1. The Isoperimetric Problem

We want to prove that the circle is the figure with maximum area among those with given

perimeter. More precisely, we are going to prove that, given a piecewise regular! C'! Jordan

curve v in R? of lenght L, then the area A of the bounded region enclosed by + is not

greater than the area of the circle of perimeter L. The result is valid in the more general

case where the hypothesis piecewise reqular C* is replaced by continuous, but the proof is

more complicated. First of all, we evaluate the area S of the circle of perimeter L. The
L

. . . 2
radius is given by Z . thus S = 7(Z)2 = L=, Hence, we have to prove
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L? > 47 A (1.1)

In order to prove (1.1), we recall some properties of Fourier series.

Theorem 1.1. If f is a Riemann integrable function on [—m, 7|, then
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" P dt = w(%% + 3 (2 +2))
- n=1

where a,, n=0,1,2... and b,, n = 1,2, 3, ... are the Fourier coefficients of f defined by

an=2 " W) costtydt,  by=2 [ F(t)sin(nt) dt
T J_x T J—x

Theorem 1.2. If f and g are Riemann integrable functions on [—m, |, then

T +00
F©)9(t) dt =7 ("% + 3" (anen + budn))
- n=1

where a,, n = 0,1,2... and b,, n = 1,2,3,... are the Fourier coefficients of f, and c,,
n=0,1,2... and d,, n = 1,2, 3, ... are the Fourier coefficients of g.

Theorem 1.3. If f is a piecewise C! function on [—x, 7| such that f(—=) = f(w), and
an,n =20,1,2... and b,, n = 1,2, 3, ... are the Fourier coefficients of f, and ¢,,, n = 0,1, 2...
and d,, n = 1,2,3, ... are the Fourier coefficients of f’, we have ¢,, = nb,, d, = —na,,.

Theorem 1.1 is a known result in Fourier series. Who is familiar only with the case where
f is piecewise C, can restrict our considerations to the case where the curve 7 is piecewise
C2. Note that under the hypothesis of Theorem 1.1 we are not sure that the Fourier series
of f converges to f (pointwise), but nevertheless the Fourier coefficients can be however
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defined. Theorem 1.2 follows from Theorem 1.1, as in the hypothesis of Theorem 1.2 f+g¢g
is Riemann integrable so that

™
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Theorem 1.3 directly follows from the definition of the Fourier coefficients using a partial
integration, taking into account that the by the hypothesis, the limit terms at —7 and at
m are equal. We are now going to prove (1.1). Let v = (z,y). We can assume that ~ is
parametrized by arc lenght, in particular « : [0, L] — R?. In order to use the theory of
Fourier series, we reparametrize it in such a way that it is defined on [—7, ]. Namely, let
a: [—m, 7] = [0, L] be defined as a(t) = Z(t + ), and let ¥ = yo . Then ¥ has the same
image and the same lenght as y. Moreover, putting ¥ = (Z, ), we have

WO = 1 ) (1), 5/ (@)l ()] = | 5= (&' (1)), o' a()) |
= 1l (), o/ (@(0) | =

the last equality depending on the fact that v is parametrized by arc lenght. We have
™ T T L2 L2
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hence

Let now a,,b, be the Fourier coefficients of Z, ¢,, d,, be the Fourier coefficients of §. As
v is a Jordan curve we have v(0) = (L) and by definition of ¥4, ¥(—m) = 4(x), so that
Z(—m) = Z(r), y(—m) = y(m). Hence, we can apply Theorem 1.3 and deduce that the
Fourier coefficients of Z’ are nb, and —na,,. Using Theorem 1.1 we thus have

/ dt—wZn a, —I—b2



and by similar considerations

T +oo
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and, in conclusion
400

L? = 2n? 2712((1721 + b2+ +d?). (1.2)
n=1
Next, we evaluate A using the formula A = [" Z(¢)j'(t) dt, consequence of the Green
formula. Using Theorems 1.2 and 1.3 we deduce

+oo
A= Z n(andy — bpcy)
n=1
Using (1.2) we get
—+oo
L? — 41 A = 272 ( Z n?(a2 + b2 +c2 + d2) — 2nand, + 2nbncn)
n=1
+o0
= 27r2(Z(nan —dp)? + (b + cp)? + (n? = 1)(2 + di)) >0
n=1

and (1.1) is proved. We also note that the equality holds in (1.1) if and only if the equality
holds in the previous inequality, if and only if we have ¢, = d,, = 0 for n > 2, d,, = na,
and ¢, = —nb,, for every n > 1, and this occurs when a,, = b, = ¢, = d,, = 0 for every
n > 2,a; = di, by = —cy. Since Z and y are piecewise C7, thus in particular continuous,
they amount to the the sum of their Fourier series, hence

a . ~ & .
Z(t) = ?O+alcost+blsmt y(t)z;o—blcost—}—alsmt
which represents the equation of a circle?. It follows that not only the circle is the plane
Jordan curve of given lenght enclosing the maximum area but also that it is the unique
curve having such a property. The solution presented here is due to Hurwitz.

2. The Ascoli-Arzela Theorem

We start by recalling some base facts about compactness. In order to simplify the pre-
sentation, we restrict our considerations to Hausdorff topological spaces. We recall that a
(Hausdorff) topological space X is compact if for every family of open subsets U; of X,

2 2 —
Indeed, setting 7 = y/a2 + b2, we have (%) + (b%) = 1, hence there exists ¢ € R so that
U = cos?, 2 = sint. We thus easily see that Z(£) = % +r cos(t — 1), §(t) = L + rsin(t — 7).

r
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¢ € I such that X = (J U; there exist ¢1, ..., %m € I such that X =U;, UU;, U...UU;,,.
We recall that if X iszealmetric space then X is compact if and only if every sequence in
X has a convergent (in X) subsequence. As a consequence, every compact metric space
is complete (recall that in any metric space a Cauchy sequence having a convergent sub-
sequence is convergent). We recall that if X is a subset of R™ then X is compact if and
only if it is both closed and bounded. It follows that every bounded sequence in R™ has
a convergent subsequence. Instead, when X is subset of an infinite dimensional normed
space, if X is compact, then it is both closed and bounded, but the converse does not hold,
i.e., a closed-and-bounded set is not necessarily compact.

The Ascoli-Arzela Theorem is related to the problem of what subsets of the space of the
continuous functions from a topological space A to R with the norm || f|| = sup|f(z)|, are
compact. More precisely, under what conditions we can state that a sequence of continuous
functions from X to R has a uniformly convergent subsequence. We can more generally
suppose that the functions are valued in a metric space (Y, d). We need some preliminary
definitions. We recall that if f,, is a sequence of functions from a topological space X
with values in a complete metric space, then f,, is uniformly convergent if and only if it is
uniformly Cauchy, that is, for every € > 0 there exists v € N such that, if n > v, m > v
then d(fn(z), fm(z)) < € for every x € X.

Definition 2.1. We say that a sequence f, of functions from a Hausdorff topological
space X into a metric space Y are equicontinuous if for every x € X and for every ¢ > 0
there exists a neighborhood U of z such that for every y € U and for every n we have

d(fn(z), fu(y)) <e.

Note that if f,, are equicontinuous then every f,, is continuous, but the converse is not
true, since in the previous definition we require that the neighborhood U does not depend
on n. Note also that, since every neighborhood of x contains an open set containing z,
by the definition of a neighborhood, in Def. 2.1 we can suppose that U is open. If X is
a metric space with a metric d’ then the previous definitions can be expressed in terms of
¢ and ¢, i.e., for every x € X and for every £ > 0 there exists 6 > 0 such that for every
y € X such that d'(z,y) < § and for every n we have d(f,(z), fn(y)) < e. If X is a metric
space with a metric d’, we say that f,, are uniformly equicontinuous if for every € > 0 there
exists 0 > 0 such that for every z,y € X such that d'(z,y) < ¢ and for every n we have
d(fn(x), fu(y)) < . In other words, 0 is also independent of z. Clearly, if f,, are uniformly
equicontinuous then f,, are equicontinuous. It is possible to prove that also the converse
holds if X is compact. The argument of the proof is analogous to that used for proving
that a continuous function on a compact set is uniformly continuous.

Theorem 2.2 (Ascoli-Arzela Theorem). If f,, are equicontinuous functions from a
compact topological space X to a compact metric space Y, then there exists a subsequence
of f,, uniformly convergent on X.

Proof. For each € > 0 and for each x € X let U., be an open set in X containing z
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such that for each y € U, , and for every n, we have d(fn(z), fn(y)) < €. Such a set U, 4
exists by the assumption that f, are equicontinuous. As, for a given s = 1,2, 3, ... the sets

Ui/s,z» * € X are open sets whose union is X, X being compact there exists a finite subset
As = {=(i,s) :i=1,..m(s)} of X such that

m(s)

X = U Ul/s,w(i,s) . (2'1)

=1

Let A= Ej As. As every A, is a finite set, the set A is countable. Put A = {a1, aq, as, ...}.
Note tha% ft)r each z € X the sequence (f,(x)), as it lies in the compact metric space Y,
has a convergent subsequence. We are now looking for a subsequence of f,, which converges
at all a; € A, and then we will prove that it uniformly converges on X.

Let g(l) be a subsequence of f,, which converge at a;. For the same reason we can
find a subsequence g( ) of g( ) that converges at as, and g,(z ) being a subsequence of g( )
it converges at a; as well. Next, we can find a subsequence g( ) of g( ) that converges at
a3, and g( ) being a subsequence of g( ) it converges at a; and ag as well. By continuing
this process we inductively find sequences gg ) for each natural h such that g( s a
subsequence of gﬁl ) for each h, and g,gh) converges at ai,as,...,an. Clearly, every gfl )

a subsequence of f, and the problem is that each of those subsequences only converges (
priori) at a finite subset of A.

By what a way we can find a subsequence that converges at all points in A? The answer
is: we take the diagonal subsequence defined by g, = gﬁ"). Indeed, g,, is a subsequence
"from h on” of gﬁ, ) for each h in the sense that there exists a strictly increasing map 1y,
from {h,h+1,...} into itself so that g, = gfp )( ) for every n > h, and therefore on one hand
gn is a subsequence of f,, on the other g, converges at a; for each h.2> Prove now that
gn is uniformly convergent on X. As Y is a compact, thus complete, metric space, this
amounts to prove that g, is uniformly Cauchy. Given € > 0, let s = 1,2, 3, ... be so that
3 <e. As gn(a;) converges for all i, in particular g, (z(i, s)) converges for all i = 1, ..., mn,.
Hence there exists v € N such that when h, k > v then

1

A(gn (2, 9)), gu(x (i, 5))) < ~ (2:2)

S

for each i = 1,...,ms. This as for each i = 1,...,ms; we find v; so that (2.2) holds (for
that i) for each h,k > v;. Then, we take v = maxwv;. Let now z € X. In view of (2.1)

To see this, note that if m > h ggm) is a subsequence of g,gh) thus there exists ¢, : {1,2,...} to itself

so that g( m) gé )( ) As gr(Lm—i_l) is a subsequence of g,({") we find inductively ¢,,, in particular

g£m+1) = gg(nn)) gé )(J(n)) for some strictly increasing o, hence @41 = ¢, 00, and 1 > G

Thus, for n > h, g, = gT(Ln) gz(ph)(n) with 5 (n) = ¢n(n) and as ppr1(n+1) > dp(n+1) >

¢n(n), Yy, is strictly increasing.



there exists ¢ = 1, ..., ms such that x € Uy, 4(;,s), 50 that, by the definition of U , we have
d(gm (x), gm(2(i,5))) < T for all m as every g, is of the form f, for some n. Thanks to
(2.2), it follows that for h, k > v,

d(gr(2), gn(z)) < d(gr(@), gr(z (3, 5)) + d(gr(2(i, 5)), gn(x(i, 5))) + d(gn(z(i, 5)), gn(z))

< -<eE.
S

As ¢ is an arbitrary positive number, g,, is uniformly Cauchy, thus it uniformly converges.

We cannot apply the previous theorem when Y = RM as in such a case Y is not compact.
However, if there exists K > 0 such that

|fn(@)|| <K VzeX Vn, (2.3)

we can consider f,, : X — B(0, K) and as B(0, K) is compact we can apply Theorem 2.2
again. When (2.3) holds the function f, are said to be equibounded as they are bounded
by a constant which is independent of n. We thus have the following corollary, which is
one of the most usual forms of the Ascoli-Arzela Theorem.

Corollary 2.3. If f,, are equicontinuous and equibounded functions from a compact
topological space X to RM | then there exists a subsequence of f,, uniformly convergent on
X. =

When X is a metric space with distance d’, a typical case in which the functions f, are
equicontinuous is that in which they are equilipshitzian, i.e., there exists K > 0 so that
d(fn(z), fu(y)) < Kd'(z,y) for each z,y € X and for each n. In other words, they satisfy
a Lipschitz condition with a constant independent of n. In fact, in this case it suffices
to take § = & in the definition of (uniform) equicontinuity. As a particular case, if f,
are functions defined on an interval in R with values in R, they are equilipshitzian when

they have equibounded derivatives. Indeed, by the mean value Theorem, |f,(z) — fn(y)| <
(sup | £3])]e = yl.

Exercise 2.1. Prove that Theorem 2.2 (or Corollary 2.3) is no longer valid if X = R.

Exercise 2.2. Prove that if f,, are equibounded and equicontinuous functions from RY to
RM (more generally if they are equibounded on every compact subset of RY and equicontin-
uous), then there exists a subsequence of f,, uniformly convergent on the compact subsets
of RN,

Exercise 2.3. Prove that the conclusion of the previous exercise is still valid if RY is
replaced by any open subset of RV .

Exercise 2.4. Find a sequence of equibounded functions from [0, 1] to R which has no
subsequence pointwise convergent,.



3. Curves of Minimum Lenght

The purpose of this section is to prove the following

Theorem 3.1. Given a closed subset A of RN and two points P,Q € A such that
a) there exists a continuous curve in A connecting them having finite lenght,

then there exists a continuous curve in A connecting them having minimum lenght.

Note that a) in Theorem 3.1 for any P,QQ € A, is a condition stronger than arcwise
connectedness, in the sense that arcwise connectedness requires that any two points P, ) €
A can be connected by a continuous curve but not necessarily having finite lenght. In order
to clarify the statement in Theorem 3.1, first of all, we recall the definitions concerning the
lenght of a curve. Given a closed interval [a, b] (with a,b € R, a < b), a partition of [a,b] is
an object of the form (¢, ¢1, ..., t,) such that a =ty < t; < ... < t, = b. We denote by P,
the set of the partitions of [a,b]. A continuous curve in a subset A of RY is a continuous
function from a closed interval [a, b], (a < b), to A. Given II = (to,t1,...,tn) € Pap, and a
continuous curve from [a, b] to RV, we denote by A, (II) the real number

Z [y (t:) =y (Eia)l|

and we define the lenght of v to be the nonnegative, possibly infinite, value

L(y) :== sup A,(II).
11€Pa b

We recall that if v is piecewise C*, then we have the formula

b
L) = [ 1@l

We also recall that the lenght of a curve is invariant up to a reparametrization. In order
to clarify this, we recall that given a continuous curve v : [a,b] — RV, a reparametrization
of it is a curve 7 : [c,d] — RY defined by ¥ = v 0 ¢! where ¢ is a continuous bijection
from [a,b] onto [c,d] (Note that, in such a case, by a well-known theorem, the inverse
¢! is continuous as well). Then the lenght of a curve amounts to the lenght of any
reparametrization.

We now equip the set C, 5.y of the continuous curves from a fixed interval [a, b] to RN
with the norm

[[¥leo = sup [Jv(2)]]-
t€[a,b]

We recall that the convergence induced by such a norm is the uniform convergence, in
other words, v, — v in || || if and only if v, — 7 uniformly. If we consider L(v)
n—00 n—00
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as a function of v, we realize that L is not continuous, as we can approximate a curve
of finite lenght by a sequence of curves having lenght tending to infinity. For example,
it is easy to see that the curve (£,0) on [0,1] in R? has lenght 1 and the approximating
curves (t, ﬁ sin(27rnt)) have lenght tending to infinity. Nevertheless, the intuition suggests
that, if we approximate a curve 7y in || ||oo, the lenght could greatly increase but not greatly
decrease, in other words the function L from the set of the continuous curves into RU{+o0}
is not continuous, but lower semicontinuous. We recall the following definition.

Definition 3.2. Let F be a function from a topological space X to RU{+oc0}. We say that
F is lower semicontinuous (abbreviated as l.s.c.) at a point x € X if for every M € R such
that M < F(z) there exists U neighborhood of x in X such that for every y € U we have
F(y) > M. We say that F is lower semicontinuous (on X ) if F' is lower semicontinuous at
each point in X.

We could give the definition of l.s.c. in the more natural setting of functions with values
in R, but we prefer to do this in the setting of functions with values in R U {400}, as
we will study it in the case of the lenght of a curve that can well assume the value +oo.
Moreover, we will study the sup of a family of l.s.c. functions, which can assume the value
400 even if all the functions take finite values. Note that if the function F' only assumes
finite values, then the definition of lower semicontinuity can be expressed as: F'is l.s.c. at
x if for every € > 0 the exists U neighborhood of z in X such that for every y € U we have
fly) > f(xz) —e. So, we see the difference with respect to the definition of continuity at z,
where we require that in a suitable neighborhood of z we have f(z)+¢ > f(y) > f(z) —¢,
in other words, in the definition of semicontinuity we require that in a neighborhood of x
the function is not too smaller than at z, but not necessarily not too greater than at .

If (X,d) is a metric space and F' only takes finite values, of course the semicontinuity
can be also expressed using ¢ and ¢, i.e., F'is l.s.c. at x if for every € > 0 the exists § > 0
such that for every y € X such that d(z,y) < 6 we have f(y) > f(x) —e. Of course,
every continuous function at x is l.s.c. at =, but the converse is not true, for example the
function F' : R — R defined by F(z) = 2 if z # 0, F'(0) = 1, is L.s.c. but not continuous
at 0. Note that in the definition of lower semicontinuity we use the order stucture of R or
of RU {400}, so that such a definition, unlike the definition of continuity, does not make
sense for functions with values in an arbitrary topological (or even metric) space.

We recall that if X is a metric space the continuity at x can be expressed in terms of
convergences of sequences, namely F' is continuous at z if and only if, for every sequence
(25,) in X tending to x, we have F(z,,) n_)—+>ooF(a:). A similar characterization holds for

lower semicontinuity, namely (under the hypothesis of Def. 3.2) F'is l.s.c. at z € X if and
only if for every sequence (z,) in X tending to x, we have lim Jinf F(z,) > F(z). We omit
n—1+00

the proof, which resembles that for the continuity. We only note that the part = is rather
simple and does not use the fact that X is a metric space, and the part < is proved by
contradiction and would not be valid in the general case of X topological space.
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We now are going to prove that the sup of l.s.c. functions (at a point) is Ls.c. (at
that point). Note that in general the continuity does not have the same property, e.g., the
functions 1 — z™ from [0, 1] to R are continuous, but the sup of them, when n varies on
1,2,3, ..., is the function f defined by f(z) =1 if x < 1, f(1) = 0, which is discontinuous
at 1.

Lemma 3.3. Suppose f;, i € I are functions from a topological space X with values in
R U {400}, and f =sup f;. If f; are L.s.c. at z € X then f is Ls.c. at z.
i€l
Proof. Let M € R be such that M < f(z). As f(x) = sup f;(z), there exists i € I such
i€l

that f;(z) > M, and as f; is l.s.c. at = there exists U neighborhood of x such that for
every y € U we have f;(y) > M. Hence, for every y € U we have f(y) > fi(y) > M, and
as M is an arbitrary number less than f(z), fis Ls.c. at z. =

Corollary 3.4. Let a,b € R, a < b. Then the function L defined on (Ca’b;N, Il Hoo) by
v+ Ly is Ls.c.

Proof. In view of Lemma 3.3, it suffices to prove that, for each I € P,;, the map
v = Ay(II) from C,p.n to R, is continuous. Let II = (to,%1,...tn). Since, clearly, the
map v — (t) from Cyp.n to RY is continuous for every ¢ € [a,b], hence so is the map
v = y(t;) — v(ti_1) for i = 1,...,n, as the difference of continuous functions. Hence, the
map vy — A, (II) is continuous as the sum of the composition of the norm function, which
is continuous from RY to R, with continuous functions. =

We now sketch the plan of the proof of Theorem 3.1. It is possible to prove that a l.s.c.
function from a (nonempty) compact topological space to R has a minimum. Now, the
space C, p;N is not compact, but we can restrict the l.s.c. function L to a suitable subset X
of Cop;n- As X, being a subset of the metric space C, ;N is a metric space as well, in order
to see whether X is a compact, we have to check whether every sequence of functions in X
has a subsequence convergent to an element of X with respect to the norm || ||, that is,
uniformly. Thus, the idea constists in finding a suitable X composed by equibounded and
equicontinuous functions, so that we can apply the Ascoli-Arzela Theorem. First, we can
consider the space of the curves in C, 3. n having lenght less than or equal to a fixed real
number k. These curves are not necessarily equicontinuous, but we could reparametrize
them by arcleght, so that, as easily verfied, they are Lipshitzian with a Lipshitz constant
equal to k. The problem is that not all curves can be reparametrized by arclenght, for
example it suffices to consider a curve which is constant on some interval. So, in the
following we will perform a slight modification of the above idea.

Given vy € Cqp:ny With L(7y) < 400, and ¢,d € [a,b], ¢ < d, we put L¢ 4(v) = L(V|[c,q))>
where of course, 7|, 4 denote the restriction of +y to the interval [c, d], with the convention
Lea(y) = 0if ¢ = d. It is well known that, if a < ¢ < d < u < b, then L.,(y) =
Lea(Y) + Law(y). We now consider the arclenght function ¢ : [a,b] — R defined by
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¢(t) = La (7). We easily see that L is increasing, but not necessarily strictly increasing.
We now prove:

Lemma 3.5. gz~5 is continuous.
Proof. We first prove that if £ > a then ¢ is continuous at  on the left. Let € > 0. By

the definition of L (7), there exists T € P(a,) such that A, (IT) > ¢(F) — S. We write
II= (CL = t(),tl, ...,tn = Z) Let

t €ltn_1,tn].
Clearly,
~ 3
A’y(thtla oy tn—1,1, tn) > Aw(H) > ¢(t) - 5 ’
A'y(th b1y tp—1,t, tn) = A’y(to’tl’ ey bn—1, t) + H’Y(Z) - 7(t)H’
hence

QS(Z) 2 gg(t) 2 A’Y(t07t17 "'7tn—17t) = A’Y(toath "'7tn—17t7 tn) - ||7(Z) - W(t)H

> 6@ - = Iv® =@l

Now, as 7 is continuous, there exists £ < f such that, if { < ¢ < then ||y(#) — y(t)|| < 5.
Hence, if max{t,t,_1} <t <, then

o) 2 6(t) > d(1) — ¢

and ¢~S is continuous at ¢ on the left. We now prove that ¢~S is continuous on the right at
any point ¢ < b. The proof is similar noting that

$(t) = L(v) = Lep(y) Vit €[ab]. (3.1)
Let € > 0. We find IT € P; ;, so that

Ay (D) > Ly, (7) - 5.

We write IT = (¢ = to, t1,...,t, = b). Let
t €]to, ta].
Clearly,
Ay (b1, s tn) = Ay (to, by b1, s tn) — [y () = (O] = Ay (IT) — [|7(2) — v(D)]]-

We find ¢ >t such that, if £ > ¢ > 7 then ||y(Z) — y(¢)|| < . We conclude like before that,
if £ <t < min{¢,¢,}, then
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Lep(y) > Ay(t,te, s tn) > Ly (y) — €

so that, using (3.1)

$(t) < d(t) < d(t) +¢

and ¢ is continuous at ¢ on the right. m

We now would like to reparametrize v using the arcleght ¢, but as previously observed,
this is not a strictly increasing function, so we need a modification of it. First we need the
following remark.

Remark 3.6. If v € C,pn and ¢, d € [a,b], then ||v(c) — v(d)|| < L(7y). Indeed, if
¢ = d this is trivial, if not we can for example suppose ¢ < d. Then one of the following
(a,c,d,b),(a,c,d),(c,d,b),(c,d) is in Pg,p, depending of what of the inequalities a < ¢,
d < b are strict. Let IT be such an element of P, ;. Then, L(y) > A, (II) > [|y(c) — v(d)|].

Since the lenght of a curve in invariant up to a reparametrization we can and do assume
that
[a,b] = [0, 1].

We now want to reparametrize in a Lipshitzian way a continuous curve from [0,1] to RY
of finite lenght. We modify the arclenght function in the following way. Let

_ Log(y)+t
- L(y)+1

In such a definition, we add ¢ to Lo +(7y) in order to have a strictly increasing function, and
divide by L(vy) 4+ 1 in order that ¢ map [0, 1] onto [0, 1]. We easily verify that in fact ¢ is
a continuous strictly increasing function from [0, 1] onto itself, so that the curve 4 defined
by

¢(t)

J=qog¢

is a reparametrization of . Note now that, if 0 < 7 < 75 <1 then

L0,7'2 (’7) - LO,Tl (’7) +T9—T1
L(y)+1

= (¢(r2) = $()) (L(7) +1) (3.2)
so that ZfO <t <ty <1, using (32) with 7 = (b_l(tl), To = ¢_1(t2),

LTl,Tz (7) = LO,Tz (7) - LO,T1 (7) < (L(’Y) + 1)

[17(t2) = Y@ < Lg-1(t1),61(02) (V) < (L(Y) + 1) (2 = 11)
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17 (t2) =A@ < (L(y) + 1)lt2 = ta] (3.3)

where in the first inequality we have used Remark 3.6 with v|[4-1(,),¢-1(,)) in place of .
However, (3.3) holds for every t1,t5 € [0,1], as, if t; > t5, we obtain (3.3), by changing
t1 with t5, and (3.3) is obvious if ¢; = t5. In conclusion, 4 is Lipshitzian with constant
L(v) +1.

Proof of Theorem 3.1. Let 4 be a continuous curve in A, defined on [0, 1] having finite
lenght L with 4(0) = P, 4(1) = Q. Let

X={yeCon:r(t)eA Vte[0,1], v(0) = P,v(1)=Q, L(v) < L}.
Since ¥ € X, then X # @. Let v, € X be such that

Lim) =, dnf L(7). (34)

Let 74, be a reparametrization of +, obtained as above, in particular using a function ¢
(which of course usually depends on n) strictly increasing so that 4,(0) = v,(0) = P,
Hn(1) = v,(1) = Q, and ¥, Lipshitzian with constant L(vy,) + 1. Since L(vy,) < L, we
easily see that all #,, are Lipshitzian with constant L + 1, hence 7, are equilipshitzian.
Also, since L(%,) = L(vn), 4n being a reparametrization of -, we easily see that 4, € X.
Moreover, in view of Remark 3.6, for every ¢ € [0, 1], we have

@] < [[An () = 3 O)|] + 170 (0)[| < L) + ||P[] < L+ ||P]|

so that ,, are equibounded. We can thus use the Ascoli-Arzela Theorem and deduce that

a suitable subsequence 7,, of ¥, converges, for k — oo, to some ¥ € Cp 1,5 With respect

to || ||c0, that is, uniformly. We now see that ¥ € X. In fact, as 7y, (t) k—+> J(t) for each
—>T00

t € [0,1], we have §(t) € A for each t € [0,1] (recall that A is assumed to be closed). For
the same reason, 4(0) = P, (1) = Q. Finally, since L is l.s.c. on Cp 1,5, we have

L(#) < liminf L(¥y,) = liminf L(y,,) < L, (3.5)

k——+o0 k—+o0
and 4 € X as claimed. Using (3.4) and (3.5) we get L(¥) < ig{L(’y) (thus L(¥) =
8!

mi)r(l L(v)). It remains to prove that L(5) < L(vy) when v is a continuous curve in A
e
connecting P and (), but which is not an element of X. This is obvious, as in such a case

L(y)>L>L(%). =

The argument of Theorem 3.1 can be used to prove the following general theorem, which
resembles the well-known Weierstrass Theorem on extrema of continuous functions defined
on a compact set.
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Theorem 3.7. Let f be a Ls.c. function from a (nonempty) metric space X to RU{+oc},
not identically +o00. Suppose X is compact, or more generally

a) the set {z € X : f(x) < L} is compact for each real L.

Then f has a minimum on X.

Proof. Suppose a) holds. Let T € X be so that L := f(T) < +o00. Let

Y={zeX: f(x)<L}.

Let x,, € Y be so that f(z,) _)—+> 121f/ f(x). Since Y is compact by our assumption, there
n O x

exists a subsequence z,,, of z,, and Z € Y such that z,, k—) Z. Then, as f is l.s.c.,
—00

£(@) < liminf f(wa,) = inf £(2).

It follows that f(Z) < f(z) for each x € Y, in particular f(Z) < f(Z) but also f(Z) < f(z)
for each x € X \ Y, as in such a case f(Z) < f(Z) < f(x). In conclusion, f takes its
minimum at . Note that if X is compact, then a) holds since, as a consequence of the
lower semicontinuity of f, the set Z := {& € X : f(x) < L} is closed (if z ¢ Z, then
f(x) > L, hence there exists U neighborhood of z such that f(y) > L for each y € U, and
therefore the complement of Z is open) in the compact set X, hence it is compact. =

The fact that a continuous function on R with values in R which tends to +o00 both at —oo
and at +o0o has a minimum can be seen as a particular case of Theorem 3.7, as in such
a case a) in Theorem 3.7 holds. In general, a function f satisfying a) in Theorem 3.7, is
said to be coercive. The coerciveness condition is important in many problems in calculus
of variations as usually the domain of a functional is not compact, but in many examples
the functional is coercive.

Exercise 3.1. Prove that, if A is a nonempty open subset of RY, then any two points in
A are connected by a continuous curve of minimum lenght if and only if A is convex. It
follows that the hypothesis that A is closed cannot be removed in Theorem 3.1.

4. Geodesics on surfaces

In the previous section, we proved Theorem 3.1. In the following, we will call geodesic
in a subset A of RV a curve satisfying a) of Theorem 3.1 for some P,Q € A. Note
that in differential geometry the term geodesic is used in a slightly different sense. The
geodesic connecting two given points is not unique as for example any (verse-preserving)
reparametrization of it satisfies the same property. Further, in some cases, we can have
essentially different geodesics (i.e., having a different image) connecting two given points.
For example, if A is a sphere in R3, and the two points are the north and the south
pole, then every meridian is such a geodesic. If the closed subset A of RY has no further
properties we cannot in general find a regular (say C') geodesic connecting two given
points. An example is when N = 2 and A is the complement of an open square, and the
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two points lie on different edges of the square. This fact is highly intuitive and will not
prove this fact in detail.

Suppose now we have a surface S in R? and we will assume it is compact, connected and,
for simplicity, of class C°°. In this case it is possible to prove that given two points there
exists a regular geodesic in S connecting them, that can be parametrized by arclenght. We
recall that a C! curve v is parametrized by arclenght if the vector ||y'|| is identically 1.
The purpose of this section is to give a characterization of (sufficiently smooth) geodesics
on S. We recall that a (nonempty) subset S of R? is said to be a surface if

a) For every P € S there exists U open neighborhood of P and g : U — R of class C™
such that gradg # 0 on U and SNU = {P eU:g(P)= 0},

or equivalently

b) For every P € S there exists U open neighborhood of P and V open set in R?, and
¢:V = R3 of class C>® such that the rank of the Jacobian matriz of ¢ equals 2 on'V and
SNU =¢((V),

or also

c) S can be locally represented as the graph of a C™ function 1 of the form z = (z,y)
or y = (z,xz) or x = Y(y,z), more precisely, for every P € S there exists U open
neighborhood of P and V open in R2, and ¢ : V. — R of class C*> such that one of the
following holds

c1) SNU ={(2,y,2) : (z,y) € V,z=9(z,y)}

Cz)SﬂUZ{(SC,y,Z) ( )EVy— (Z,.’E)},

c3) SNU = {(2,y,2) : (y,2) € V,z =9(y,2)}.

We shortly recall how it can be proved that a) b) and c) are equivalent: If a) holds, then

one of the derivatives g—g, g—g, 52 is different from 0 at P, thus in a neighborhood of

P. Suppose for example % # 0 at P. Then, as a consequence of the implicit function
Theorem, we can represent S as in c;), and c) holds. If b) holds, then one of the three
submatrices of 2 x 2 of the jacobian matrix of ¢ = (¢1, ¢2, ¢3) is nonsingular at Q with
#(Q) = P. Suppose for example it is the matrix relative to (¢1, $2). Then, writing ¢ as
¢(u,v), by the inverse function Theorem we can express locally (u,v) as a C* function
h of (z,y). Thus, letting ¢ = ¢3 o h, we can represent S as in ¢;). On the other hand if
c), for example c¢;), holds, then we get a) putting g(x, vy, z) = z — ¥(x,y), and b) putting
d(u,v) = (u, v, ¥ (u, v)) Now, in ¢), for example c;), we can assume

_ A a

P =
0, —(0,0)= 3

—(0,0)=0 (4.1)
in the sense that if (4.1) does not hold, then the image of S via a suitable affine isometry
satisfies (4.1). Once we realize that the second condition in (4.1) means that the tangent
plane IT to S at P is the plane I’ of equation z = 0, this can be seen, observing that
there exists an affine isometry that carries P into 0 and II into II’. By this point of view,
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the assumption (4.1) is valid when we treat properties invariant whith respect to affine
isometries. Finally, we recall, that given a C? curve v in R3, parametrized by arclenght,
then the principal normal to y at the point y(¢) is v (¢).

Remark 4.1. We explicitly note that if S is a compact and connected surface in R® of
class C°, then any two points @ and P can be connected by a piecewise C*, hence of
finite lenght, curve in S, thus S satisfies the hypothesis of Theorem 3.1. The argument of
the proof resembles that used for proving that, in an open connected set U in RY, any two
points can be connected by a polygonal that remains in U. Fixing the point @), let

A= {F €S:Q and P are connected by a piecewise C! curve in S } .

Then @) € A so that A # @. We will see that A is closed and open, hence by the assumption
that S is connected, A = S. Let P € S. Let us represent S using c), for example c;, with
P = (z,9,v¢(z,y)). Consider an open ball B in R? with center at (Z,%) contained in V
and let

W := {(x,y, z):(z,y) € B,z= w(x,y)}.

Since W = SN U N7 !(B), where the continuous function 7 : R®> — R2 is defined by
n(z,y,2) = (z,y), then W is open in S. Moreover, any P € W is connected to P by a C*
curve v in S. In fact, let P = (z,y,¢¥(z,y)), let ¥ be the segment line connecting (Z,7)
to (z,y) (which lies in B). Then, it suffices to take v defined by v(t) = (5(¢), ¥ (¥(t)). It
easily follows that, if P € A then W C A, while if P € S\ A4, then W C S\ A. Tt follows
that in fact both A and S\ A are open in S, hence A is closed and open in S. =

Theorem 4.2. Suppose S is a compact and connected surface in R® of class C*°, and
let v : [a,b] — S be a geodesic of class C? in S connecting two given points P,Q € S,
parametrized by arclenght. Then, for any t €la,b|, the principal normal to v at y(t) is
normal to the surface at y(t).

Proof. Put P := «(f). Then we can assume that c;) holds, and also, (4.1) holds, as the
properties we use are invariant with respect to an affine isometry. As v(f) € U, by a
continuity argument, there exist ¢, d with a < ¢ < t < d < b such that y(t) € U for each
t € [c,d]. Then 7|, 4y minimizes the lenght of the curves connecting y(c) to y(d) in SNU
as if there would be a curve n connecting y(c) to y(d) in S N U, with L(n) < L(v|i,q),
then, replacing in 7 the piece from c to d by n we would obtain a curve connecting P, () in
S of lenght less than L(7), a contradiction. Since any 7 : [¢,d] — S N U has the form

1) = (120, 02(0), ¥ (a(8), 12(1)))

it follows that (y1,2) minimizes the integral
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d 2
[z oz + & wow) (42
among the C1 y : [c,d] — V satisfying the conditions

y(c) = (m(c),72(c)), y(d) = (v(d),2(d)).

Thus, ¥ = (71, 72) has to satisfy the Euler equation

d <ya<t> + 4 (8) (2L (y(®))° + () 2L (y(1) %w»)

dt

for every t € [c,d], in particular for ¢ = t. Now, by our assumption, for y = 7, the
denominator is constant in ¢, as it represents ||v/(¢)|| and «y is parametrized by arclenght.
Hence, the derivative of the numerator is 0, but for ¢ = #, this amounts to 7} (f) = 0, as

o . oy
8—g/1(y(t)) = %

and P = v(t) = (0,0,0). Similarly, we get 74 () = 0, thus 7" (%) is a multiple of the vector
(0,0, 1) which is, in view of (4.1), normal to S at P. =

@) =0 (4.3)

Remark 4.3. In the previous proof, we have used the representation of S in ¢;), but such
a representation is only valid in a neighborhood of P, and as there is no reason that the
curve 7 lies in such a neighborhood, we have to work on the restriction of v to a suitable
neighborhood of ¢. This is the reason for which we have not considered the integral on all of
the interval [a, b], but we have restricted it to [c, d]. We also remark that the considerations
in previous proof are only valid at ¢ as at the other points (4.3) does not (necessarily) hold,
but once ¢ is given we can use a suitable affine isometry (depending on ¢) for which (4.3)
holds at t. =
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