1. The Isoperimetric Problem

We want to prove that the circle is the figure with maximum area among those with given

perimeter. More precisely, we are going to prove that, given a piecewise regular! C'! Jordan

curve v in R? of length L, then the area A of the bounded region enclosed by + is not

greater than the area of the circle of perimeter L. The result is valid in the more general

case where the hypothesis piecewise reqular C* is replaced by continuous, but the proof is

more complicated. First of all, we evaluate the area S of the circle of perimeter L. The
L

. . . 2
radius is given by Z . thus S = 7(Z)2 = L=, Hence, we have to prove
g y 27 27 4 ) b

L? > 47 A (1.1)

In order to prove (1.1), we recall some properties of Fourier series.

Theorem 1.1. If f is a Riemann integrable function on [—m, 7|, then
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" P dt = w(%% + 3 (2 +2))
- n=1

where a,, n=0,1,2... and b,, n = 1,2, 3, ... are the Fourier coefficients of f defined by

an=2 " W) costtydt,  by=2 [ F(t)sin(nt) dt
T J_x T J—x

Theorem 1.2. If f and g are Riemann integrable functions on [—m, |, then

T +00
F©)9(t) dt =7 ("% + 3" (anen + budn))
- n=1

where a,, n = 0,1,2... and b,, n = 1,2,3,... are the Fourier coefficients of f, and c,,
n=0,1,2... and d,, n = 1,2, 3, ... are the Fourier coefficients of g.

Theorem 1.3. If f is a piecewise C! function on [—x, 7| such that f(—=) = f(w), and
an,n =20,1,2... and b,, n = 1,2, 3, ... are the Fourier coefficients of f, and ¢,,, n = 0,1, 2...
and d,, n = 1,2,3, ... are the Fourier coefficients of f’, we have ¢,, = nb,, d, = —na,,.

Theorem 1.1 is a known result in Fourier series. Who is familiar only with the case where
f is piecewise C, can restrict our considerations to the case where the curve 7 is piecewise
C2. Note that under the hypothesis of Theorem 1.1 we are not sure that the Fourier series
of f converges to f (pointwise), but nevertheless the Fourier coefficients can be however
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defined. Theorem 1.2 follows from Theorem 1.1, as in the hypothesis of Theorem 1.2 f+g¢g
is Riemann integrable so that

™
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Theorem 1.3 directly follows from the definition of the Fourier coefficients using a partial
integration, taking into account that the by the hypothesis, the limit terms at —7 and at
m are equal. We are now going to prove (1.1). Let v = (z,y). We can assume that ~ is
parametrized by arc length, in particular v : [0, L] — R2. In order to use the theory of
Fourier series, we reparametrize it in such a way that it is defined on [—7, ]. Namely, let
a: [—m, 7] = [0, L] be defined as a(t) = Z(t + ), and let ¥ = yo . Then ¥ has the same
image and the same length as v. Moreover, putting 4 = (Z, §), we have

WO = 1 ) (1), 5/ (@)l ()] = | 5= (&' (1)), o' a()) |
= 1l (), o/ (@(0) | =

the last equality depending on the fact that v is parametrized by arc length. We have
™ T T L2 L2
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hence

Let now a,,b, be the Fourier coefficients of Z, ¢,, d,, be the Fourier coefficients of §. As
v is a Jordan curve we have v(0) = (L) and by definition of ¥4, ¥(—m) = 4(x), so that
Z(—m) = Z(r), y(—m) = y(m). Hence, we can apply Theorem 1.3 and deduce that the
Fourier coefficients of Z’ are nb, and —na,,. Using Theorem 1.1 we thus have

/ dt—wZn a, —I—b2



and by similar considerations

T +oo
/ F2dt=r> 02 +d2),
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and, in conclusion
400

L? = 2n? 2712((1721 + b2+ +d?). (1.2)
n=1
Next, we evaluate A using the formula A = [" Z(¢)j'(t) dt, consequence of the Green
formula. Using Theorems 1.2 and 1.3 we deduce

+oo
A= Z n(andy — bpcy)
n=1
Using (1.2) we get
—+oo
L? — 41 A = 272 ( Z n?(a2 + b2 +c2 + d2) — 2nand, + 2nbncn)
n=1
+o0
= 27r2(Z(nan —dp)? + (b + cp)? + (n? = 1)(2 + di)) >0
n=1

and (1.1) is proved. We also note that the equality holds in (1.1) if and only if the equality
holds in the previous inequality, if and only if we have ¢, = d,, = 0 for n > 2, d,, = na,
and ¢, = —nb,, for every n > 1, and this occurs when a,, = b, = ¢, = d,, = 0 for every
n > 2,a; = dy, by = —cy. Since Z and y are piecewise C7, thus in particular continuous,
they amount to the the sum of their Fourier series, hence

a . ~ & .
Z(t) = ?O+alcost+blsmt y(t)z;o—blcost—}—alsmt
which represents the equation of a circle?. It follows that not only the circle is the plane
Jordan curve of given length enclosing the maximum area but also that it is the unique
curve having such a property. The solution presented here is due to Hurwitz.

2. The Ascoli-Arzela Theorem

We start by recalling some base facts about compactness. In order to simplify the pre-
sentation, we restrict our considerations to Hausdorff topological spaces. We recall that a
(Hausdorff) topological space X is compact if for every family of open subsets U; of X,

2 2 —
Indeed, setting 7 = y/a2 + b2, we have (%) + (b%) = 1, hence there exists ¢ € R so that
U = cos?, 2 = sint. We thus easily see that Z(£) = % +r cos(t — 1), §(t) = L + rsin(t — 7).

r
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¢ € I such that X = (J U; there exist ¢1, ..., %m € I such that X =U;, UU;, U...UU;,,.
We recall that if X iszealmetric space then X is compact if and only if every sequence in
X has a convergent (in X) subsequence. As a consequence, every compact metric space
is complete (recall that in any metric space a Cauchy sequence having a convergent sub-
sequence is convergent). We recall that if X is a subset of R™ then X is compact if and
only if it is both closed and bounded. It follows that every bounded sequence in R™ has
a convergent subsequence. Instead, when X is subset of an infinite dimensional normed
space, if X is compact, then it is both closed and bounded, but the converse does not hold,
i.e., a closed-and-bounded set is not necessarily compact.

The Ascoli-Arzela Theorem is related to the problem of what subsets of the space of the
continuous functions from a topological space A to R with the norm || f|| = sup|f(z)|, are
compact. More precisely, under what conditions we can state that a sequence of continuous
functions from X to R has a uniformly convergent subsequence. We can more generally
suppose that the functions are valued in a metric space (Y, d). We need some preliminary
definitions. We recall that if f,, is a sequence of functions from a topological space X
with values in a complete metric space, then f,, is uniformly convergent if and only if it is
uniformly Cauchy, that is, for every € > 0 there exists v € N such that, if n > v, m > v
then d(fn(z), fm(z)) < € for every x € X.

Definition 2.1. We say that a sequence f, of functions from a Hausdorff topological
space X into a metric space Y are equicontinuous if for every x € X and for every ¢ > 0
there exists a neighborhood U of z such that for every y € U and for every n we have

d(fn(z), fu(y)) <e.

Note that if f,, are equicontinuous then every f,, is continuous, but the converse is not
true, since in the previous definition we require that the neighborhood U does not depend
on n. Note also that, since every neighborhood of x contains an open set containing z,
by the definition of a neighborhood, in Def. 2.1 we can suppose that U is open. If X is
a metric space with a metric d’ then the previous definitions can be expressed in terms of
¢ and ¢, i.e., for every x € X and for every £ > 0 there exists 6 > 0 such that for every
y € X such that d'(z,y) < § and for every n we have d(f,(z), fn(y)) < e. If X is a metric
space with a metric d’, we say that f,, are uniformly equicontinuous if for every € > 0 there
exists 0 > 0 such that for every z,y € X such that d'(z,y) < ¢ and for every n we have
d(fn(x), fu(y)) < . In other words, 0 is also independent of z. Clearly, if f,, are uniformly
equicontinuous then f,, are equicontinuous. It is possible to prove that also the converse
holds if X is compact. The argument of the proof is analogous to that used for proving
that a continuous function on a compact set is uniformly continuous.

Theorem 2.2 (Ascoli-Arzela Theorem). If f,, are equicontinuous functions from a
compact topological space X to a compact metric space Y, then there exists a subsequence
of f,, uniformly convergent on X.

Proof. For each € > 0 and for each x € X let U., be an open set in X containing z
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such that for each y € U, , and for every n, we have d(fn(z), fn(y)) < €. Such a set U, 4
exists by the assumption that f, are equicontinuous. As, for a given s = 1,2, 3, ... the sets

Ui/s,z» * € X are open sets whose union is X, X being compact there exists a finite subset
As = {=(i,s) :i=1,..m(s)} of X such that

m(s)

X = U Ul/s,w(i,s) . (2'1)

=1

Let A= Ej As. As every A, is a finite set, the set A is countable. Put A = {a1, aq, as, ...}.
Note tha% ft)r each z € X the sequence (f,(x)), as it lies in the compact metric space Y,
has a convergent subsequence. We are now looking for a subsequence of f,, which converges
at all a; € A, and then we will prove that it uniformly converges on X.

Let g(l) be a subsequence of f,, which converge at a;. For the same reason we can
find a subsequence g( ) of g( ) that converges at as, and g,(z ) being a subsequence of g( )
it converges at a; as well. Next, we can find a subsequence g( ) of g( ) that converges at
a3, and g( ) being a subsequence of g( ) it converges at a; and ag as well. By continuing
this process we inductively find sequences gg ) for each natural h such that g( s a
subsequence of gﬁl ) for each h, and g,gh) converges at ai,as,...,an. Clearly, every gfl )

a subsequence of f, and the problem is that each of those subsequences only converges (
priori) at a finite subset of A.

By what a way we can find a subsequence that converges at all points in A? The answer
is: we take the diagonal subsequence defined by g, = gﬁ"). Indeed, g,, is a subsequence
"from h on” of gﬁ, ) for each h in the sense that there exists a strictly increasing map 1y,
from {h,h+1,...} into itself so that g, = gfp )( ) for every n > h, and therefore on one hand
gn is a subsequence of f,, on the other g, converges at a; for each h.2> Prove now that
gn is uniformly convergent on X. As Y is a compact, thus complete, metric space, this
amounts to prove that g, is uniformly Cauchy. Given € > 0, let s = 1,2, 3, ... be so that
3 <e. As gn(a;) converges for all i, in particular g, (z(i, s)) converges for all i = 1, ..., mn,.
Hence there exists v € N such that when h, k > v then

1

A(gn (2, 9)), gu(x (i, 5))) < ~ (2:2)

S

for each i = 1,...,ms. This as for each i = 1,...,ms; we find v; so that (2.2) holds (for
that i) for each h,k > v;. Then, we take v = maxwv;. Let now z € X. In view of (2.1)

To see this, note that if m > h ggm) is a subsequence of g,gh) thus there exists ¢, : {1,2,...} to itself

so that g( m) gé )( ) As gr(Lm—i_l) is a subsequence of g,({") we find inductively ¢,,, in particular

g£m+1) = gg(nn)) gé )(J(n)) for some strictly increasing o, hence @41 = ¢, 00, and 1 > G

Thus, for n > h, g, = gT(Ln) gz(ph)(n) with 5 (n) = ¢n(n) and as ppr1(n+1) > dp(n+1) >

¢n(n), Yy, is strictly increasing.



there exists ¢ = 1, ..., ms such that x € Uy, 4(;,s), 50 that, by the definition of U , we have
d(gm (x), gm(2(i,5))) < T for all m as every g, is of the form f, for some n. Thanks to
(2.2), it follows that for h, k > v,

d(gr(2), gn(z)) < d(gr(@), gr(z (3, 5)) + d(gr(2(i, 5)), gn(x(i, 5))) + d(gn(z(i, 5)), gn(z))

< -<eE.
S

As ¢ is an arbitrary positive number, g,, is uniformly Cauchy, thus it uniformly converges.

We cannot apply the previous theorem when Y = RM as in such a case Y is not compact.
However, if there exists K > 0 such that

|fn(@)|| <K VzeX Vn, (2.3)

we can consider f,, : X — B(0, K) and as B(0, K) is compact we can apply Theorem 2.2
again. When (2.3) holds the function f, are said to be equibounded as they are bounded
by a constant which is independent of n. We thus have the following corollary, which is
one of the most usual forms of the Ascoli-Arzela Theorem.

Corollary 2.3. If f,, are equicontinuous and equibounded functions from a compact
topological space X to RM | then there exists a subsequence of f,, uniformly convergent on
X. =

When X is a metric space with distance d’, a typical case in which the functions f, are
equicontinuous is that in which they are equilipshitzian, i.e., there exists K > 0 so that
d(fn(z), fu(y)) < Kd'(z,y) for each z,y € X and for each n. In other words, they satisfy
a Lipschitz condition with a constant independent of n. In fact, in this case it suffices
to take § = & in the definition of (uniform) equicontinuity. As a particular case, if f,
are functions defined on an interval in R with values in R, they are equilipshitzian when

they have equibounded derivatives. Indeed, by the mean value Theorem, |f,(z) — fn(y)| <
(sup | £3])]e = yl.

Exercise 2.1. Prove that Theorem 2.2 (or Corollary 2.3) is no longer valid if X = R.

Exercise 2.2. Prove that if f,, are equibounded and equicontinuous functions from RY to
RM (more generally if they are equibounded on every compact subset of RY and equicontin-
uous), then there exists a subsequence of f,, uniformly convergent on the compact subsets
of RN,

Exercise 2.3. Prove that the conclusion of the previous exercise is still valid if RY is
replaced by any open subset of RV .

Exercise 2.4. Find a sequence of equibounded functions from [0, 1] to R which has no
subsequence pointwise convergent,.



3. Curves of Minimum length

The purpose of this section is to prove the following

Theorem 3.1. Given a closed subset A of RN and two points P,Q € A such that
a) there exists a continuous curve in A connecting them having finite length,

then there exists a continuous curve in A connecting them having minimum length.

Note that a) in Theorem 3.1 for any P,QQ € A, is a condition stronger than arcwise
connectedness, in the sense that arcwise connectedness requires that any two points P, ) €
A can be connected by a continuous curve but not necessarily having finite length. In order
to clarify the statement in Theorem 3.1, first of all, we recall the definitions concerning the
length of a curve. Given a closed interval [a, b] (with a,b € R, a < b), a partition of [a,b] is
an object of the form (¢, ¢1, ..., t,) such that a =ty < t; < ... < t, = b. We denote by P,
the set of the partitions of [a,b]. A continuous curve in a subset A of RY is a continuous
function from a closed interval [a, b], (a < b), to A. Given II = (to,t1,...,tn) € Pap, and a
continuous curve from [a, b] to RV, we denote by A, (II) the real number

Z [y (t:) =y (Eia)l|

and we define the length of v to be the nonnegative, possibly infinite, value

L(y) :== sup A,(II).
11€Pa b

We recall that if v is piecewise C*, then we have the formula

b
L) = [ 1@l

We also recall that the length of a curve is invariant up to a reparametrization. In order
to clarify this, we recall that given a continuous curve v : [a,b] — RV, a reparametrization
of it is a curve 7 : [c,d] — RY defined by ¥ = v 0 ¢! where ¢ is a continuous bijection
from [a,b] onto [c,d] (Note that, in such a case, by a well-known theorem, the inverse
¢! is continuous as well). Then the length of a curve amounts to the length of any
reparametrization.

We now equip the set C, 5.y of the continuous curves from a fixed interval [a, b] to RN
with the norm

[[¥leo = sup [Jv(2)]]-
t€[a,b]

We recall that the convergence induced by such a norm is the uniform convergence, in
other words, v, — v in || || if and only if v, — 7 uniformly. If we consider L(v)
n—00 n—00
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as a function of v, we realize that L is not continuous, as we can approximate a curve of
finite length by a sequence of curves having length tending to infinity. For example, it is
easy to see that the curve (¢,0) on [0, 1] in R? has length 1 and the approximating curves
(t, ﬁ sin(27mt)) have length tending to infinity. Nevertheless, the intuition suggests that,
if we approximate a curve v in || ||, the length could greatly increase but not greatly
decrease, in other words the function L from the set of the continuous curves into RU{+o0}

is not continuous, but lower semicontinuous. We recall the following definition.

Definition 3.2. Let F be a function from a topological space X to RU{+oc0}. We say that
F is lower semicontinuous (abbreviated as l.s.c.) at a point x € X if for every M € R such
that M < F(z) there exists U neighborhood of x in X such that for every y € U we have
F(y) > M. We say that F is lower semicontinuous (on X ) if F' is lower semicontinuous at
each point in X.

We could give the definition of l.s.c. in the more natural setting of functions with values
in R, but we prefer to do this in the setting of functions with values in R U {400}, as
we will study it in the case of the length of a curve that can well assume the value +oo.
Moreover, we will study the sup of a family of l.s.c. functions, which can assume the value
400 even if all the functions take finite values. Note that if the function F' only assumes
finite values, then the definition of lower semicontinuity can be expressed as: F'is l.s.c. at
x if for every € > 0 the exists U neighborhood of z in X such that for every y € U we have
fly) > f(xz) —e. So, we see the difference with respect to the definition of continuity at z,
where we require that in a suitable neighborhood of z we have f(z)+¢ > f(y) > f(z) —¢,
in other words, in the definition of semicontinuity we require that in a neighborhood of x
the function is not too smaller than at z, but not necessarily not too greater than at x.

If (X,d) is a metric space and F' only takes finite values, of course the semicontinuity
can be also expressed using ¢ and ¢, i.e., F'is l.s.c. at x if for every € > 0 the exists § > 0
such that for every y € X such that d(z,y) < 6 we have f(y) > f(x) —e. Of course,
every continuous function at x is l.s.c. at =, but the converse is not true, for example the
function F' : R — R defined by F(z) = 2 if z # 0, F'(0) = 1, is L.s.c. but not continuous
at 0. Note that in the definition of lower semicontinuity we use the order stucture of R or
of RU {400}, so that such a definition, unlike the definition of continuity, does not make
sense for functions with values in an arbitrary topological (or even metric) space.

We recall that if X is a metric space the continuity at x can be expressed in terms of
convergences of sequences, namely F' is continuous at z if and only if, for every sequence
(25) in X tending to x, we have F(z,,) n_)—+>ooF(a:). A similar characterization holds for

lower semicontinuity, namely (under the hypothesis of Def. 3.2) F'is l.s.c. at z € X if and

only if for every sequence (z,) in X tending to x, we have lim Jinf F(z,) > F(z). We omit
n—+00

the proof, which resembles that for the continuity. We only note that the part = is rather

simple and does not use the fact that X is a metric space, and the part < is proved by

contradiction and would not be valid in the general case of X topological space.
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We now are going to prove that the sup of l.s.c. functions (at a point) is Ls.c. (at
that point). Note that in general the continuity does not have the same property, e.g., the
functions 1 — z™ from [0, 1] to R are continuous, but the sup of them, when n varies on
1,2,3, ..., is the function f defined by f(z) =1 if x < 1, f(1) = 0, which is discontinuous
at 1.

Lemma 3.3. Suppose f;, i € I are functions from a topological space X with values in
R U {400}, and f =sup f;. If f; are L.s.c. at z € X then f is Ls.c. at z.
i€l
Proof. Let M € R be such that M < f(z). As f(x) = sup f;(z), there exists i € I such
i€l

that f;(z) > M, and as f; is l.s.c. at = there exists U neighborhood of x such that for
every y € U we have f;(y) > M. Hence, for every y € U we have f(y) > fi(y) > M, and
as M is an arbitrary number less than f(z), fis Ls.c. at z. =

Corollary 3.4. Let a,b € R, a < b. Then the function L defined on (Ca’b;N, Il Hoo) by
v+ Ly is Ls.c.

Proof. In view of Lemma 3.3, it suffices to prove that, for each I € P,;, the map
v = Ay(II) from C,p.n to R, is continuous. Let II = (to,%1,...tn). Since, clearly, the
map v — (t) from Cyp.n to RY is continuous for every ¢ € [a,b], hence so is the map
v = y(t;) — v(ti_1) for i = 1,...,n, as the difference of continuous functions. Hence, the
map vy — A, (II) is continuous as the sum of the composition of the norm function, which
is continuous from RY to R, with continuous functions. =

We now sketch the plan of the proof of Theorem 3.1. It is possible to prove that a l.s.c.
function from a (nonempty) compact topological space to R has a minimum. Now, the
space C, p;N is not compact, but we can restrict the l.s.c. function L to a suitable subset X
of Cop;n- As X, being a subset of the metric space C, ;N is a metric space as well, in order
to see whether X is a compact, we have to check whether every sequence of functions in X
has a subsequence convergent to an element of X with respect to the norm || ||, that is,
uniformly. Thus, the idea constists in finding a suitable X composed by equibounded and
equicontinuous functions, so that we can apply the Ascoli-Arzela Theorem. First, we can
consider the space of the curves in C, 3. n having length less than or equal to a fixed real
number k. These curves are not necessarily equicontinuous, but we could reparametrize
them by arcleght, so that, as easily verfied, they are Lipshitzian with a Lipshitz constant
equal to k. The problem is that not all curves can be reparametrized by arclength, for
example it suffices to consider a curve which is constant on some interval. So, in the
following we will perform a slight modification of the above idea.

Given vy € Cqp:ny With L(7y) < 400, and ¢,d € [a,b], ¢ < d, we put L¢ 4(v) = L(V|[c,q))>
where of course, 7|, 4 denote the restriction of «y to the interval [c, d], with the convention
Lea(y) = 0if ¢ = d. It is well known that, if a < ¢ < d < u < b, then L.,(y) =
Lea(Y) + Law(y). We now consider the arclength function ¢ : [a,b] — R defined by
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gg(t) = L +(y). We easily see that ¢ is increasing, but not necessarily strictly increasing.
We now prove:

Lemma 3.5. gz~5 is continuous.
Proof. We first prove that if £ > a then ¢ is continuous at  on the left. Let € > 0. By

the definition of L (7), there exists T € P(a,) such that A, (IT) > ¢(F) — S. We write
II= (CL = t(),tl, ...,tn = Z) Let

t €ltn_1,tn].
Clearly,
~ 3
A’y(thtla oy tn—1,1, tn) > Aw(H) > ¢(t) - 5 ’
A'y(th b1y tp—1,t, tn) = A’y(to’tl’ ey bn—1, t) + H’Y(Z) - 7(t)H’
hence

QS(Z) 2 gg(t) 2 A’Y(t07t17 "'7tn—17t) = A’Y(toath "'7tn—17t7 tn) - ||7(Z) - W(t)H

> 6@ - = Iv® =@l

Now, as 7 is continuous, there exists £ < f such that, if { < ¢ < then ||y(#) — y(t)|| < 5.
Hence, if max{t,t,_1} <t <, then

o) 2 6(t) > d(1) — ¢

and ¢~S is continuous at ¢ on the left. We now prove that ¢~S is continuous on the right at
any point ¢ < b. The proof is similar noting that

$(t) = L(v) = Lep(y) Vit €[ab]. (3.1)
Let € > 0. We find IT € P; ;, so that

Ay (D) > Ly, (7) - 5.

We write IT = (¢ = to, t1,...,t, = b). Let
t €]to, ta].
Clearly,
Ay (b1, s tn) = Ay (to, by b1, s tn) — [y () = (O] = Ay (IT) — [|7(2) — v(D)]]-

We find ¢ >t such that, if £ > ¢ > 7 then ||y(Z) — y(¢)|| < . We conclude like before that,
if £ <t < min{¢,¢,}, then
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Lep(y) > Ay(t,te, s tn) > Ly (y) — €

so that, using (3.1)

$(t) < d(t) < d(t) +¢

and ¢ is continuous at ¢ on the right. m

We now would like to reparametrize v using the arcleght ¢, but as previously observed,
this is not a strictly increasing function, so we need a modification of it. First we need the
following remark.

Remark 3.6. If v € C,pn and ¢, d € [a,b], then ||v(c) — v(d)|| < L(7y). Indeed, if
¢ = d this is trivial, if not we can for example suppose ¢ < d. Then one of the following
(a,c,d,b),(a,c,d),(c,d,b),(c,d) is in Pg,p, depending of what of the inequalities a < ¢,
d < b are strict. Let IT be such an element of P, ;. Then, L(y) > A, (II) > [|y(c) — v(d)|].

Since the length of a curve in invariant up to a reparametrization we can and do assume
that
[a,b] = [0, 1].

We now want to reparametrize in a Lipshitzian way a continuous curve from [0,1] to RY
of finite length. We modify the arclength function in the following way. Let

_ Log(y)+t
- L(y)+1

In such a definition, we add ¢ to Lo +(7y) in order to have a strictly increasing function, and
divide by L(vy) 4+ 1 in order that ¢ map [0, 1] onto [0, 1]. We easily verify that in fact ¢ is
a continuous strictly increasing function from [0, 1] onto itself, so that the curve 4 defined
by

¢(t)

J=qog¢

is a reparametrization of . Note now that, if 0 < 7 < 75 <1 then

L0,7'2 (’7) - LO,Tl (’7) +T9—T1
L(y)+1

= (¢(r2) = $()) (L(7) +1) (3.2)
so that ZfO <t <ty <1, using (32) with 7 = (b_l(tl), To = ¢_1(t2),

LTl,Tz (7) = LO,Tz (7) - LO,T1 (7) < (L(’Y) + 1)

[17(t2) = Y@ < Lg-1(t1),61(02) (V) < (L(Y) + 1) (2 = 11)
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17 (t2) =A@ < (L(y) + 1)lt2 = ta] (3.3)

where in the first inequality we have used Remark 3.6 with v|[4-1(,),¢-1(,)) in place of .
However, (3.3) holds for every t1,t5 € [0,1], as, if t; > t5, we obtain (3.3), by changing
t1 with t5, and (3.3) is obvious if ¢; = t5. In conclusion, 4 is Lipshitzian with constant
L(v) +1.

Proof of Theorem 3.1. Let 4 be a continuous curve in A, defined on [0, 1] having finite
length L with 4(0) = P, (1) = Q. Let

X={yeCon:v(t) €A Vte[0,1], v(0) = P,v(1)=Q, L(y) < L}.
Since ¥ € X, then X # @. Let v, € X be such that

Lim) =, dnf L(7). (34)

Let 74, be a reparametrization of +, obtained as above, in particular using a function ¢
(which of course usually depends on n) strictly increasing so that 4,(0) = v,(0) = P,
H¥n(1) = (1) = Q, and ¥, Lipshitzian with constant L(vy,) + 1. Since L(vy,) < L, we
easily see that all #,, are Lipshitzian with constant L + 1, hence 7, are equilipshitzian.
Also, since L(%,) = L(vn), 4n being a reparametrization of -, we easily see that 4, € X.
Moreover, in view of Remark 3.6, for every ¢ € [0, 1], we have

@] < [[An () = 3 O)|] + 170 (0)[| < L) + ||P[] < L+ ||P]|

so that ,, are equibounded. We can thus use the Ascoli-Arzela Theorem and deduce that

a suitable subsequence 7,, of ¥, converges, for k — oo, to some ¥ € Cp 1,5 With respect

to || ||c0, that is, uniformly. We now see that ¥ € X. In fact, as 7y, (t) k—+> J(t) for each
—>T00

t € [0,1], we have §(t) € A for each t € [0,1] (recall that A is assumed to be closed). For
the same reason, 4(0) = P, (1) = Q. Finally, since L is l.s.c. on Cp 1,5, we have

L(#) < liminf L(¥y,) = liminf L(y,,) < L, (3.5)

k——+o0 k—+o0
and 4 € X as claimed. Using (3.4) and (3.5) we get L(¥) < ig{L(’y) (thus L(¥) =
8!

mi)r(l L(v)). It remains to prove that L(5) < L(vy) when v is a continuous curve in A
e
connecting P and (), but which is not an element of X. This is obvious, as in such a case

L(y)>L>L(%). =

The argument of Theorem 3.1 can be used to prove the following general theorem, which
resembles the well-known Weierstrass Theorem on extrema of continuous functions defined
on a compact set.
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Theorem 3.7. Let f be a Ls.c. function from a (nonempty) metric space X to RU{+oc},
not identically +o00. Suppose X is compact, or more generally

a) the set {z € X : f(x) < L} is compact for each real L.

Then f has a minimum on X.

Proof. Suppose a) holds. Let T € X be so that L := f(T) < +o00. Let

Y={zeX: f(x)<L}.

Let x,, € Y be so that f(z,) _)—+> 121f/ f(x). Since Y is compact by our assumption, there
n O x

exists a subsequence z,,, of z,, and Z € Y such that z,, k—) Z. Then, as f is l.s.c.,
—00

£(@) < liminf f(wa,) = inf £(2).

It follows that f(Z) < f(z) for each x € Y, in particular f(Z) < f(Z) but also f(Z) < f(z)
for each x € X \ Y, as in such a case f(Z) < f(Z) < f(x). In conclusion, f takes its
minimum at . Note that if X is compact, then a) holds since, as a consequence of the
lower semicontinuity of f, the set Z := {& € X : f(x) < L} is closed (if z ¢ Z, then
f(x) > L, hence there exists U neighborhood of z such that f(y) > L for each y € U, and
therefore the complement of Z is open) in the compact set X, hence it is compact. =

The fact that a continuous function on R with values in R which tends to +o00 both at —oo
and at +o0o has a minimum can be seen as a particular case of Theorem 3.7, as in such
a case a) in Theorem 3.7 holds. In general, a function f satisfying a) in Theorem 3.7, is
said to be coercive. The coerciveness condition is important in many problems in calculus
of variations as usually the domain of a functional is not compact, but in many examples
the functional is coercive.

Exercise 3.1. Prove that, if A is a nonempty open subset of RY, then any two points in
A are connected by a continuous curve of minimum length if and only if A is convex. It
follows that the hypothesis that A is closed cannot be removed in Theorem 3.1.

4. Geodesics on surfaces

In the previous section, we proved Theorem 3.1. In the following, we will call geodesic
in a subset A of RV a curve satisfying a) of Theorem 3.1 for some P,Q € A. Note
that in differential geometry the term geodesic is used in a slightly different sense. The
geodesic connecting two given points is not unique as for example any (verse-preserving)
reparametrization of it satisfies the same property. Further, in some cases, we can have
essentially different geodesics (i.e., having a different image) connecting two given points.
For example, if A is a sphere in R3, and the two points are the north and the south
pole, then every meridian is such a geodesic. If the closed subset A of RY has no further
properties we cannot in general find a regular (say C') geodesic connecting two given
points. An example is when N = 2 and A is the complement of an open square, and the
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two points lie on different edges of the square. This fact is highly intuitive and will not
prove this fact in detail.

Suppose now we have a surface S in R? and we will assume it is compact, connected and,
for simplicity, of class C°°. In this case it is possible to prove that given two points there
exists a regular geodesic in S connecting them, that can be parametrized by arclength. We
recall that a C! curve v is parametrized by arclength if the vector ||y'|| is identically 1.
The purpose of this section is to give a characterization of (sufficiently smooth) geodesics
on S. We recall that a (nonempty) subset S of R? is said to be a surface if

a) For every P € S there exists U open neighborhood of P and g : U — R of class C™
such that gradg # 0 on U and SNU = {P eU:g(P)= 0},

or equivalently

b) For every P € S there exists U open neighborhood of P and V open set in R?, and
¢:V = R3 of class C>® such that the rank of the Jacobian matriz of ¢ equals 2 on'V and
SNU =¢((V),

or also

c) S can be locally represented as the graph of a C™ function 1 of the form z = (z,y)
or y = (z,xz) or x = Y(y,z), more precisely, for every P € S there exists U open
neighborhood of P and V open in R2, and ¢ : V. — R of class C*> such that one of the
following holds

c1) SNU ={(2,y,2) : (z,y) € V,z=9(z,y)}

Cz)SﬂUZ{(SC,y,Z) ( )EVy— (Z,.’E)},

c3) SNU = {(2,y,2) : (y,2) € V,z =9(y,2)}.

We shortly recall how it can be proved that a) b) and c) are equivalent: If a) holds, then

one of the derivatives g—g, g—g, 52 is different from 0 at P, thus in a neighborhood of

P. Suppose for example % # 0 at P. Then, as a consequence of the implicit function
Theorem, we can represent S as in c;), and c) holds. If b) holds, then one of the three
submatrices of 2 x 2 of the jacobian matrix of ¢ = (¢1, ¢2, ¢3) is nonsingular at Q with
#(Q) = P. Suppose for example it is the matrix relative to (¢1, $2). Then, writing ¢ as
¢(u,v), by the inverse function Theorem we can express locally (u,v) as a C* function
h of (z,y). Thus, letting ¢ = ¢3 o h, we can represent S as in ¢;). On the other hand if
c), for example c¢;), holds, then we get a) putting g(x, vy, z) = z — ¥(x,y), and b) putting
d(u,v) = (u, v, ¥ (u, v)) Now, in ¢), for example c;), we can assume

_ A a

P =
0, —(0,0)= 3

—(0,0)=0 (4.1)
in the sense that if (4.1) does not hold, then the image of S via a suitable affine isometry
satisfies (4.1). Once we realize that the second condition in (4.1) means that the tangent
plane IT to S at P is the plane I’ of equation z = 0, this can be seen, observing that
there exists an affine isometry that carries P into 0 and II into II’. By this point of view,
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the assumption (4.1) is valid when we treat properties invariant whith respect to affine
isometries. Finally, we recall, that given a C? curve v in R3®, parametrized by arclength,
then the principal normal to y at the point y(¢) is v (¢).

Remark 4.1. We explicitly note that if S is a compact and connected surface in R® of
class C°, then any two points @ and P can be connected by a piecewise C*, hence of
finite length, curve in S, thus S satisfies the hypothesis of Theorem 3.1. The argument
of the proof resembles that used for proving that, in an open connected set U in RY, any
two points can be connected by a polygonal that remains in U. Fixing the point @, let

A= {F €S:Q and P are connected by a piecewise C! curve in S } .

Then @) € A so that A # @. We will see that A is closed and open, hence by the assumption
that S is connected, A = S. Let P € S. Let us represent S using c), for example c;, with
P = (z,9,v¢(z,y)). Consider an open ball B in R? with center at (Z,%) contained in V
and let

W := {(x,y, z):(z,y) € B,z= w(x,y)}.

Since W = SN U N7 !(B), where the continuous function 7 : R®> — R2 is defined by
n(z,y,2) = (z,y), then W is open in S. Moreover, any P € W is connected to P by a C*
curve v in S. In fact, let P = (z,y,¢¥(z,y)), let ¥ be the segment line connecting (Z,7)
to (z,y) (which lies in B). Then, it suffices to take v defined by v(t) = (5(¢), ¥ (¥(t)). It
easily follows that, if P € A then W C A, while if P € S\ A4, then W C S\ A. Tt follows
that in fact both A and S\ A are open in S, hence A is closed and open in S. =

Theorem 4.2. Suppose S is a compact and connected surface in R® of class C*°, and
let v : [a,b] — S be a geodesic of class C? in S connecting two given points P,Q € S,
parametrized by arclength. Then, for any t €]a,b[, the principal normal to v at y(t) is
normal to the surface at y(t).

Proof. Put P := «(f). Then we can assume that c;) holds, and also, (4.1) holds, as the
properties we use are invariant with respect to an affine isometry. As v(f) € U, by a
continuity argument, there exist ¢, d with a < ¢ < t < d < b such that y(t) € U for each
t € [c,d]. Then 7|, 4y minimizes the length of the curves connecting v(c) to y(d) in SNU
as if there would be a curve n connecting y(c) to y(d) in S N U, with L(n) < L(v|i,q),
then, replacing in 7 the piece from c to d by n we would obtain a curve connecting P, () in
S of length less than L(7y), a contradiction. Since any 7 : [¢,d] — S N U has the form

1) = (120, 02(0), ¥ (a(8), 12(1)))

it follows that (y1,2) minimizes the integral
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d 2
[+ o7+ & ) ®
among the C! y : [c,d] — V satisfying the conditions

y(c) = (m(c),72(c), y(d) = (vi(d),v2(d)).

Thus, ¥ = (71, 72) has to satisfy the Euler equation

d (y’l(t) + 950 (BE ()" + va(t) 2= (y(®)) g—yﬁ(y(t)))

for every t € [c,d], in particular for ¢ = t. Now, by our assumption, for y = ¥, the
denominator is constant in t, as it represents ||7/(¢)|| and 7 is parametrized by arclength.
Hence, the derivative of the numerator is 0, but for ¢ = #, this amounts to 7 (f) = 0, as

0y o O

o 0(®) = 52 (3(0) =0 (4.3

and P = «(f) = (0,0,0). Similarly, we get 34 () = 0, thus " (f) is a multiple of the vector
(0,0, 1) which is, in view of (4.1), normal to S at P. =

Remark 4.3. In the previous proof, we have used the representation of S in ¢;), but such
a representation is only valid in a neighborhood of P, and as there is no reason that the
curve v lies in such a neighborhood, we have to work on the restriction of v to a suitable
neighborhood of £. This is the reason for which we have not considered the integral on all of
the interval [a, b], but we have restricted it to [c, d]. We also remark that the considerations
in previous proof are only valid at ¢ as at the other points (4.3) does not (necessarily) hold,
but once ¢ is given we can use a suitable affine isometry (depending on ¢) for which (4.3)
holds at t. =

5. Absolutely Continuous Functions

I recall that a function u : [a,b] — RY is absolutely continuous (shortly AC) if
Ve > 036 > 0 such that

n

(a§a1<b1§a2<b2---§an<bn, Z(bi—aZ ) ZHu —u(ay)]| <e.

=1
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I will denote the set of the AC function from [a,b] to RY by AC([a,b],RY) or simply by
AC when [a,b] and N are clear from the context. It is easy to see that u is AC if and only
if u; is AC for every 7 = 1,..., N. Recall that in such situations we can use the inequalities
_max uil < [lull < > |uif. Talso recall that a Lipshitzian function is AC and that

=1,..., i=1,...,
every AC function has a derivative a.e. and that if u is AC then u’ € L!([a,b],RY), and
the following form of the fundamental theorem of integral calculus holds:

u(z) = u(a) + /u'(t) dt Vz € la,bl.

a

I denote by Lip([a,b],RY) the set of the Lipshitzian functions from [a,b] to RY and by
Lipo([a, b],RY) the set {v € Lipo([a, b], RY) : v(a) = v(b) = 0}. I recall that a measurable
function f : [a,b] — RY is by definition in L'([a,b], RY) if [ ||f]| < +oc. As for the case
[a,b]

of AC functions the notations Lip([a, b], RY), L([a, b], RY) and similar can be abbreviated
to Lip, L' and similar. Moreover, f € Lip if and only if f; € Lip for every i = 1, ..., N,
f € L if and only if f; € L' for every i =1, ..., N.

I recall that if f € L'([a,b],RY) then for every ¢ > 0 there exists § > 0 such that if
A C [a,b] and p(A) < 6 then [, ||f(z)||dz < e, p denoting Lebesgue measure. A set of
functions F = {f;) : i € I} in L*([a, b], RY) is said to be equiintegrable if for every & > 0
there exists § > 0 such that if A C [a,b] and p(A) < 0 then [, [|fi)(z)||dz < e for every
i € I. Note that I use the notation f(;) instead of f; in order to distinguish the function f
from the i-th component of f. Note also that in such a case the set F is bounded in L!,
i.e., [|fiyllzr < K for some K independent of 4 € I. To see this, take J corresponding to
e = 1 in the previous definition, and note that [a, b] C Lmj A; with p(A;) < 6, for example

=1

Aj=[a+ %(b —a),a+ %(b — a)], with m so large that =2 < §. Then, clearly,

b m
1 fiyllz: :/Hf(i)(x)Hdﬂ?SZ/Hf(i)(x)degm.

—
J Aj

Consequently, if F is equiintegrable and A is a measurable subset of [a, b], then we have

H/Af(i)

We have the following lemma.

< /A ol < 11fllz <m (5.1)

Lemma 5.1. If f,) is a sequence of AC functions from [a,b] to RN whose derivatives
are equiintegrable, and such that the sequence (f(,)(a)) is bounded, then there exists a
subsequence of f(,) that uniformly converges to an AC function.
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Proof. Let ¢ and § be as in the definition of equiintegrability. Let a < a; < by < ag <

n
by --- < an < by, be given with > (b; —a;) < J. Then
i=1

t)Hdt<s

n . b "
ZHf(n)(bi)_f(n)(ai) ‘ :ZH/f(In)(t)dtH SZ/‘ t)Hdt:/‘
=1 =1 a; i=1ai ‘A

(5.2)

where A = | [a4, bi], as u(A) = Z p([a;,b;]) < 6. From (5.2) it follows that f, are in
=1
particular equicontinuous, and as they are equibounded at a by hypothesis, we easily see

that they are equibounded. By the Ascoli-Arzela Theorem f(,) has a subsequence that
uniformly converges to a function f, which is AC, as we can pass to the limit in (5.2),
obtaining

1=1

Lemma 5.2. A sequence f(,) of equiintegrable functions from [a,b] to RN has a subse-
quence weakly convergent in L*.

Proof. By the definition of weak convergence we have to prove that for some subsequence
finw) Of fn), and f € L' we have

/ f(’l'bk) k—>+ - ]f g (5.3)

for every g € L*°. Clearly, we can and do assume N = 1. Also, by decomposing a function
into its positive and negative part, we can assume f,) > 0. We first prove that for some
subsequence f(n,) of f(n), we have

lim / Jo) ER (5.4)

k—o0

for every measurable set A C [a, b]. Note that due to (5.1) we can find f,,) such that (5.4)
holds for a single set A, thus using a diagonal process, for countably many sets A;. So, we
can and do assume that (5.4) holds when A =|a, 8] with a < a < 8 < b, and «a,f € Q,
as such a set of intervals is countable. We will now prove that for this subsequence f(,,),
(5.4) holds for every measurable set A C [a,b], by proving that the sequence [, f(,,) is a
Cauchy sequence. We can and do assume A Cla, b[. If A is open (in ]a, b or equivalently
in R), then, either by topological considerations or using the Vitali covering Theorem, we
have that, given € > 0, and ¢ corresponding to £ in the definition of equiintegrability, there
exist finitely many mutually disjoint intervals |y, 5;[, ¢ = 1,...,m with o4, 5; € Q such

that U ]Ofi, ﬂz[g A and
=1

u(v) <6, V= (a\ (Ulow D).

=1
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m
Hence, setting B = |J ]a;, 8], for every indices k, k' we have

=1
‘/Af(nk)—/Af(nm
‘/Af(nk)—/Bf(nk) +‘/Igf(nk)—/]gf(nk,)‘+‘/Bf(nk,)—/Af(nk,)

The first term in the sum amounts to
< / ‘f (ne)| <
v

‘/Vf(nk)

as u(V)) < 4. Similarly, the third term is < $. For the second term we have

‘/ Foy) = /f(nk')‘ ‘Z/a i Fey) = Z/a . Faun
= Z_: ‘ /]ai,ﬁi[ Tnw = /]ai,ﬁi[ T

As (5.4) holds for every |oy, B;[, thus for each i the sequence f]a, Bil f(ny) is convergent, so

¢
3

a Cauchy sequence, there exists k such that for every k, k' > k,

3
‘/ f(nk)_/ f(nk/)‘ <3
B B

and, in conclusion, the sequence [ 1 f(ny) 18 @ Cauchy sequence and (5.4) holds for A. If
finally, A is any measurable subset of ]a, b[, then there exists B open containing A such
that u(B \ A) arbitrarily small, and, proceeding like before, we can deduce (5.4) for A,
from (5.4) for B. Now, we prove (5.3). Put

klggo / UG

We will now prove that v is a measure. We have v > 0 as we have assumed f(,) > 0.
Moreover, v is clearly finitely additive. It remains to prove that if A; C [a, b] are measurable
mutually disjoint sets, ¢ = 1,2,3,4, ..., then 1/( U A) Z v(A;). Note that by the

=1
equiintegrability of f(,) we easily get that

Vs>035>0|(,u(A)<5:>z/(A)<s) (5.5)
+o0 +oo

For h = 1,2,3,... we have |J 4; = A1 UA2 U...U AR U ( U AZ-), thus by the finite
i=1 i=h+1

additivity:
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+oo
y(ith{lAi) 5.0 (5.6)

+o00o +0o0o +00o

Note that b —a > u( U AZ-) Z w(A;), then ,u( U Ai> = > w(4;) — 0, and
i=1 i=h+1 i=h+1 h—+o0

by (5.5) we deduce (5.6). Thus v is a measure, and, clearly, it is absolutely continuous

with respect to p. By a known theorem, v(A) = [ f for some f € L'. We will prove that

this f satisfies (5.3). By the definition of v, (5.3) flllolds when g is a characteristic function
of a measurable set A. By linearity it also holds for simple measurable functions. We will
now prove that (5.3) holds for any bounded measurable function g. In such a case there
exist g(,,) simple functions uniformly converging to g. Fix € > 0. Then,

‘ ab]f(nk)g /[a fg‘<

‘/ Jng = / f(nk)9<m)‘+‘/ fn)9(m) = / fg(m)‘ﬂ/ fg(m)—/[abfg‘

The first term in the sum is < [|gim) — gllzee|[fnp)|lL1- As f(n,) are bounded in L' and
|9(m) — gl|L= —+> 0, the first term tends to 0, for m — 400, uniformly in k, and the
m—r1+00

same consideration holds for the third term. Hence we can choose m so large that the
first and the third terms are < £ for every k. For such m, the second term tends to 0 for
k — 400 as g(,,) is simple, thus, for sufficiently large k the second term is < £, and (5.3)
holds also for this g. =

Lemma 5.3. Let f,g € L'([a,b],RY). Suppose

b
[ 1000 +90)-v' @) dt =0 (5.7
a
for every v € Lipo([a,b],RN). Then there exists § € AC([a,b],RY) such that § = g a.e.

on [a,b] and §' = f a.e. on [a,b].

Proof. We mimic the proof of the analogous theorem in the C! case.
First case f = 0. Then (5.7) is

b
/g(t) W (E)dt =0
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and we also have

and

t
We could try to consider v of the form v(¢) = [ g(s)ds+ constant, but such a function is

a
AC but not necessarily Lipshitzian (note that an AC function is Lipshitzian if and only if
its derivative is bounded, and the derivative of such a function v is g which is assumed to
be in L! but not necessarily bounded). So, we modify the construction in this way. Let

ey i lg®l<n
wm@—{o if [|g(t)]| > n

b b
1 1
Cn = b—a /g(n)(s)dsa Co = b—a /g(s)ds

t

%w=/@w@—%m3

a

Note that g e pointwise, and, as |[g()|| < ||g]| (or better, [(gem))i| < |gi]), we can
use the dominated convergence Theorem and deduce that ¢, — c¢¢. Moreover, for every

n—-+00
n, v € Lipy([a,b], RY). Also,
(g(n)(t) - Cn) : (g(t) - CO) =

g(n)(t) ) g(t) +Cn-Co— g(n)(t) “Co — g(t) *Cn

By the definition of g(,), g(n)(t)-g(t) > 0; moreover, ||c,|| is bounded in n, as the sequence
cn is convergent, and [|g,)|| < |[g|[, thus, using the Schwarz inequality, we have that

(9(n)(t) = cn) - (9(t) = co) = () (5.9)
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for some o € L'. Thus,

b b
[ o)~ callde = [ o6) = o) (9(0) ~ co)at =

b b
[ i (00 = e0) (g0(®) — ea) e < imint [ o(6) = o) (g0 (®) — )

a

the last inequality holding as by (5.9), we can use the Fatou Lemma. Hence,

b

b
/Hg(t) ~eol|Pdt < liminf/(g(t) ~ o)Lt dt =0

n—-+oo
a

by (5.8). Hence, g(t) = co a.e.
Second Case Arbitrary f. We put

F(t) Z/tf(S)dS

Then F is AC as f is in L'. Moreover, by (5.7) and a partial integration, which is known
to be valid for AC functions, we have

b

/ (g(t) . F(t)) () dt =0

a

for every v € Lipo([a,b],RY), and by the first case, we have that there exists § = g a.e.
such that § — F' is constant. Therefore, §'(t) = F'(t) = f(t) a.e.. =
6. Calculus of variations in AC

In this Section, we study the existence and the regularity of the minimum of an integral
functional. We will use the following Lemma.

Lemma 6.1. If ¢ is a convex function of class C* defined on an open convex subset U in
RY with values in R, then ¢(u) > ¢(v) + (gradg)(v) - (u — v) for every u,v € U.

Proof. Fix u and v and put a(t) = ¢p(v+t(u—v)). Then ¢ is C! and convex on | — 6,1+ ]
for sufficiently small § > 0. Hence

a(1) > «(0) + (1 — 0)a'(0).
It now suffices to note that a(0) = ¢(v), a(1) = ¢(u), &/(0) = (9radd)(v) - (u —v). =
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Let

b

J(y) = / Lt y(t), o/ (1)) dt .

where L : [a,b] x Q x RN — R is assumed to be continuous and € is a nonempty open
connected subset of RY.

Theorem 6.2. Suppose J and L are as above. Suppose also
i) L = L(t,y, q) is convex with respect to q
ii) L(t,y,q) > 0(||q|]) — ¢, where ¢ > 0 and 6 : [0, +oo[— R satisfies %70 — 400, 6 > 0.

T ro+4co
oL

iii) 5, exists and is continuous on [a, b] x Q x RV,

Then the problem

min{J(y) ty € FA,B}, Fap:= {y € AC([a,b],RY) : y(a) = A, y(b) = B} Py.p

has a solution for every A, B € Q.

Proof. Note that for every y € Fs g we have J(y) > —c(b—a), so J is bounded from below.
On the other hand, we have J(y) < +oo if y is C! as in such case the set {(¢,y(t),y'(t)) :
t € [a,b]} lies in a compact where L is bounded, but we could have J(y) = +oo for some
y € Fa p, as in such a case y' is in L', and if for example L(t,y,q) = ¢?, then J(y) is
finite only when g’ is in L2. In any case, as ) is assumed to be connected, there exists y

C* which lies in F,p, so that inf {J(y) : y € Fa,p } < +o0c.
First step. Let yuy € Fap be so that J(ym)) — inf{J(y) tyY € FA,B}. We prove
n—o0

that yzn) are equiintegrable.

For every M > 0 let be given Kj; > 0 so that @ > M ifr > Kp. Let E be a
measurable subset of [a, b], let

Ey={t € E: |lyin®)| = Ku}, B2 ={t € E: ||y(ny (D)]| < K}

[ 1y ®llde = [ Aty @i+ [ sty (o) e
E Eq E»

0|y, \(t
S/Elwdt—i_KMu(Eﬂ

Then

< %/{lbﬁ(\\yzn)(t)\\) dt + Ky u(E)

b
< %( / L (b9 (). Uy () + 1) + K ngpa(E)
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_ % (J (W) + c(b — a) + Kneps(E)

and, as the sequence J(y(,)) is convergent, thus bounded, for every ¢ > 0 for sufficiently

large M independent of n, we have ﬁ(J(y(n)) + c(b — a)) < 5, and for such M we find

d > 0 such that if u(E) < 6, then Kpp(E) < §, so that the first step is proved.
Second Step. There erists a subsequence Y,y of Yn) and y AC such that yn,) k—) Y

— 400
uniformly and yznk) k—+) Y weakly in L.
—>T 00

By Lemmas 5.1 and 5.2 we find a subsequence subsequence y(,,) of y(,), ¥ AC, n € Lt
such that y(,,) — ¥ uniformly and Y — 7 weakly in L'. To complete the proof
k) k—+o0 (nk) k——+o0

of the second step it remains to prove that ' = n a.e. Let v € Lipy([a,b], RY). Then,
recalling that the scalar product of AC functions is an AC function, we have

b b
/”'yﬁm +0 Y, = /(”'?J(m)' = (V- Yn)(b) = (V- Y(ny))(a) = 0

a a

By taking the limit, we get
b

/v-n-l—v'-y:O

a

thus, by Lemma 5.3 we have §’ = n a.e. where § is AC and § = ¢ a.e., but, as the
complement of a set of 0 measure is dense and ¥ and y are both continuous, then § = .
This concludes the proof of the second step.

Third step. Y is a solution of P4 p. It clearly suffices to prove that

J(¥) < liminf J(y(n,)) (6.1)

k——+oc

By Lemma 6.1 we have
Lt Y(ui) (), Yy ) = Lt Yy (8), 7' (8)) + Z—S(t, Yoy (0, T () * (Y(nyy () =7 (1)) (6.2)

The idea is now to integrate over [a, b] and to take the liminf on both the sides. However,
in order to keep %’ bounded it is more convenient to integrate over the sets A, defined by

A= {telab]: [Tl <r)

By (6.2), we have

Q/L@wmw@%wwﬂﬂﬁﬁz
A,
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/ Lty Yoy (0,7 (1)) dt + / g—ja,mw,y’(t» Wy () — T (1)) di+

A
[ (5o €0 0.7 0) = S2CTOT ) - oy )~ 70)
Ap
We have 9L
[ 5 TOT0)- (0~ 1)) dt =
Ap
[ 0 05 €O @) oy 0~ T O) e 0

as the function x4, (t)g—g(t, 7(t), 7 (t)) is bounded, since gL is continuous by hypothesis so

is bounded on the compact set [a,b] x {F(t) : t € [a,b]} x B(0,7), and in view of the second
step. Note that 7 is continuous, so bounded on [a, b], but 7 is not necessarily continuous,
so we have to restrict our considerations to A,. Moreover,

/ (g_s(t, y(nk)(t)vyl(t)) o g_s(tvg<t)7gl(t))) ) (yznk)(t) ( )) d 5.0 (6.3)

k—+oc0
Ay

To prove (6.3), note that
Yy |2 < Ch (6.4)

for some constant C as y(nk) are equiintegrable; another way of seeing that is that y(nk) isa
weakly convergent sequence and every weakly convergent sequence is bounded. Moreover,
for some constant C'y we have

@[l < Cq
as the set {y(¢) : t € [a, b]} is compact. Hence,

Y@ O < TTOI + Yy () = 70| < C2 +1
for sufficiently large k as y(y,) tends to ¥ uniformly. In conclusion, for ¢ € A, we have
(19 (0,7 (1)), (6, 7(0), 7 (1)) € [a, 6] x (B(0,C + 1) 8) x BO,7)
which is a compact set where g—{; is uniformly continuous. As for every § > 0 we have
(& Y (0,7 (@) — (£, 7(1), 7 (@))]] < 6

for sufficiently large k, we conclude that

oL _ oL
a_q(tay(nk)(t)ayl(t)) — A



uniformly, and in view of (6.4), (6.3) easily follows. As L is continuous, by a similar reason,

k—+oc
A, Ar

[ Bt @5 @)t — [ Lea0.7 @) d

In conclusion, if we would integrate over [a, b] instead of over A,., (6.1) would be proved.
We conclude observing that

. . . . /
llii)n—}{gof J(Y(ny)) = %Lnigj/[a’b](lj +¢)(t, Yy (1), y(nk)(t)) dt — /[a,b] cdt

> Egligf/x;r (L + )t Ynp) (1) yZHk)(t)) di — /[Va,b] cdt

> [ @+ o050 d - /[a,bfdt

r

for every r = 1,2, 3, .... As the sequence of sets A, is increasing and the union of such sets
is [a, b] minus a set of 0 measure, passing to the limit, we have

lim inf J (y(s,) > / (L +)(t,5(2), 7' () dt - / cdt =J(),
k— o0 [a,b] [a,b]

and the Theorem is proved. Note that we have worked on the integral of L + ¢ instead of
that of L, in order to have a nonnegantive integrand. =

It is possible in fact to prove that the hypothesis iii) can be removed in Theorem 6.2. 1
remark that the previous theorem shows the use of the weak convergence. We now want
to study when the minimum that is stated to exists is in fact of class C?, in other words,
we aim to get a regularity result.

Theorem 6.3. Suppose the hypotheses of Theorem 6.3 are satisfied. Suppose moreover,
that % exists and is continuous on [a,b] x Q@ x RN and also,
i) There exist positive constants C1(r), Ca(r) such that

max{Hg—j(t,y,q)

| 5etal]} < et + e

for every t € [a,b] and y € QN B(0,r).
ii) For every M > 0 there exists K > 0 such that
O(r') < Kpe(1+0(r)) if ryr' > 0,7 <r+ M.

Then every AC solutiony of P4 p withg(t) € Q, for allt € [a, b] satisfies the Euler equation
in the sense that the function « defined by a(t) = %(t,y(t), 7 (t)) amounts a.e. to an AC

function & and &' (t) = g—j(t,g(t),y’ (t)) a.e. Moreover, 3 is Lipshitzian.
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Proof. Assume for the moment that 3 is an AC function with values in Q with J(7) <
+oo (for this consideration we do not need that ¥ is a minimum point for J). Let v €
Lipo([a, b], RY). We put

G\, t) = L(t,y(t) + Mo(t), 7 (£) + A'(t)) X € [6,0]

where § > 0 is chosen so that, the set F := {g(t) + Mv(t) : t € [a,b],\ € [-6,6]}, is
contained in . Note that F' is compact, as the continuous image of the set [a, b] x [—d, J]
via a continuous function. We now prove that there exists a summable function u such
that for every t € [a,b] and A € [—4, §] we have

H £)+ o (1), 7' () + Av'(t )HSU(t) (6.5)

15290 + 200, 0+ 20| < ) 66)

We have

|50 €50+ 200,50 + 3 ©)]| < BT O + 2 @) + Catr)

< () (Ka (1 + 005 @)1D)) + Ca(r)

where r is such that F C B(0,7) and M = dsup{||[v'(¥)|| : t € [a,b]}. Now, 0(|[7 (¢)|]) <
L(t,y(t),y' (t))+c, and L(t,y(t), 7 (t)) has finite integral = J(y), so that (6.5) easily follows,
and (6.6) can be proved in the same way. We also deduce

2% (0] < ) = w(t) (@)l + 1 ) 6.7)

and, as v and v’ are bounded, then ¥ is summable. In particular, as

GO = G0,1) + 2 2C

O\ (N'A,h t)

where py ¢ €]0, A, and G(0,t) = L(¢,5(t), 7 (¢)) is summable with respect to ¢ € [a, b], then
J (g + Av) < +o0. Moreover, by (6.7), putting g(A f[ 5 G (A, t) dt, we can differentiate
g, by differentiating G in the integral. Thus, supposmg now that y is an AC solution of
Py g, we have

oL

b
0=yg'(0)= / g—j(taﬂ(t),y’(t)) co(t) + 8_q(t’ 5(6), 7 (1)) - o' (t)

a

and the Euler equation follows from Lemma 5.3. To prove that 7 is Lipshitzian, note that,
by i) and ii) in Theorem 6.2 we have
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O(I[7' 0I) — e < L(t, (1), 7' (1) < L(t,7(t),0) + Z—S(t,y(t)@'(t)) -7 (t)

so that we have a.e.

Ol (1)) < e+ L&, (1), 0) + [la@)|| [T @)]| < K|l (&) + K>

as {(t,y(t),0) : t € [a,b]} is compact and & is AC, we have a.e. either 7' (¢) = 0 or

t K
WTOD) _ e, Ko
7' ()] 7' @)l
If ||7'(¢)|| is sufficiently large, say if ||/ (¢)|| > K3, then the right hand side is < K7+ 1 and
the left hand side is > K7 + 1, so that we must have |[7/(¢)|| < K3 a.e., and thus, using
the fundamental theorem of integral calculus for AC functions, ¥ is Lipshitzian. =

An example of a function # that satisfies the hypotheses of Theorems 6.2 and 6.3 is given
by 0(r) = r*, k > 1. 1 prove that it satisfies ii) in Theorem 6.3. We in fact have

kS(M—I—l)k(Tk—I—l) ifr,r' >0,r' <r+M, (6.8)

as we can assume r’ = 7 + M, and we have thus to prove (r + M)* < (r¥ + 1)(M + 1)¥,
and this is trivial if » < 1, and follows from the simple inequality » + M < r(1 + M) if
r > 1. The same considerations are valid for (1) = ar®, k > 1, > 0. In general, in fact,
we can prove that if 0 satisfies the hypotheses of Theorems 6.2 and 6.3, then so does af
with o > 0. To see this, note that

af(r') <aKpy(1+60(r) < (14 a)Kp(1+ ab(r))
ifr,7" > 0,7 <r+ M.

Theorem 6.4. In the hypothesis of Theorem 6.3, if moreover the map q — 2L (t y(t),q)
is one-to-one for every t € [a,b] (this is the case if L is strictly convex with respect to q),
then v is of class C1.

Proof. Let
E:={teab]: 77 (1) or a(t) # a(t)}

We know that F has measure 0, so that [a,b] \ E is dense in [a, b], hence every point in
[a, b] is the limit of a sequence of points in [a,b] \ E. Let ¢ € [a, b] and suppose tx T t,

——+00

7 (tk) —> z, tg € [a,b] \ E. As 2 is assumed to be continuous, we have

OL . . . BL, .
G ET@.2) = im (b, 907 (0) = lim (k) = &(0)
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By the hypothesis of injectivity of ¢ — %(t, y(t),q), we see that z does not depend of the
sequence tg, in other words that there exists T € R such that, if tx — ¢, ¥ (tx) — =,
k—+o0 k—+o0

tr € [a,b] \ E, then x = Z. We could still suspect, however, that for some tkk—+> t,
—+00

tr € [a,b]\ E, the sequence ¥ (tx) is not convergent, but this is not the case. In fact, as gy
is Lipshitzian, the sequence 3’ (¢x) is bounded, so it has a convergent subsequence, and its
limit amounts to Z, hence every subsequence of 7 (tx) has a subsequence convregent to T,
and by a simple and well-known result in general topology, this implies that the sequence
7 (tx) is convergent to T. We now prove that T =7 (t), i.e. T; = 7;(t) for every i = 1, ..., N.
We have concluded that for every g . _)—+>Oof with tg € [a,b] \ E, we have ¥'(t;) — =,

k—+o0
hence
¥ ()| aopg—7T (6.9)
t—t
We have
[7:5)
_ yi(s)ds
u.(1) — 7. (1 =
yz( ) _yz( ) — t _ (610)
t—1 t—1

and, if t > t we have

(t — 1) inf{F;(s) : s €]t {[\E} < / Yi(s)ds < (t — t) sup{¥i(s) : s €]t,¢{\E}

t

as u(F) = 0, hence by (6.9), for every € > 0 there exists § > 0 such that if ¢ € [a, b]N]¢, t+4[
we have

T —e < inf{y.(s) : s €]t,t[\F} < sup{7.(s) : s €]t,t[\E} <T+¢

and by (6.10), if £ < b, we have

— T
-t t—t
We conclude similarly that, if £ > a,
yz(t) B ?z(f) T
t—t t—t
noting that
t
—
_ _ Ji(s) ds
5050 17
t—t t—t



and proceeding like before, but assuming ¢ < ¢. In conclusion, 7' (f) = T, as claimed, or
in other words, for every t € [a,b], ¥’ (t) = . lirf 7 (tx), where tj is any sequence tending
—>T 00

to t with tx € [a,b] \ E. It remains to prove that ¥ is continuous. Note that if E would
be the set of points in [a,b] at which the derivative does not exist, then the proof of the
continuity of ' would be trivial as at this point it would follow E = @. As however the
definition of F is a bit more complicated we need another proof. Let t,, . _:)OO t, ty € [a,b].

We have to prove
Y(tn) — 7). (6.11)

n—+oco

By what we have proved, for every n there exists a sequence ¢, € [a,b] \ E such that
tn — tn and §'(tnx) —> T (tn). Therefore, for every n there exists k,, such that
k—+o0 k—+oo

1
[t — tn| < — (6.12)

19 () =7 (0)] < (613)

By (6.12) we have t, k, " t. Hence, we know that ¥ (t,x,) — ¥'(t). Hence by

n—-+4o00 n—-+o00

(6.13), (6.11) holds. =

An example in which all hypotheses of Theorems 6.2, 6.3, 6.4 hold is when N =1, Q =R,
and

L(t,y,q) = at,y)|q|* + B(t,y) (6.14)

with k > 1, a and 3 of class C! on [a, b] x R (it suffices in fact that o and 3 are continuous
with their derivatives with respect to y), and «a(t,y) > @, B(t,y) > B for every (t,y) €
[a,b] x R, and @ > 0. We can choose in this case 0(r) = ar®. Note that

oL

a_q(t’ y,q) = aft,y)k|q/*'sign(q)
oL B Y

Observing that the functions ‘g—‘; and % are continuous by hypothesis, thus bounded on

every bounded subset of [a,b] x R, and that r*~! < 7* 4 1, we see that i) of Theorem
6.3 holds. Moreover, the function ¢ +— |g|*~!sign(q) is strictly increasing as can be easily
verified, hence so is the map q — a(t, y)k|q|*~sign(q) for every (¢,y) € [a,b] x R, hence
also the hypothesis of Theorem 6.4 is satisfied. It follows that for L as in (6.14) J has a
minimum in F4 p for every A, B € R and that every such a minimum is of class C*.

7. Geodesics on Manifolds Again.
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In this Section we return on geodesics and use the results of Section 6. First of all, given
a continuous curve v : [a,b] — RY with L(y) := L < +o0o (L(y) denoting the length of
v), we want to construct an ”equivalent” curve 4 parametrized by arclength. I prefer not
to specify what is the exact meaning of the word equivalent. It would be nice if ¥ was a
reparametrization of v, but unfortunately this is not possible in general, as, if 7y is constant
in some interval, then so is any reparametrization of it. Let ® : [a,b] — [a, L] be defined
by ®(t) = L(7lj0,s)- Then, as seen in Section 3, ® is increasing and continuous, hence its
image is the interval [0, L]. We define

F(T) =7(t) : &(t) = 7. (7.1)

However, as ® is not, a priori, one-to-one, we have to prove that such a definition is correct,
i.e., that it does not depend on t € ®~1({7}), in other words, that if ®(t;) = ®(ts) = 7,
then v(t1) = v(t2). Suppose for example ¢; < t5. Then

LYl £2) = L(V]fa, 1) = L(V]a,t2]) = @(t2) = (t1) = 0. (7.2)

Therefore, 7 is constant in [tq,t2] and v(¢1) = ~y(t2), as claimed. Note that by definition
we have v = 4 o &, hence ® being onto [0, L], v and ¥ have the same image. Next,
we prove that 4 is continuous. Let ¢1,t3 € [a,b], t1 < ta. Then, |[®(t2) — ®(t1)| =
L(7Y|ity,t]) = [|7(t2) — v(t1)||. Hence, if 71,7 € [0,L] and for example 71 < 73, taking
t1, ta so that ®(t1) = 7 and ®(t3) = 7, we have t; < t9 as if t; > ta, we would have
T = q)(tl) 2 @(tz) = T9. Also

[¥(m2) = ()| = [[7(t2) = v(t2)]] < [@(t2) — (t1)| = |72 — 71 (7.3)

so that 4 is 1-Lipshitzian, hence continuous. We are now going to prove that, if ¢1,t5 €
[CL, b], t1 < tg, then

L (’~Y|[q>(t1),<1>(t2)]) =L ('7|[t1,t2]> (7.4)

so that, also using (7.3), we have L(ﬂ[q)(tl),q)(h)]) = ®(ty) — D(ty), i.e., ¥ is parametrized
by arclength. Note that, taking t; = a, to = b, we see from (7.4) that 4 and + have the
same length. We now prove (7.4). If ®(¢t1) = ®(t2) (7.4) is trivial in view of (7.2), thus we
can and do assume ®(t1) < ®(t2). Let (ao,a1,...,an) € Py t,- Then Ay(ag,an,...,an) =
A5 (®(ao), ®(a1), ..., 2(an)). Note that, strictly speaking, (®(ao), ®(a1),..., 2(ay)) is not a
necessarily a partition of [®(t1), ®(t2)], as ® being increasing but not strictly increasing,
we could have ®(t;_1) = ®(t;). However, we can easily replace it with a partition IT of
[®(t1), D(t2)] in the following way. The first element is ®(t1) = bo, the second is the first
element by of the form ®(¢;) bigger than ®(¢1), the third is the first element of the form
®(t;) bigger than b; and so on. Then, we have

Ay (ag,aq,...,an) = Ay(P(ap), ®(a1), ..., ®(an)) = A5(II).
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Conversely, if (bo, b1, ..., bn) € Pa(t,),a(t,), clearly bg = ®(t1), by = ®(t2); let a; € [a,b] be
so that ®(a;) = b;, and choose ag = t1, a, = ta. Then a;_; < a; so that (ag, a1, ...,a,) €
P+, .- Moreover, A, (ag, a1, ...,an) = As(bo, b1, ...,b,). Now, (7.4) is an immediate conse-
quence of the definition of the length of a curve. We summarize the results obtained in
the following Theorem.

Theorem 7.1. The curve 7 is correctly defined by (7.1), is continuous, parametrized by
arclength, and have the same length and the same image asy. =

Lemma 7.2. (Jensen’s inequality). Let ¢ be a convex function of class C' from RN
to R. Let g be a summable function from the interval [a,b] with values in RY. Then we
have:

bfa/b¢(g)z¢(bia/g).

Proof. We use Lemma 6.1 with v = = [ g, and put L(u) = ¢(v) + (grade)(v) - (u — v).

b
al
We have ¢(u) > L(u) and the inequality holds for u = v. Then,

o5 [ 9) =6) = L0) =

b b

it fo) it frm =ity o

a a

where we have used the following simple remark: As L has the form L(u) = ¢-u +d, then

U [o)me (o [ o) = (s [era) o [am i 10

Remark 7.3. The hypothesis that ¢ is of class C! is in fact not necessary. This, as it can
be proved that for any convex function ¢ from RY to R and for every v € RY there exists
L of the form L(u) = ¢-u + d such that L(u) < ¢(u) and the equality holds for u = v.
Such a statement is a consequence of the Hahn-Banach Theorem. In the particular case
N =1, it is simple to verify that we can take L(u) = ¢(v) + ¢/, (v)(u — v) where ¢/, (v)
denotes the right derivative of ¢ at v. Recall that a convex function from an open subset
of R with values in R has both right and left derivative at all points. =
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Remark 7.4. The Jensen inequality is useful in many cases. We will use it for N =1,
#(z) = z2. Note that in this particular case, the inequality is also a consequence of the
Holder inequality:

b b b

‘a/bg<a/b9|<(a/b1)5</g2)5=>(/g)2<(b_a)/g2_ .

a a a

We need to know that the usual formula for the length of C! (or more generally piecewise
C') curves is still valid for AC curves.

Lemma 7.5. Let v be an AC curve from [a,b] to RN . Then L(y f |1y (t)]| dt.

Proof. Let II := (tg,t1,...,tn) € Pqp- Then

=Zmafm1w§m/ mw<2/%w = [ Ioa

tzl tzl

In order to prove the Lemma, it remains to prove

Ve > 03Il € Pyp: |A( /H’y |dt‘<e (7.5)

Fix € > 0. Recall that ||7'|| € L!, so that by a known density property, for every j = 1,..., N
b

there exists a; : [a,b] — RY continuous such that [ |oy; — vj| < 35 so that
a

/m—w</2m m—z/m %< S (7.

a J= 1

Let a = (e, ..., an). By the uniform continuity there exists § > 0 such that

€ .
|a(t) — a(t)]] < 60 —a) if t,t' € [a,b], |t —t'| <&

Let n be so big that b_T“ < 0 and let t; = a + ib_T“, so that IT = (to,t1,....tn) € Pap,

therefore H T (au(t) —a(ti_l))dtH < }Z Ha(t) —Ol(ti—1)Hdt < ﬁ(ti—ti_l). We have

‘H/ dtH_||t—tz1 11||‘ H/ dt_t_tll)(i—l)‘
ti1
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€(ti—ti_1).
S T6b—a)

/Ha )di— |1t — tin)a(ti)|| | = | / et~ etz ) di | <
eti —ti—1)
_ < — <
/\Ha = llat-)l| |t < /Ha alti) | < o=y

Therefore, ‘||/ t)|| — /||a ||‘_ '__ , hence
tz 1
‘/||a(t)||dt—ZH / oft) i || =
a =1 i1

\Z/WfW—ZW/ LR

_tl

Z\H/ 0 i - /||a e <3 ";;) ‘.

Moreover, also using (7.6),

[ 1= [ el =] [ (o - e
</

\ZH/ dtH—ZH/ (1) atl]| < \||/ dtu—n/ 0t | <

thzl -1

W @) = llat H\dt</ua Vi< %

n tz

b
S [ (et - @) dt||<2/ua Y@l di= [ lla) - @) < 5.

=1 ti1 1= ltz )

Now, (7.5) follows from the last three formulas. =
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Note that if ¥ € C,p, N is a curve that minimizes the length on a class F' of AC curves,
F C C4p,n, and is parametrized by (a multiple of) arclength, i.e., L(¥|f, +,]) = c(t2 — t1)
for all tl, to € [a,b] with t; < tg and for some ¢ > 0, then it also minimizes the functional

I(v): f I[7'(t)||? dt on F. First of all, remark that ||¥'|| = c a.e.. Indeed, |[F(t2)—¥(t1)|| <
L(7|[t1’t2]) = c|ta — t1]| if t; < to, thus for any tq,t5 € [a,b]. Hence, 7 is Lipshitzian and

7l <e. (7.7)

b b
As [|[7]| = L(F) = ¢(b— a), then [(c—|¥'||) = 0, and, in view of (7.7), ¢ = |[7/|| a.e.

a a
Now, using the Jensen inequality we have

b
:/||7'(t)ll2dt /|| )| dt) "<
ab | |
_(/H’Yl(tmdt) S/H’Yl(t)szt:I(fY)’

for every v € F.

Theorem 7.6. If ¥ is a geodesics on a compact and connected surface S in R3 of class
O™, parametrized by a multiple of arclength, then % is of class C*, and in fact also of class
C.

Proof. Let % : [a,b] — S, fix t € [a, b], and put P = 7(f). We use the notation of Theorem
4.2, where we replace V by an analogous open set V'’ in R? which is a ball centered at
(0,0) so small that V/ C V, and on V' we have

|lgrady|| < e
0% ‘
<K 7.8
Oy O0y; | — 7.8)
where ¢ is a sufficiently small positive number, and K is a suitable number. Such a number

2 —
exists as % are bounded on the compact V. The function (7;,%,) then minimizes the
10Yj

functional

d 2
10) = [ WAOF + 050 + (5o WOWA® + 5 W0)50)

with the conditions y(c) = (F,(¢),72(c)), y(d) = (F1(d),75(d)) We have to study L :
[e,d] x V! x R? — R defined by

(¥ + é)—1/)(31)612)2

L(t,y,Q)=6ﬁ+qg+( B4

Oy
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We take 0(r) = r% so that we have
L(t,y,q) > 0(|lqll) (7.9)

Moreover, 22 (t,y,4) = 2g; +2(gradi(y) - 4) 2 (1), hence

oL
|5, v-0)| < Allall < AL +6(a1) (7.10)
where A = 2 + 2¢2. Similarly, we get

5t < Blall < B+ 6(al) (7.11)

where B = 4Ke. Moreover,

82L O O
T (t,y,q) = 20 j + 2+ (y) o

so that for suffciently small €, the matrix agj;q - is positive definite, hence L is strictly
convex with respect to g. Thus, in view of (7.9), (7.10), (7.11), the hypothesis of Theorem
6.4 is satisfied, and (7;,%,), so %, is C!, hence by a known theorem C°°, on [c,d] in

particular at t. As ¢ is an arbitrary point in [a, b], we have completed the proof. =
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