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Abstract

There is a growing interest in the study of graphs that evolve over time. Communication
networks, peer-to-peer systems, social networks, ad-hoc radio networks and the Internet are
only few examples of networks that are intrinsically dynamic.

In order to analyse real world phenomena from a mathematical point of view, we have to
define abstract models of concrete scenarios. This introduces a natural trade-off: the more a
model is realistic, the more it is hard to analyse. Finding the right balance between these two
poles is one of the hardest part of the work.

In the thesis we study the speed of information spreading in dynamic networks. Our aim is
to introduce a general framework where simple communication primitives can be analysed, to
achieve a better understanding of the main features of dynamic networks. The thesis provides a
revised version of the results presented in [6, 5, 7]. We here give an informal overall description
of such results.

One of the simplest communication tasks that seems worth studying in dynamic networks is the
broadcast problem: one distinguished node of the network (the source node) aims to send a message
to all the other nodes of the network.

We model a dynamic network as an evolving graph. An evolving graph is a sequence of graphs
(i.e. the snapshots) with the same set of nodes. To analyse the speed of information spreading
in evolving graphs, we use a communication process that is usually called flooding (or flooding
mechanism). The flooding process can be described as follows: start with one single informed node
(the source), and assume that when a non-informed node v has an informed neighbour then node
v becomes informed itself, at the next time step. The question is how long does it take to get all
the nodes informed?

Given an evolving graph and a source node, the completion time of the flooding process is the
first time step in which all the nodes are informed. The flooding time of an evolving graph is the
maximum completion time over all possible sources.

The flooding time of a static graph equals the diameter of the graph; in particular it is finite if
and only if the graph is connected. Can we say something like that for evolving graphs? Is it true
that, for example, if every snapshot of an evolving graph G has small diameter then the flooding
time of G is small? In order to investigate such issue in a clean way, let us introduce the concept
of adversarial evolving graph.
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Adversarial evolving graphs. How can a graph evolve in a worst-case way, with respect to a
communication task? Suppose to have a set of nodes V and assume there is an adversary that,
time step by time step, chooses the set of edges Et, yielding an evolving graph G = {Gt : t ∈ N}
where Gt = (V,Et) is the snapshot of the evolving graph at time step t. Fix some constraints for
the adversary, for example: all the snapshots Gt must be connected and must have small diameter.
What is the flooding time of such an adversarial evolving graph? For how long can the adversary
slow down the flooding process?

On one hand, if all the snapshots are connected then at every time step there is at least one
new informed node, so the flooding time is upper bounded by the number of nodes. On the other
hand, it is easy to define an adversarial strategy such that at every time step the graph has small
diameter, but the flooding time is still big. Hence concepts like connectivity and diameter, that are
strongly related to communication tasks in static graphs, should be revised in evolving graphs. In
a static graph, the spread of information is faster in graphs with small diameter, whereas if the
graph is not connected, then there is no way to communicate. Both those observations turns out
to be false in evolving graphs.

Random evolving graphs. Graphs that evolve randomly are not a new subject in the network-
ing area. For instance, a lot of effort has been devoted to define random mobility models that well
approximate realistic mobile networks [3]. Typically, the network-evolution model is suitably chosen
according to the particular application we are studying. Most of these models are very suitable for
analysing concrete communication problems, performing accurate and meaningful simulations; on
the other hand, their are often too complicated to allow a general and deep mathematical analysis
of basic communication tasks. In the thesis, we adopt a different approach: starting from a random
graph model that is well established in the static case, we try to extend it to the dynamic case.

One of the most elegant and widely studied model of random graphs is the Erdös-Rényi model
Gn,p. Informally speaking, it can be described as follows: given a set of n nodes, every edge between
two nodes exists with probability p, independently from the other edges. The properties of random
graphs Gn,p have been extensively studied [2]. In order to analyse communication problems on
random evolving graphs, our first purpose is to define a natural evolving version of the Gn,p model.

We introduce the following model of random evolving graph: start with an arbitrary initial
graph, and at every time step, if an edge exists then it will die at next time step with probability
q; while, if an edge does not exist, then it will appear at next time step with probability p. We call
this model edge-Markovian evolving graph (edge-MEG, in short). It is easy to see that, whatever
the initial graph is, an edge-MEG eventually converge to an Erdös-Rényi random graph.

We study the flooding time of edge-Markovian evolving graphs. An edge-MEG is defined by
four parameters: the number n of nodes, the edge birth-rate p, death-rate q, and the initial graph
E0. The flooding time of edge-MEGs will depend on all those four parameters, but exploiting the
dependence on the initial graph is quite a hopeless task. So we look for an upper bound of the
following form: for every initial graph, the flooding time of edge-MEG G(n, p, q, E0) is O(f) for
some function f = f(n, p, q). The function f that we find does not depend on the death-rate q. In
order to understand how far away from the actual flooding time our upper bound is, we look for
a lower bound independent on the death rate of this form: there exists an initial graph such that
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for every death rate q the flooding time is Ω(g) for some function g = g(n, p). Quite surprisingly,
we find function g that asymptotically matches our upper bound f , except when the birth-rate p
is in a small range In. It turns out that, when p is outside In, the influence of the death-rate q on
the flooding time is only for a constant factor that is hidden in the asymptotic formula; when p is
inside In, the role of the death-rate q is no longer asymptotically negligible. We don’t know the
actual asymptotic formula for the flooding time when p is in that range, but we can prove that it
must depend on the death-rate q too.

The stationary case. In the previous paragraph we have seen that there is an explicit, almost
tight, asymptotic formula for the flooding time of edge-MEGs with respect to the worst-case initial
graph. One natural question is: what happens if the initial graph is random according to the
stationary distribution of the Markov chain that defines the process? For such an initial condition,
all the snapshots of the evolving graph have the same marginal distribution. A random process
with this property is called stationary. In experimental papers, this situation is often referred to
as perfect simulation.

By studying stationary edge-MEGs, we realized that our techniques can be used to give upper
bounds on the flooding time of a very general class of models called Markovian evolving graphs [1].
Roughly, a Markovian evolving graph (MEG, in short) is a Markov chain with a finite set of graphs
as state space. Clearly, an edge-MEG is a special case of MEG. However, Markovian evolving
graphs are much more general than this. Consider, for example, the following model that we
here call geometric-MEG. Assume to have a two-dimensional grid and a set of n nodes, each node
performing a random walk on the grid. Consider the random evolving graph where there is an
edge between two nodes if their Euclidean distance is less than some fixed parameter r. Clearly,
a geometric-MEG is a special case of MEG as well. Moreover it is a sort of prototype for a lot
of similar mobility models where the physical random node movements over some metric space
determine the evolution of the overlay random graph.

We prove a general theorem that establishes an upper bound on the flooding time of stationary
Markovian evolving graphs in terms of their expansion properties. We have seen that the diameter
of the snapshots of an evolving graph does not mean so much for the flooding time. Instead,
expansion properties of the snapshots do mean. Our theorem says that if the snapshots are good
expanders, the information spreading in the evolving graph is fast. More importantly, the theorem
gives an explicit asymptotic formula that bounds the flooding time as a function of the expansion
parameters of the evolving graph. We then show how to use the general theorem to obtain upper
bounds on the flooding time of stationary edge-MEGs and geometric MEGs. In both cases the
resulting upper bounds are nearly tight.

Radio broadcasting in dynamic networks. The radio network model [4] received great at-
tention during the last two decades. Informally speaking, a radio network is modeled as a graph
with the following communication constraints: 1. Non directionality : when a node sends a message,
the message is sent along all its outgoing edges; 2. Collisions: if two or more neighbors of a node
u send a message in the same time step, then a collision occurs and node u doesn’t receive any
message.
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It is reasonable to claim that almost all major issues about distributed broadcast in radio
networks have been solved when the network topology does not change. However, theoretical
results for dynamic radio networks are still very few.

In order to understand the difficulties introduced by collisions, let us consider again adversarial
evolving graphs. Given the set of nodes V , at every time step an adversary chooses the sets of edges
Et thus yielding the evolving graph G = {Gt = (V,Et) : t ∈ N}. We impose that, for example,
every snapshot Gt must be connected. Can we define a protocol that performs the broadcast task
against such an adversary in the radio model? If we consider only deterministic protocols, then
it’s easy to see that we can’t. Interestingly enough, we prove that there are randomized protocols
that not only complete the broadcasting against any meaningful adversary, but have also good
performances.

Finally, what can we say about radio broadcasting in random evolving graphs? Unfortunately,
we are still far away from a complete understanding of this problem in full generality. However, we
have some interesting results that highlight most of the important features. Here is a little taste.
In [8] the authors study the radio broadcast problem in static Gn,p. They prove that if p is over the
connectivity threshold, then there is a protocol that completes the broadcasting in O(log n) time
steps. We consider the random evolving graph where the snapshots are independent Erdös-Rényi
random graphs. We prove that, for this dynamic Gn,p, there is a protocol that completes the
broadcasting in O(log n) time steps even if p is under the connectivity threshold.
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