

= g(x)

∫
∂Br(x)

gradyϕ(y − x) · ν(y) dy = g(x)

by Corollary 1.3.4 with A = Ω0 \Br(x), and Remark 1.4.2.

We can now prove that, under relatively mild conditions, the problem Pf,g has a unique
solution.

Corollary 1.7.6. Suppose at any point of Ω there exists a barrier, for example ∂Ω of
class C2. Suppose g satisfies (1.7.9). Then, the problem Pf,g has a unique solution.

Proof. We already know that the solution, if exists, is unique. Prove now the existence.
Let u be the Newtonian potential defined by (1.7.4). Let ū := u|∂Ω. Let v be the solution
of Pf−ū,0, in other words, the solution of the Dirichlet problem on Ω with values f − ū on
∂Ω. Such a solution does exist by Theorem 1.6.10. Then, clearly, u+ v solves Pf,g.

Remark 1.7.7. Theorem 1.7.4 (as well as, consequently, Theorem 1.7.5 and Corollary
1.7.6) remains valid with essentially the same proof if we replace the Lipshitz property
(1.7.9) with the weaker property

∃ δ > 0, ∃ k > 0, ∃α ∈]0, 1] :
(
x, y ∈ Ω, ||x− y|| ≤ δ

)
⇒ |g(x)− g(y)| ≤ k||x− y||α .

that is, if g is locally uniformly Hölder continuous.

If the solution of Pf.g exists, we could represent it using the Green function. Namely, in
view of Corollary 1.3.5 with A = Ω \Br(y) and v(x) = G(x, y),
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−
∫
Ω

G(x, y)∆u(x) dx+

∫
Br(y)

G(x, y)∆u(x) dx =

∫
∂Ω

u(x)
∂G(x, y)

∂x
· ν(x) dx−

∫
∂Br(y)

u(x)
∂G(x, y)

∂x
· ν(x) dx+

∫
∂Br(y)

G(x, y)gradu(x) · ν(x) dx

where ∂G(x,y)
∂x stands for gradxG(x, y), y ∈ Ω and r is so small that Br(y) ⊆ Ω. We have

used that G(x, y) = 0 when x ∈ ∂Ω, and that G is harmonic with respect to x.
However, such considerations, which use Corollary 1.3.5, are valid if Ω is div-regular

and G and u are of class C2 on an open set containing Ω.
We now take the limit for r → 0. We have, in view of (1.5.2) and Corollary 1.3.4,∣∣∣ ∫

∂Br(y)

G(x, y)gradu(x) · ν(x) dx
∣∣∣ =

∣∣∣ψ(r) ∫
∂Br(y)

gradu(x) · ν(x) dx+

∫
∂Br(y)

h(x, y)gradu(x) · ν(x) dx
∣∣∣

=
∣∣∣ ∫
∂Br(y)

h(x, y)gradu(x) · ν(x) dx
∣∣∣

≤ max
x∈Br̄(y)

|h(x, y)| max
x∈Br̄(y)

||gradu(x)||
∫

∂Br(y)

1−→
r→0

0

for r ≤ r̄, where r̄ is a positive number such that Br̄(y) ⊆ Ω. Similarly, in the integral∫
∂Br(y)

u(x)
∂G(x, y)

∂x
· ν(x) dx

the part with h(x, y) tends to 0 as r → 0, so that, such an integral has the same limit, for
r → 0, as ∫

∂Br(y)

u(x)
∂ϕ(x− y)

∂x
· ν(x) dx .

Finally, the integral
∫

Br(y)

G(x, y)∆u(x) dx tends to 0 as r → 0, as the integrand function

is summable. In view of Remark 1.4.2, we thus have

u(y) =

∫
Ω

G(x, y)∆u(x) dx+

∫
∂Ω

u(x)
∂G(x, y)

∂x
· ν(x) dx .
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In conclusion, the solution of Pf,g, if exists is given by

u(y) =

∫
Ω

G(x, y)g(x) dx+

∫
∂Ω

f(x)
∂G(x, y)

∂x
· ν(x) dx ,

and this formula, as stated before, holds under suitable conditions, related to Corollary
1.3.5.

An important feature of harmonic functions is that they can be characterized in varia-
tional terms. Namely, the harmonic functions on Ω are the functions u that minimize the
Dirichlet integral

ID(u) =

∫
D

||gradu||2 (1.7.14)

among the C2 functions with the same values on ∂D, for any bounded domain D such
that D ⊆ Ω.

Theorem 1.7.8. A function u of class C2 on Ω is harmonic if and only if for every
bounded div-regular domain D such that D ⊆ Ω, we have ID(u) ≤ ID(w) for every w of
class C2 on Ω such that u = w on ∂D, where I is the Dirichlet integral defined in (1.7.14).

Proof. Let D be as in the hypothesis. Put

Ef =
{
u : Ω → R : u ∈ C2(Ω) : u = f on ∂D

}
.

for f : ∂D → R. Note that, for every u and v of class C2 on Ω we have

ID(u+ tv) = t2
∫
D

||gradv||2 + 2t

∫
D

gradu · gradv +

∫
D

||gradu||2

so that, given a function ū of class C2 on Ω, putting gv(t) := ID(ū+ tv), with v ∈ E0, in
view of Lemma 1.3.3, we have

g′v(0) = 2

∫
D

gradū · gradv = −2

∫
D

∆ū v . (1.7.15)

Since, as easily verified, gv is convex, then gv takes its minimum at 0 if and only if g′v(0) = 0.
On the other hand, the set of the functions w of class C2 on Ω such that ū = w on ∂D
amounts to the set of the functions of the form ū+ tv with v ∈ E0. Therefore, by (1.7.15),
we have ID(ū) ≤ ID(w) for every w of class C2 on Ω such that ū = w on ∂D if and only if∫
D

∆ū v = 0 for every v ∈ E0, which in turns amounts to ∆ū = 0 on D, and this concludes

the proof. In fact, if there exists x̄ ∈ D such that ∆ū(x̄) ̸= 0, then ∆(ū) is either positive or
negative on a suitable ball B of center x̄ contained in D, and we can easily find a function
v ∈ E0, positive on B and null on D \B. Consequently,

∫
D

∆ū v ̸= 0.
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1.8 Miscellaneous Results on Harmonic Functions

In this Section, we prove some more results, of different types, on harmonic functions. We
note that if u is harmonic on Ω, then by Corollary 1.3.5, we have∫

Ω

u∆v = 0 ∀ v ∈ C∞
c (Ω) . (1.8.1)

At first glance, one could suspect that we have to require that Ω is div-regular, but this
is not so. In fact, let ũ be a regular function that amounts to u on supp(v), and we put
v = 0 on the complement of Ω. Then, we use Corollary 1.3.5, where A is a ball containing
supp(v), and obtain ∫

Ω

u∆v =

∫
supp(v)

u∆v =

∫
A

(
ũ∆v − v∆ũ

)
= 0 .

A continuous function on Ω that satisfies (1.8.1) is said to be a weak solution of the Laplace
equation on Ω. We are now going to prove that the converse also holds: a weak solution
of the Laplace equation is harmonic. Such a result is called Weyl Lemma. To prove the
Weyl Lemma, we need some preliminary considerations.

Lemma 1.8.1. If f ∈ L1([a, b]) and

b∫
a

fg = 0 (1.8.2)

for every g ∈ C∞
c (a, b), then f = 0 a.e. If (1.8.2) holds for every g ∈ C∞

c (a, b) such that
b∫
a

g = 0, then f is constant a.e.

Proof. Let f ∈ L1([a, b]). Then, the set of g ∈ L∞([a, b]) satisfying (1.8.2) is a linear
subspace of L∞([a, b]). Moreover, if gh, g ∈ L∞([a, b]) and gh −→

h→+∞
g a.e., and |gh| ≤

H a.e. for a suitable constant H independent of h (this is the case, in particular, if
gh −→

h→+∞
g uniformly), and moreover, gh satisfy (1.8.2), then g satisfies (1.8.2) as well.

In fact, fgh −→
h→+∞

fg a.e., and |fgh| ≤ H|f | a.e., and we use the dominated convergence

Theorem. As every g ∈ Cc(a, b) is a uniform limit of functions in C∞
c (a, b), and (1.8.2)

by hypothesis holds for every g ∈ C∞
c (a, b), (1.8.2) then holds for every g ∈ Cc(a, b). On

the other hand, for every nonempty compact subset K of (a, b), χK is the pointwise limit
of a sequence of continuous functions with compact support, and with values in [0, 1], for

example gh(x) =
d
(
x, [a, b] \K 1

h

)
d
(
x, [a, b] \K 1

h

)
+ d(x,K)

, where

K 1
h
:=

{
x ∈ R : d(x,K) <

1

h

}
.
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Indeed, if x ∈ K, then d(x,K) = 0, hence gh(x) = 1 for every h, and gh(x) −→
h→+∞

1 =

χK(x). If, on the contrary, x /∈ K, then, for sufficiently large h, d(x,K) > 1
h , hence

d
(
x, [a, b] \K 1

h

)
= 0, hence gh(x) −→

h→+∞
0 = χK(x). As a consequence, χK satisfies (1.8.2)

for every nonempty compact subset K of (a, b). Recall that for every measurable set E and
for every positive integer h there exists a compact setKh ⊆ E such that µ(E\Kh) <

1
h , and

we can and do assume Kh ⊆ Kh+1. Thus, we have χKh
−→

h→+∞
χE on the complement of

E\
( ∞∪
h=1

Kh

)
, hence a.e. As a consequence, χE satisfies (1.8.2) for every measurable set E,

and this in turns implies that the simple functions, linear combinations of characteristic
functions, satisfy (1.8.2). Finally, every bounded measurable function, being a uniform

limit of simple functions, satisfies (1.8.2). Taking g =signf in (1.8.2), we then have
b∫
a

|f | =

0, hence f = 0 a.e.

Suppose now (1.8.2) holds for every g ∈ C∞
c (a, b) such that

b∫
a

g = 0. Then, take any

g ∈ C∞
c (a, b) and let g1 ∈ C∞

c (a, b) be such that
b∫
a

g1 = 1. Then, since, as easily verified

the function g̃ := g − g1
∫ b
a
g is in C∞

c (a, b) and
b∫
a

g̃ = 0, we have
b∫
a

fg̃ = 0. Hence,

b∫
a

g
(
f −

b∫
a

fg1

)
=

b∫
a

fg −
b∫
a

g

b∫
a

fg1 =

b∫
a

f
(
g − g1

b∫
a

g
)
= 0 ,

and, since this holds for every g ∈ C∞
c (a, b), by the first statement of this Theorem,

f −
b∫
a

fg1 = 0 a.e., hence f = c a.e., with c :=
b∫
a

fg1.

Theorem 1.8.2 (Weyl Lemma). If u is continuous on Ω (resp. u ∈ L1(D) for every
compact subset D of Ω), and (1.8.1) holds, then u is harmonic on Ω (resp. u coincides a.e.
with a harmonic function on Ω).

Proof. Let x̄ ∈ Ω, let R̄ > 0 be such that BR̄(x̄) ⊆ Ω, and let R ∈]0, R̄[. Let h be a
function of class C∞ on R such that

h =

{
c on [0, ε]

0 on [R,+∞[

where c is a suitable constant and 0 < ε < R. Let v(x) = h(||x − x̄||). Clearly: v = 0 on
Rn \BR(x̄), v = h(ε) on Bε(x̄). We easily get (cf. Section 1.3)

∆v(x) =
h′′

(
||x− x̄||

)
||x− x̄||3 + (n− 1)h′

(
||x− x̄||

)
||x− x̄||2

||x− x̄||3
.
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Hence∫
Ω

u∆v =

∫
BR(x̄)\Bε(x̄)

u(x)
h′′

(
||x− x̄||

)
||x− x̄||3 + (n− 1)h′

(
||x− x̄||

)
||x− x̄||2

||x− x̄||3
dx =

R∫
ε

( ∫
∂Bt(x̄)

u(x)
h′′

(
t
)
t3 + (n− 1)h′

(
t
)
t2

t3
dx

)
dt =

R∫
ε

d

dt

(
h′(t)tn−1

) ( 1

tn−1

∫
∂Bt(x̄)

u(x) dx
)
dt

hence, by hypothesis

R∫
ε

d

dt

(
h′(t)tn−1

) ( 1

tn−1

∫
∂Bt(x̄)

u(x) dx
)
dt = 0 . (1.8.3)

We have
R∫
ε

d
dt

(
h′(t)tn−1

)
dt = h′(R)Rn−1 − h′(ε)εn−1 = 0. However, what we really need

is the converse, that is, given η ∈]0, R̄[ if α ∈ C∞
c (η, R̄), and supp α ⊆ [ε,R], η < ε < R,

and
R∫
ε

α = 0, then there exists h as above such that

α(t) =
d

dt

(
h′(t)tn−1

)
. (1.8.4)

In fact, let A(t) =
t∫
ε

α(s) ds. Clearly, A(ε) = A(R) = 0, and A is 0 on the complement of

[ε,R]. Then, if (1.8.4) holds, we have A(t) = h′(t)tn−1, and we finally obtain the function
h satisfying (1.8.4), namely,

h(t) =

t∫
ε

A(s)

sn−1
ds−

R∫
ε

A(s)

sn−1
ds .

By (1.8.3), we can use Lemma 1.8.1 with [a, b] = [η, R̄] and conclude that

1

tn−1

∫
∂Bt(x̄)

u(x) dx = c

with c constant, a.e. t ∈ [η, R̄] for every η ∈]0, R̄[, hence for almost every t ∈ [0, R̄], or also

1∫
∂Bt(x̄)

1

∫
∂Bt(x̄)

u(x) dx = c′
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with c′ = cdn a.e. t ∈ [0, R̄]. The device of using α in C∞
c (η, R̄) instead of in C∞

c (0, R̄)
is necessary in the L1 version in order to apply Lemma 1.8.1, as in general, the map
t 7→ 1

tn−1

∫
∂Bt(x̄)

u(x) dx is not L1 on (0, R̄), but it is L1 on (η, R̄). In fact, it suffices to

apply Corollary 1.2.2 (or more precisely, a version of it, with u in L1 instead of continuous),

to get that the integral
R̄∫
η

(
1

tn−1

∫
∂Bt(x̄)

|u(x)| dx
)
dt is finite. Then, we integrate with respect

to t ∈ [0, R̄] and by the same argument as in proof of Lemma 1.4.3 we get

c′ =
1

µ(Br(x̄))

∫
Br(x̄)

u , (1.8.5)

for every r ∈]0, R̄[. Now, if we take the limit of the left-hand side of (1.8.5), we get
c′ = u(x̄), hence

u(x̄) =
1

µ(Br(x̄))

∫
Br(x̄)

u

provided u is continuous. In such a case, by Theorem 1.4.8, u is harmonic. If, instead, u is
only assumed to be in L1(D) for every compact subset D of Ω, then, by a known result in
measure theory, the left-hand side tends to u(x̄) for almost every x̄ ∈ Ω, as r → 0. Hence,
setting

ũ(x) =
1

µ(Br(x))

∫
Br(x̄)

u (1.8.6)

where r > 0 is such that Br(x) ⊆ Ω, by (1.8.5) the definition of ũ is independent of r
and u = ũ a.e.. Moreover, in the integral in (1.8.6) we can replace u with ũ, and, using
Theorem 1.4.8 again, ũ is harmonic.

We are now going to prove that the harmonic functions are analytic. Firstly, we recall
the definition of analytic function. A multiindex j is an n-tuple (j1, ..., jn) of nonnegative

integers, and we put |j| =
n∑
h=1

jh. By definition we put aj =
n∏
h=1

ajhh for every a ∈ Rn.

Here, by convention, 00 = 1. We say that a function u defined on Ω is analytic if for every
x̄ ∈ Ω there exist coefficients cj corresponding to every multiindex j and a neighbourhood
U of x̄ such that

u(x) =
+∞∑
n=0

∑
|j|=n

cj(x− x̄)j

for every x ∈ U .

Theorem 1.8.3. If u is harmonic on Ω, then u is analytic on Ω.
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Proof. We prove that, for every y ∈ Ω, u is analytic around y ∈ Ω. We can and do assume
y = 0, as in the general case we can replace u(x) with v(x) = u(x+ y) and prove that this
new function, which is clearly harmonic, is analytic around 0, so that u is analytic around
y. In order to prove that u is analytic around 0, recalling formula (1.5.6), the first step
consists in proving that the function w, defined by

w(y) =

∫
∂BR(0)

u(x)
1

||x− y||n
dx ,

where r is such that BR(0) ⊆ Ω is analytic around 0. Note that

1

||x− y||n
=

(
||x−y||2

)−n
2 =

(
||x||2+ ||y||2−2x ·y

)−n
2 = ||x||−n

(
1+

||y||2

||x||2
−2

x · y
||x||2

)−n
2

so that, using the Taylor expansion (1 + z)α =
+∞∑
k=0

ckz
k, valid when |z| < 1, we get

1

||x− y||n
= ||x||−n

+∞∑
k=0

ck

( ||y||2
||x||2

− 2
x · y
||x||2

)k
= ||x||−n

+∞∑
k=0

ck

( ||y||2 − 2x · y
R2

)k
(1.8.7)

when x ∈ ∂BR(0), and
∣∣∣||y||2 − 2x · y

∣∣∣ < R2. Hence,

|u(x)| 1

||x− y||n
≤ R−n max

∂BR(0)
|u|

+∞∑
k=0

ck

(r2 + 2Rr

R2

)k
:= K

when ||y|| < r, where r > 0 is such that

r2 + 2rR < R2 . (1.8.8)

Taking into account that ||y||2 =
n∑
i=1

y2i and x · y =
n∑
i=1

xiyi, by expanding the powers, and

then rearranging the terms, in (1.8.7), we have

|u(x)| 1

||x− y||n
=

+∞∑
n=0

∑
|j|=n

αj(x)y
j (1.8.9)

where αj are continuous functions and the series of the absolute values of the summands
of the right-hand side in (1.8.9) is not greater than K. By a simple application of the
dominated convergence Theorem, we can then integrate the right-hand side in (1.8.9),
exchanging the sum and the integral, thus

w(y) =

∫
∂BR(0)

u(x)
1

||x− y||n
dx =

+∞∑
n=0

∑
|j|=n

( ∫
∂BR(0)

αj(x) dx
)
yj (1.8.10)
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when |y| < r and r satisfies (1.8.8), hence w is analytic around 0 as claimed. By (1.5.6)

we have u(y) = R2−||y||2
d̄nR

w(y), and using the expression of w in (1.8.10), after performing
the multiplication and rearranging the terms we can write u as an analytic function.

The last result we are going to give about harmonic functions concerns the possibility of
extending a harmonic function defined of the upper half-space on all of Rn. Such a result
is called reflection principle.

Theorem 1.8.4. Let u be a continuous function defined on the half-space Rn+ :={
x ∈ Rn : xn ≥ 0

}
, such that u is harmonic on the interior of Rn+, and u = 0 on

∂Rn+
(
=

{
x ∈ Rn : xn = 0

})
. Then, the function ū defined on Rn by

ū(x) =

{
u(x) if x ∈ Rn+

−u(π(x)) if x ̸∈ Rn+
,

where π is the symmetry with respect to ∂Rn+, in other words, π(x)i =

{
xi if i < n

−xi if i = n
,

is harmonic on Rn.
Proof. Clearly, ū is continuous, hence by Theorem 1.4.8 and Remark 1.5.2 it suffices to
prove that for any x̄ ∈ Rn, there exists r̄ > 0 such that, if 0 < r < r̄, then ū satisfies the
mean value property (1.4.5). If x̄n > 0, that is x̄ is an interior point of Rn+, as ū coincides

with the harmonic function u on Rn+, it suffices to take r̄ such that Br̄(x̄) ⊆ Rn+. If x̄n < 0,
by a symmetry argument and the definition of ū, we have ū(x̄) = −ū(π(x̄)), and, taking
r < d(x,Rn+),

1

µ(Br(x̄))

∫
Br(x̄)

u = − 1

µ
(
Br(π(x̄))

) ∫
Br(π(x̄))

u

so that the mean value property for x̄ follows from the analogous property for π(x̄) which
lies in the interior of Rn+. Finally, if x̄n = 0, then ū(x̄) = 0 by hypothesis, and

1

µ(Br(x̄))

∫
Br(x̄)

u = 0

by the definition of ū and a symmetry argument.

1.9. Other Kinds of Partial Differential Equations

We now consider a generalization of the Laplace operator, namely,

L(u) =
n∑

i,j=1

ai,j(x)
∂2u(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u(x) (1.9.1)

where we suppose for simplicity that the functions ai,j , bi, c are continuous, and ai,j = aj,i,
that is the matrix A(x) with coefficients ai,j(x) is symmetric. The Laplacian corresponds
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to the case where the matrix A(x) is the identity, and bi = c = 0. The matrix A(x), being
symmetric, has a basis of eigenvectors (of course, in general depending on x), and has all
eigenvalues in R. We denote them by λ1(x), λ2(x), ..., λn(x), ordered increasingly, i.e.,
λ1(x) ≤ λ2(x) ≤ ... ≤ λn(x). The operator L is said to be elliptic if λ1(x) > 0 for all
x ∈ Ω, that is, if A(x) is positive definite for every x ∈ Ω. Note that by known results in
matrix theory, we have

λ1(x)||ξ||2 ≤
n∑

i,j=1

ai,j(x)ξiξj ≤ λn(x)||ξ||2 . (1.9.2)

An elliptic partial differential equations is an equation of the form L(U) = 0 where L is
elliptic. The elliptic P.D.E. have properties similar to those of the Laplace equation. Here,
we will only discuss about the maximum principle and its consequences. First, I recall a
standard result in matrix theory.

Lemma 1.9.1. If A and B are symmetric positive semidefinite matrices of order n, then
the trace of the product AB is nonnegative.

Proof. As the trace is invariant with respect to a change of basis, we can suppose that the
matrix B is diagonal with (i, i) entries equal to bi,i ≥ 0, as they are the eigenvalues of B.
Let ai,j be the (i, j) entries of the matrix B. As ai,i = A(ei) · ei, we have ai,i ≥ 0. Then,

the trace of AB amounts to
n∑
i=1

ai,ibi,i ≥ 0.

Theorem 1.9.2. Let Ω be bounded. Let L be an elliptic operator as in (1.9.1) with c = 0,
and suppose there exists c ≥ 0 such that

|bi(x)| ≤ cλ1(x) ∀x ∈ Ω . (1.9.3)

Then, if u is a continuous function on Ω such that L(u) ≥ 0 on Ω, we have max
Ω

u = max
∂Ω

u.

Proof. First Step. Suppose for the moment L(u) > 0 on Ω and prove that u does not
attain a maximum value on Ω. Suppose by contradiction x̄ ∈ Ω and u(x̄) = maxu. Then,
grad(u)(x̄) = 0, and

−L(u)(x̄) = −
n∑

i,j=1

ai,j(x̄)
∂2u(x̄)

∂xi∂xj
= tr(C)

where C is the product of the matrix A(x), which is symmetric, positive definite by hy-
pothesis and the opposite of the Hessian matrix of u at x̄, which is symmetric, and positive
semidefinite as it is the opposite of the Hessian matrix at a maximum point. By Lemma
1.9.1, we have L(u)(x̄) ≤ 0, a contradiction. It follows that in such a case the maximum
of u is attained at a boundary point, and the Theorem is proved.

In the general case, put v(x) = edx1 , so that we have L(v)(x) =
(
a1,1(x)d

2+b1(x)d
)
v(x).

As a1,1(x) =
(
A(x)e1

)
· e1 ≥ λ1(x) by (1.9.2), in view of (1.9.3) we then have
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L(v)(x) ≥
(
λ1(x)d

2 − cdλ1(x)
)
v(x) = dλ1(x)v(x)(d− c) > 0 (1.9.4)

provided d > c. For ε > 0, we now put uε = u+ εv, so that by the hypothesis and (1.9.4),
L(uε) = L(u) + εL(v) > 0 on Ω. As, clearly u ≤ uε ≤ u+ εmax

Ω
v on Ω, by the first step

we have

max
Ω

u = lim
ε→0

max
Ω

uε = lim
ε→0

max
∂Ω

uε = max
∂Ω

u

and the Theorem is proved in the general case.

Corollary 1.9.3. In the same hypothesis on L as in Theorem 1.9.2, if u is a continuous
function on Ω such that L(u) = 0 on Ω, we have max

Ω
u = max

∂Ω
u and min

Ω
u = min

∂Ω
u.

Proof. It suffices to apply Theorem 1.9.2 to the functions u and −u.

Corollary 1.9.4. In the same hypothesis on L as in Theorem 1.9.2, the problem{
L(u) = g on Ω

u = f on ∂Ω

has at most one solution for every g continuous on Ω and f continuous on ∂Ω.

Proof. If we are given two solutions u1 and u2, let u = u1 − u2. Then u satisfies{
L(u) = 0 on Ω

u = 0 on ∂Ω

so that, by Corollary 1.9.2, u = 0 on Ω and u1 = u2.

We will now give an outline of the one-dimensional wave equation

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t), c > 0 . (E)

It can be easily verified that every function u of the form

u(x, t) = f(x+ ct) + g(x− ct) (1.9.5)

with f and g of class C2 on R is a solution of (E) on R2. We will now prove that every
C2 solution of (E) has the form of (1.9.5) with f and g of class C2. In fact, by a change
of coordinates, we can write every u of class C2 on R2 as u(x, t) = w(x + ct, x − ct) with
w of class C2. Put w = w(ξ, η). A simple verification shows

∂u

∂t
(x, t) = c

∂w

∂ξ
(x+ ct, x− ct)− c

∂w

∂η
(x+ ct, x− ct) ,
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∂2u

∂t2
(x, t) = c2

∂2w

∂ξ2
(x+ ct, x− ct) + c2

∂2w

∂η2
(x+ ct, x− ct)− 2c2

∂2w

∂ξ∂η
(x+ ct, x− ct) ,

∂2u

∂x2
(x, t) =

∂2w

∂ξ2
(x+ ct, x− ct) +

∂2w

∂η2
(x+ ct, x− ct) + 2

∂2w

∂ξ∂η
(x+ ct, x− ct) ,

and (E) thus amounts to
∂2w

∂ξ∂η
(x+ ct, x− ct) = 0 for all (x, t) ∈ R2, that is

∂2w

∂ξ∂η
(ξ, η) = 0 ∀ (ξ, η) ∈ R2 . (1.9.6)

By integrating in (1.9.6), first with respect to η, then with respect to ξ, we get
∂w

∂ξ
(ξ, η) = a(ξ) and w(ξ, η) = f(ξ) + g(η), where f is a primitive of a, thus u(x, t) =

w(x + ct, x − ct) = f(x + ct) + g(x − ct), as claimed. We now want to solve the Cauchy
problem relative to the wave equation.

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t)

u(x, 0) = α(x)

∂u

∂t
(x, 0) = β(x)

(P )

where α and β are prescribed functions defined on R, α of class C2 and β of class C1. We
have u(x, t) = f(x+ ct) + g(x− ct), so that

α(x) = f(x) + g(x), β(x) = c
(
f ′(x)− g′(x)

)
,

B(x) = c
(
f(x)− g(x)

)
+ k

where B is a primitive of β, and k is a constant. We get{
f(x) + g(x) = α(x)

f(x)− g(x) = B(x)−k
c

f(x) =
1

2

(
α(x) +

B(x)− k

c

)
g(x) =

1

2

(
α(x)− B(x)− k

c

)
so that the solution of (P ) is given by

u(x, t) = f(x+ ct) + g(x− ct) =
1

2

(
α(x+ ct) + α(x− ct)

)
+

1

2c

x+ct∫
x−ct

β(s) ds .

Note that the Cauchy problem is an analog of the Cauchy problem for ordinary equations.
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