Optimal Gossiping in Directed Geometric Radio
Networks in Presence of Dynamical Faults

Andrea E.F. Clementj Angelo Mont?, Francesco Pasquafe and Riccardo Silvesti

! Dipartimento di Matematica, Universita di Roma “Tor Vetaa
{cl ement i, pasqual e}@mat . uni roma2. it
2 Dipartimento di Informatica, Universita di Roma “La Sama”
{monti, silvestri }@i.uniromal.it

Abstract. We study deterministic fault-tolerant gossiping protacil directed
Geometric Radio NetworKs short, directed GRN). Unpredictable node and link
faults may happen during every time slot of the protocolisaerion.

We first consider thasingle-messagemodel where every node can send at most
one message per time slot. We provide a protocol that, in segtdd GRNG of

n nodes, completes gossiping@{nA) time (whereA is the maximal in-degree
of G) and has message complexityn?). Both bounds are then shown to be
optimal.

As for thecombined-messageodel, we give a protocol working in optimal com-
pletion timeO(DA) (whereD is the maximal source eccentricity) and message
complexityO(Dn). Finally, our protocol performs the (single) broadcastrape
tion within the same optimal time and optimal message coxityl® (n).

1 Introduction

In aradio network, every node (station) can directly transmit to s@ubset of the
nodes depending on the power of its transmitter and on th@dgjzal characteristics
of the surrounding region. When a nodecan directly transmit to a node we say
that there is a (wireless) directed lifk, v). The set of nodes together with the set
of these links form a directed communication graph thatasgnts the radio network.
In the radio network model [BGI92,CGR02,CGGPR00,CR06, tommunication is
assumed to be synchronous: this allows to focus on the ingbalce interferencephe-
nomenon on the network performance. When a node sends agaetsalatter is sent
in parallel on all outgoing links. However, since a singldicafrequence is used (see
[ABLP89,BGI192,CGGPR00]), when two or more neighbors of @etransmit at the
same time slot, &ollision occurs (due to interference) and the message is lost. So, a
node can recover a message from one of its incoming linksdfanly if this link is
the only one bringing in a message. The broadcast task temdisending asource
messagdrom a givensourcenode to all nodes of the network. Thempletion timeof

a broadcast protocol is the number of time slots requiredbyptotocol to inform all
(reachable) nodes. A nodeiiformedif it has received the source message.

Another important task in radio networkgjessipingi.e.,n simultaneous and indepen-
dent broadcast operations, each one from a different no@&p2,CMS03,GPX05].
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The completion time of a gossiping protocol is the numberimgtslots the proto-
col requires so that every source messages received by all nodes reachable from
the source ofn. We will consider two transmission models: thiagle-messagmodel
[B1193] and thecombined-messagme [CGRO02]: in the former every node can transmit
and receive at most one source message per time-slot whillee ilatter, source mes-
sages can be arbitrarily combined and sent/received inioreestot [CGR02,GPX05].
Broadcasting and gossiping are fundamental communic#isks in radio networks
and they are the subject of several research works in botritidgiic and network-
ing areas [BGI92,CGR02,CGGPR00,PR97,R96]. It is readenalrlaim that almost
all major theoretical questions related to such tasks carohsidered closed as far as
static networks are considered: the network never changes durangritire protocol’s
execution (see Subsection 1.1).

However, radio networks are typically adopted in scenasibsreunpredictablenode
and link faults happen very frequently. Node failures happwben some hardware or
software component of a station does not work, while linkufais are due to the pres-
ence of a new (artificial or natural) hurdle that does nowatlee communication along
that link. In ad-hoc networking, while it is sometimes reaaiole to assume that nodes
(thus the protocol) know thmmitial topology, nothing is known about the duration and
the location of faults. Such faults may clearly hapgeen during the execution of a
protocol In the sequel, such kind of faults will be calldgnamical faultsor, simply,
faults.

Theoretical results on broadcast and gossiping protos@ay scenario where the net-
work topology may change during the protocol’'s executian\ary few (see Subsec-
tion 1.1).

The model of faulty networks. We follow a high-level approach by consideriag-
versarial networkgAS98,ABBS01,CMS04,P02,S01]. Arbitrary dynamical faudtre
decided by a deterministic adaptiadversary We analyze the completion time and the
message complexity (i.e. maximum number of transmittedsagess) of broadcast and
gossiping protocols with respectwmrst-caseadversary’s strategies.

The (worst-case) completion time ofault-tolerant Broadcas(in short,FB) protocol
on a networkG is defined as the maximal number (with respect to any posaiitle
versarial strategy) of time slots requireditdorm all nodes reachable from the source
in the unpredictablefault-free part of the network. More precisely, accordiogthe
fault-tolerance model adopted in [KKP98,P02,CMS04fauat patternF' is a function
(managed by the adaptive adversary) that maps every tiote-sb the subsef’(¢)

of nodes and links that are faulty during time stofhe residual subgrapfi” is the
graph obtained frond’ by removingall those nodes and links that belongidt), for
sometime-slot¢ during the protocol’'s execution. Then, a FB protocol for agyG is

a broadcast protocol that, for any sousg@nd for anyfault patternF’, guarantees that
every node, which is reachable frasin the residual subgraptG*’, will receive the
source message. Thesidual eccentricityf a hodew is its eccentricity in the residual
graph. The eccentricity afis the maximal oriented distance (i.e. number of hops) from
v to a reachable node.



The above definitions can be easily extendeBaolt-tolerant Gossipingin shortFG)
protocols: For any source messagen, must be received by every node reachable
from s in GT', for any choice of fault patters.

It is important to remark that if a nodeis not reachable from a source in the residual
subgraph, then the arrival ef, to v is not considered in the analysis of the completion
time. This assumption might be considered too strong bstriecessarylndeed, it is
easy to see that any attempt to consider larger residuataplg makes the worst-case
completion time ofinydeterministic FG protocahfinite. This is well-explained by the
following simple game. Considérinformed nodes that are in the in-neighborhood of a
non informed nodev. It is easy to see thainydeterministic protocol, trying to inform
w, fails foreveragainst the following simple adversary’s strategy: if astetwo of the

k in-neighbors transmit then the adversary leaves all edgestile if there is exactly
one of them transmitting, then the adversary makes onhlittksfaulty. Observe that

w is alwaysconnectedo the informed part of the network but it will never receibe t
messagey is indeed not in theesidualgraph).

On the other hand, broadcasting and gossiping (and thdiysis)ain the residual graph
is much harder than the same operation in fault-free radivar&s. This is mainly due
to the presence of unknown collisions that the adversarpuoaguce at any time-slan

the residual graph tooAs a matter of fact, while the completion time of broadcast o
general fault-free radio networks of source eccentrigitis O(D + log® n) [GPX05],

it turns out that there is a class of radio networksafistantsource eccentricity where
the same operation, in the above fault model, requités,/n) time slots [CMS04].
So, in general graphs of “small” source eccentricity, theptetion time gap may be
exponential. The lower boun@(n./n) in [CMS04] provides also a strong evidence of
the significant difference betweelynamicalfaults (on the residual graph) aperma-
nentfaults: in the latter network scenario, worst-case brostiteg time isO(n log® n)
[CGRO2].

Our results. We investigatelirected Geometric Radio Networks short directed GRN
[ENWO00,KKKP00,CKOZ03,CCPRV01,DPO07]. A directed GRNV, E) is constructed
by arbitrarily placing: nodes on the Euclidean plane; then, to each noaéransmis-
sion ranger, > 0 is assigned. These transmission ranges uniquely deteth@rsett

of directedlinks: (u, v) € E iff d(u,v) < r,, whered(u, v) denotes the Euclidean dis-
tance between andv. When all nodes have the same transmission range, theingsult
graph is symmetric: this restriction is denotedsgsimetricGRN.

We provide the first optimal bounds on the completion timermedsage complexity of
FG protocols (and FB ones) in directed GRN for both singlessage and combined-
message models. More precisely, for the first model, givgndimected GRNG of n
nodes and maximal in-degre® our FG protocol works it (nA) time-slots and it has
message complexit§(n?). Such bounds are then shown to be optimal.

Then, we consider the combined-message model and provieé anotocol that works
in optimal O(DA) time-slots O denotes the maximal residual source eccentricity)
and it has message complexii(n?). We emphasize that this is the first FG protocol
whose completion-time does not (explicitly) dependrorFurthermore, the protocol
can be easily analyzed for the (single) broadcast taskisrctse, the completion time
is still O(D A) while the message complexity reduce<x(). Both upper bounds are



again optimal and, as for time complexity, it improves ovex best (polynomial-time
constructible) FB upper bound for general graphs bydvg® n) factor ((CMS04] -
see Subsection 1.1).

Adopted techniques Since the fault pattern is unpredictable, an FG protocokmarge
the following “connectivity” property: it must consided glossible paths from a source
to any node reachable from that source. To this aim, our poddamake an iterative
use of collision-free families. Aollision-free familyis a set family (defined on the
out-neighborhoods of the input graph - see Definition 2.4} thduces a transmission
scheduling that somewhat guarantees the above connggptigjterty and yieldao col-
lision. So, when a node is scheduled as transmitter, itsageds safely received sl

its out-neighbors in the residual graph. This important fmone of the key ingredients
to get optimal message complexity (and thus energy effiglarfour protocols. On the
other hand, the size of the collision-free family is a linkaator in the completion time
of our FG protocols. A crucial step in our protocol desigrhigs the efficient construc-
tion of a collision-free family for the input graphs. We ireteprovide an algorithm that
constructs an optimal-size collision-free family for arigedted GRN working in time
O(n?).

We observe that, given access to a collision-free familytiierinput graph, our pro-
tocols run in a fully-distributed fashion. However, in orde construct such optimal
collision-free family it is necessary to know tlidtial graph topology. In Section 3,
we also provide an efficient distributed construction ofismin-free families under a
much weaker knowledge condition: each node construct its ssheduling (so, “its”
component of the collision-free family) by assuming thatrity knows its position and
a good approximation of the minimal distance among nodesh@fe prove that if the
(unknown) initial topology iswvell spread[CPS04], the returned collision-free family
has optimal size, thus yielding the same protocol’s peréoree given by the central-
ized construction. Well spread instances (see Definitidd)3are a natural and broad
generalization ofrid networks.

1.1 Related works

Permanent faults. In [KKP98], the authors consider the broadcast operatiqor@s-
ence of permanent unknown node faults for two restrictedsels of networks. They
derive a®(D +log min{ A, ¢}) bound whereD is the source eccentricity in the residual
graph and is the number of faults. More recently, the issue of permafearit-tolerant
broadcasting in general networks has been studied in [C@BRRER02,CMS03]. In
these papers, several lower and upper bounds on the coomgietie of broadcasting are
obtained in theinknowrfault-free network model. We observe that the results olkthi

in unknown networks apply to general networks with permafaanits. In particular, in
[CMS03], anf2(nlog D) lower bound for the broadcast completion time is proved. The
best general upper bound@n log” n) [CGRO02]. In [CMS03], the authors provide a
protocol having) (D Alog? n) completion time.

In [GLO2], a gossiping protocol for unknown networks is givéhat works in
O(n'% log? n) time. [CMS03] provides a permanent-fault tolerant gosejgprotocol
having O(DA? log® n) completion time. The above results work for the combined-



message model. As for the single-message model, in [CM&G8iterministic gossip-
ing protocol is given that ha8(nA? log® n) completion time. We also mention the pro-
tocol for unknown directed GRN working i@ (n) time given in [DP07], even though
it does not work for faulty networks.

Dynamical faults. We emphasize thatll the above protocoldo not workin presence
of dynamical faults. As mentioned before, this is mainly dwu¢he collisions yielded
by any unpredictable wake-up of a faulty node/link during phiotocol execution. Our
dynamical fault model has been studied in [CMS04] whererthumd robin strategy
is proved to be optimal for general graphs. Then, they shawettistence of a de-
terministic FG protocol havin@ (D Alog n) completion time. The protocol is based
on a probabilistic construction @fd-hoc strongly-selective familig€MS03,102] for
general graphs. Such families have a weaker property théisia@o-free ones: this
weakness yields a not efficient message complexity. By aupphe efficient con-
struction of such families in [197], they can efficiently ctruct a FG protocol having
O(DAlog® n) completion time. These protocols only hold for the combineessage
model. In [PP05] an initial graph is given and, at each tinoe, ®very node is faulty
with probability p, wherep is a fixed positiveconstantsuch thatd < p < 1. They
prove anO(optlogn) bound for the broadcast completion time whep is the op-
timal completion time in the fault-free case. They also prdvat it is impossible to
achieveO(opt+ logn) completion time.

It is not hard to see that, when the graplsysnmetri¢ anydistance-2 coloringCo06]
of size k yields a collision-free family of sizé& and viceversa. For some classes of
undirected graphs, there are efficient constant-factorcapation algorithms that
find a distance-2 coloring. In particular, fanit disk graph4C06,CCJ90,SM97] a 7-
approximation algorithm is presented in [SM97]. Since syatrina GRN in the plane are
equivalent to unit disk graphs, the latter algorithm can seduto construct a collision-
free family for this class of symmetric radio networks. Hoee this coloring algorithm
does not worKor directedGRN.

2 Collision-free families and fault-tolerant gossiping

In this section we introduce collision-free families and st®w how to exploit them to
design fault-tolerant gossiping protocols.

Definition 2.1 (Collision-free families).Let G(V, F) be a directed graph and l&t’
be the set of nodes that have at least one out-neighbaollsion-free familyS for G
is a partitionS = {S1, ..., Sk} of V’, such that, for eacls' € S and for eachr,y € S
with x # y, N°“'(z) N N°“(y) = 0.

In the sequel, we assume that, given any directed g€agh £), we have at hand a
collision-free familyS = {51, Sa, ..., S} for G. In Section 3 we will then show how
to construct collision-free families of small size.

Single-message modeln this model every transmission can contain only one of the
source messages. We assume that each message containisjtieel Dmumber of its
source so that different messages have different ID’s. dh@fing FG protocol makes
use of message IDs to defingraority queue in every node.



ProtocolPRIO-SELECT(S) consists of a sequence of consecufasesEachphase
consists ofc = |S| time-slots. At the very beginning, the priority queue of gveode

u contains onlym,,. At the beginning of every phase, every nadextracts (if any) the
messagen of highest priority(i.e. the maximal ID number) from its priority queue.
Then, at time-slof of a phase, node acts according to the following rules

— If v € §; andrm exists therv transmitsi.
— In all other caseg; acts as receiver. if receives a message for thefirst timethen
m is enqueued, otherwise it is discarded.

Theorem 2.2. Given a collision-free familyS of size k for a directed graphG,
PRIO-SELECT(S) completes fault-tolerant gossiping @ within O(nk) time slots and
message complexity(n?).

Sketch of Prool.et F' be the fault-pattern. As a direct consequence of the cotfiifiee
property ofS, we have the following

Claim. Every nodev, having a new message to send at the beginning of a
phase, will successfully semd to all its out-neighbors in the residual graph
GF by the end of the phase.

Another important fact is that any message cannot be deldgedmuch” from any
other message. Indeed, consider any péthv) of lengthl, from a sources to a node
vin GF. If m, does never meet any other message of higher prioripyénw), then
Claim 2 implies that receivesn within [ phases. On the other hand, assume a mes-
sagem, of priority higher thanm, is in some priority queue of a nodein the path
p(s,v). Itis possible to prove that,, can delaym, onp(s,v) for at most one phase.
Since at most messages are contained in any priority queug(inv) andl < n, we

get theO(nk) upper bound.

The collision-free property of the family implies that ey@ode transmits every source
message at most once, so the message complexithis). O

Combined-message modeln this model, source messages can be arbitrarily com-
bined and sent in one transmission.

ProtocolMuLTI-SELECT(S). Each nodes keeps the seb,;4(v) of the messages al-
ready sent by node and the sef\/,,.,,(v) of the messages that nodénas to send. At
the beginning of the protocal/,,..,(v) contains only the source message of noded
the setM,;4(v) is empty. The protocol consists of a sequence of consecpligses
Eachphaseconsists oft = |S| time-slots. All phases are identical. At time sjoof a
phase, node acts according to the following rules

— If v € S; andM,,.,, (v) is not empty ther transmits all the messagesif, c., (v)
and moves all these messages to thelggt;(v);

— In all other casesy acts as receiver. Wheanreceives a message, if it is not in
Miq(v) then itis added td/,,.,, (v). Otherwisem is discarded.

The proof of the following theorem is similar (even simplerthat of Theorem 2.2.



Theorem 2.3. Given a collision-free familyS of size & for a directed graphG,
MULTI-SELECT(S) completes fault-tolerant gossiping @& within O(Dk) time-slots
and message complexify( Dn), whereD is the maximal residual source eccentricity.
Moreover, an easy adaptation LTI -SELECT(S) for the broadcast operation works
with the same completion time while the message complexitices ta(n).

3 Explicit constructions of collision-free families

In this section we first present a greedy algorithm that,rgamey directed GRN, con-
structs a collision-free family of optimal size. Then we whadistributed construction
that, forwell spreadinstances (see Definition 3.11), yields collision-free ffaan of
optimal size as well.

Centralized constructionGiven a seV/ of points (i.e. nodes) iiR? and a range assign-
mentr : V — RT, the directed GRN is uniquely determined and it will be dedcs
G,(V). Indeed, for each nodec V, let B(v) be the closed disk of centerand radius
r(v), i.e, B(v) = {x € R? : d(v,z) < r(v)}. We define the in-neighborhood of a
nodev € V asthe setN™"(v) = {w € V : v € B(w)}. We defined(v) = [N (v)|
and the maximal in-degree 6f, (V) asA = max,cv A(v).

We will show that, given any directed GRN,.(V') as input, the following algorithm
CFFreturns a collision-free family for G.,.(V') of sizeO(A). Sincef2(A) is a trivial
lower bound for such families, the one returneddsr is asymptotically optimal.

The algorithm constructs every set®hy inserting nodes whose range disks are pair-
wise disjoint. Nodes are inserted in a non increasing ordet. their ranges. This set
construction is repeated until no nodeldfis left outsideS.

Algorithm cFr(a finite setl” C R?, a functionr : V' — RT)

1 LetX:=V' ={veV : N“(v) #0}
2 LetS:=0;

3 Leti:=0;

4 while X # () do begin

5 t:=1+1;

6 Si = 0;

7 U:=0;

8 Y = X;

9 while Y # 0 do begin

10 Choosey € Y such that-(v) is maximum;
11 if U N B(v) = () then begin
12 S; == S U {o};

13 U:=UUB(v);

14 end;

15 Y =Y - {v};

16 end,

17 S:=SU{S:};

18 X =X-5;

19 end;

20return S.




It is easy to see that, by using standard data structures|goeithm works inO(n?)
time.

Lemma 3.1. Family S is collision-free forG,. (V).

Proof. We first observe thaf is a partition ofV’. Let S; € S andu,v € S; such
thatu # v. Thanks to line 11 of the algorithm, it holds thB{uv) N B(v) = 0; so
Nevt(y) N Nou(y) = . O

We now provide a preliminary bound on the sizeSofFor everyv € V', we define the
setl(v) of all nodes ofl/’ that could interfere withy and that have range not smaller
than the range of, i.e.,

Iv)={weV' : Blv)NnB(w) # 0 and r(w) > r(v)}
Lemma 3.2. Family S has size at mostax,cv- |1(v)].

Proof. At every iteration of the external loop (line 4), a new setSofs constructed.
Consider the-th iteration and leb € V' be any node not yet inserted in any of sets
51,92, ...,5;—1 constructed in the previous iterations. For every 1,2, ...,i — 1,

S; must contain at least one nodelifv). Indeed, assume by contradiction that there
existsj < ¢ — 1 such thatS; N I(v) = 0. Then, for everyw € S; with r(w) > r(v),

it holds thatB(w) N B(v) = (. When the algorithm selectsin line 10, the condition

at line 11 is true, s should be inserted i¥;: a contradiction. Since the sets 8f
are pairwise disjoints, the number of iterations of the exd€loop does not exceed
max,ecy |1(v)]. O

Our next goal is to prove thatiax,cy- |I(v)| € O(A). To this aim, we will show that,
for everyv € V', we can partitiorR? into a constant number oégionsso that each
region contains at most nodes ofl (v) (see Fig. 1).

Fig. 1. Partition ofR? around node € V. In each region there are at mastpoints of I (v)

Lemma 3.3. For everyv € V', it holds that| B(v) N I(v)| < A.



Proof. Nodes inI(v) have range at leas{v). Hence, all nodes of (v) in B(v) are
points of N (v), i.e.,I(v) N B(v) C N (v). O

We now consider the region outside diBKv) and define the circular crown
Cr(v) = {y € R? : r(v) < d(v,y) < Mr(v)}, where > 1

Lemma 3.4. Letl < A < 2 and letk € N be large enough such thabs QT’T > A\/2.
Then, foranyw € V’, C,(v) contains at most A nodes off (v).

Proof. Consider a polar coordinate system centered &and consider the partition of
C(v) defined by the regions

omi
Jr(v), Ar(v)] X  [9,%41] whered; = %, foreveryi=10,1,...,k—1

Then, sincecos %’T > A\/2, it is easy to see that the square of the maximal distance
between two points in the same region is

2
r(v)? 4+ Nr(v)? — 2\r(v)? cos % < r(v)?

For anyw € I(v), it holds thatr(w) > r(v), sow is in the in-neighborhood of all
points in the same region af. So, in every region there are at ma$tpoints of I (v)
and, since there aderegions inC) (v), the thesis follows. O

Lemma 3.5. For each\ > 1, there exists an anglg > 0 such that for eacl, b € R
witha > b > ), it holds that

a? +b*> — 2abcos g < (a— 1)?

Proof. Letbea > b > X\ > 1. It holds that

b2 +2a—1
a® 4+ b? — 2abcosp < (a — 1)? <= cosp > L
2ab
Consider the function
b2 +2a —1 -1 1 1
b) = = L4z
f(a,b) 2ab % o b

For any fixedb > 1, function f is decreasing in variable and, since it must be > b,
the maximum is obtained when= b. Then, consider function

b2 —1+42b

9b) = fb,h) = T = =

1 1
2b2 2

!
b 22

its derivative isg’(b) = &% — 2. Henceg’(b) < 0 for eachb > 1, so alsog(b) is
decreasing and, since it must be= ), the maximum is obtained whén= \. This

maximum is
1 2x-1

N =5+ o



By summarizing, forA\ > 1 functiong is decreasing, strictly less thdnand tends to
1/2 as\ — oo. So for each\ > 1, we have that /2 < g(\) < 1. Then for each\ > 1
we can choose an angle> 0 such thatos ¢ > g(\). This implies that

b2+ 2a—1
N> —
g(N) 5

foreacha > b > \. O

Consider the functiog()\) = 2+2)=1 and observe that/2 < g(\) < 1, for any
A> 1.

Lemma 3.6. Let A > 1 and letk € N be large enough such thabs QT’T > g(A). Then,
for anyv € V', there are at most A nodes off (v) outsideB(v) U C(v).

Proof. Consider a polar coordinate system centered, iand define a partition of the
space outsid®(v) U C (v) in the regions

-
I\ (v), +00[ X [9:, Dis1| Whered; = % i=0,1,... k-1

Letz = (04, ¢.) andy = (g, p,) two nodes ofl (v) that lie in the same region and
suppose wlog that,, > o,. Then, two constants, b € R exist witha > b > A such
thatp, = a - r(v) andg, = b - r(v). We thus get

21
d(z,y)* = 0 + 05 — 2000y 08 (P2 — ¢y) < 03 + 0 — 2040y cO5 =

2
= r(v)? (a2 + b* — 2abcos %)

where in the first inequality we used the fact thandy lie in the same region. From
Lemma 3.5, we get

d(z,y)* <r(v)*(a = 1) = (a-r(v) = r(v))* = (0z — r(v))”

Sincez € I(v), it must hold thatB(z) N B(v) # 0, so g, — r(v) < r(z), and
d(z,y)? < r(z)?. Thereforey lies in B(x) and, thusg € N (y).

It follows that, for every regio’, if y € T'N I(v) is a node with minimum distance
from v, i.e, a node with minimuny,, thenT N I(v) C N (y). This implies that
in every region there are at madt points of I(v): since the regions ark, the thesis
follows. ad

Lemma3.7.Letl < A < 2 and letk € N be such thatos 2* > max {3, g(\)}.
Then, foranyw € V’, it holds that| I (v)| < (1 + 2k)A.

Proof. Consider the partition dk? into the following three sets: 1. Disk(v); 2. Cir-
cular crownC' (v); 3. The complement aB(v) U C(v). By combining Lemmas 3.3,
3.4,and 3.6,we gef(v)| < (1+k+k)A. O

Theorem 3.8. Algorithm CFF returns a collision-free familys for G, (V') of size at
mostcA, wherec < 33.



Proof. From Lemma 3.1S is collision-free forG,.(V). Let A be such that < A\ < 2.
From Lemmas 3.2 and 3.7, we obtaff| < max,cy [I(v)| < (1 +2k)A, withk € N
such thatos 2* > max{\/2, g(\)}. Then, in order to minimizé, we choose\ such

that
AN +22-1

2 2)2 (1)

Consider the functiorf(\) = A3 —A? —2X\+ 1. Thenf(1) = —1andf(2) = 1,so0 (1)
has a solution betweenand2. By numerical arguments, we can sefz 1.8 and get

2 A A2+20—1
cos%}max{g, BT}, foranyk > 16

a

Distributed constructionLet us consider GRNF,. (V') wherer(v) = R foreachv € V
(soG,-(V) is symmetric). Directed GRN will be discussed at the endisfdaction. Our
distributed construction of a collision-free family fat,. (V') is based on the following
idea. Consider a partition &2 into squares small enough to guarantee that in each
square there is at most one noddafThen we partition the set of such small squares
so that the distance between two squares in the same set dititeon is at leasRR.
Finally, consider the subsets Bfobtained by collecting all nodes in the same squares’
set (see Fig. 2).

Lety = min{d(u,v) : u,v € V, u # v}. For anyz € R we define[z] as

] =] if o —|z] <1/2
[‘T]{m—i—l it 2 — 2] > 1/2

We now assume that each node knows its own position, themiagi®n rangeé? and the
minimum distancey. In the following algorithmg > 0 is an arbitrary small constant:
we need it in order to have strict inequalities.

ALGORITHM FOR NODEw (position(z,, y, ), transmission rang&, min distancey)
1DefineA = v/V2 —¢;
2Definek = [(2R+¢)/\] + 1;
3 Defined, = [x,/\ andg, = [yu/\];
4 Return f(u) = (&, modk, ¢, modk);

Let us consider the famil = {S; ;}i j—0,1,...k—1 WhereS; ; = {u € V : f(u) =
(i,7)}. We now show thaf is a collision-free family.

Lemma 3.9. Letwu, v be two distinct nodes in the same $gt, thend(u, v) > 2R.
Proof. Letu,v € S; ; then by line 4 in the algorithm we have

Ty =1+ ayk Ty, =1+ apk

gu:j'i'buk/’ gv:j+bvk



2R+ X

Fig. 2. In each small square there is at most one point. In each bigredbere ar®(R?/+?)
small squares. Two nodes in the same set of the family do ratecollisions.

with a,, a,, by, b, € N. Hence
|T0 — Z| = |ay — avlk
|gu - gv| = |bu - bv|k

Observe that, by line 3 in the algorithm, it follows that

<z< <+ (2

> 8
| =
8>
> 8
| =

and
A

N -2 <e <A+ 3)

N | >

If it were a,, = a, andb,, = b, then we would havéz,, — &, | = |§. — .| = 0. By (3),
we get

A A
- < Au P A’U__ =
|2y — 20| < |AE —|—2 (A& 2)| A
. A . A
|yu_yv|<|)‘yu+§_()‘yv_§)|:)‘

So it would bed(u,v)? < 2XA? < ~2. And this is a contradiction becauseis the
minimal distance between two nodes. Now suppose wlogdhat a,, then we have



&y — Zy| = |ay — ay|k = k. From Equation (2) it holds that

- < | T LTy ] <zl

) P 1
A 2 A +

Sod(u,v) = |z, — x| = (k= 1)\ > 2R. O
Theorem 3.10. Family S is collision-free forG,.(V') of sizeO(R? /~?).

Proof. By definition ofk (line 2 of the algorithm) we have tha| = k? € O(R?/+?).
Letu,v € S;; with u # v. Assume, by contradiction, thaf*“*(u) N N°“(v) #
and letw € N°“(u) N N°“(v). Sod(u,w) < R andd(v,w) < R. By triangular
inequality we geti(u, v) < 2R thus contradicting Lemma 3.9. O

We now show that when nodes arell spread the size of the family is asymptotically
optimal.

Definition 3.11 (Well spread instances)Let V' C R? be a set of: points in the Eu-
clidean plane. Lety and I" be respectively the minimal and the maximal distance be-
tween two points ifl/. Let ¢ be any positive constant, skt is said c-well spreadif

)y < eyn.

Observe that square-grid networks are the most regularafaseell spread instances
wherec = /2 [CPS04].

Theorem 3.12.1f V C R? is ac-well spread instance, theR? /42 € O(c?A), where
Ais the maximal degree @f . (V).

Proof. There exists a disk of radius that contains all the nodes. That disk can be

covered withO(I"?/ R?) disks of radiusik. Then there exists a digK with radiusR
such that it contains? ("FRQQ) nodes. Sincé’ is c-well spreadyn/I'? € 2(1/c*+?)
and so diskJ contains?2(R?/c?4?) nodes. It follows thafz? /42 € O(c?A). O

Our distributed construction also works for directed GRNevehparameteR is re-

placed by the maximal node rangg, ... Theorem 3.10 holds witl® .., in place of
R and Theorem 3.12 holds witR,,,;, in place of R, whereR,,;, is the minimal node
range. Thus ifR,.x € O(Rmin) the construction is still optimal.

4 Optimal Bounds

The results obtained in the previous two sections allow ugetooptimal bounds for
fault-tolerant protocols.



Single-message model.
Corollary 4.1.

(a) Given adirected GRIF,.(V), there exists an explicit FG protocol having comple-
tion timeO(nA) and message complexi®y(n?), whereA is the maximal in-degree
of G,.(V).

(b) There exists a distributed FG protocol that, on anyell spread symmetric GRN
G, (V), completes gossiping i@ (nc?A) time slots and has message complexity
O(n?). The protocol requires the knowledge of the minimal distanc

Proof. Part(a) is a direct consequence of Theorem 2.2 and Theorem 3.8({Past
obtained by combining Theorems 2.2, 3.10 and 3.12. a

Next theorem shows that these bounds are tight.

Theorem 4.2. For any sufficiently large: and A, such that, — A € 2(n), there exists

a GRNG,.(V) of n nodes and maximal in-degrek such that, for any FG protocol for
G.(V), an adversary’s fault-patterf’ exists such that the protocol is forced to execute
2(nA) time-slots and to have message complesify?).

Proof. For any sufficiently large and for anyA such that: — A € £2(n), we consider
adirected GRNZ(V, F) (see Fig. 4) consisting in a directed patiof n — A — 1 nodes
whose last node is connected to a Betf A nodes. These latter nodes are connected
to one sink nodev. Observe that it is always possible to set the relative dig@mong
such nodes so that all the above described links are diréctedeft to right (no back-
wards edge exists). Consider any fixed FG protd@akorking onG. The adversary
first makes faulty all the edges among the nodeg ifor the entire execution oP.
Such permanent-fault pattern will be denotedradn this way, the nodes ik cannot
exchange any information.

Claim. For anyu € C and for anyv € L, there must exist a time slotwhere
nodev transmitsm,, and all the other nodes i do not transmit.

Proof. We first observe that, for any dynamical-fault pattern oflthks from

L to w that is combined witl#F, the actions ofP do not change. Assume by
way of contradiction that the claim does not hold for soirendo. Two cases
may arise. If there is no time slot in whightransmitm, then the adversary
makes all the links fronT to w faulty but link (¢, w) which is always fault-
free. In the second case, whenevdransmitsmg, there is another node ih
that transmits. Then, in this case, lik, w) is always fault-free and all the
other links fromL to w are not faulty only whe transmits. It is then easy to
see that, in both cases,will never receiven, but in the residual graph there
is a path fromi to w. a

From the above claim, it follows that FG Proto@imust execute at leagt — A—1) A
time slots.

As for message complexity, we observe that every node inighémnost half of patiC
must transmit all the?(n) source messages of the nodes in the leftmost half of@ath
This clearly yields the?(n?) lower bound. o



A nodes

Fig. 3. Strategy of faults for lower boun@(An)

Combined-message model.
Corollary 4.3.

(a) Given a directed GRNF,.(V'), there exists an explicit FG protocol having com-
pletion timeO(DA) and message complexity(Dn), where D is the maximal
residual source eccentricity.

(b) There exists a distributed FG protocol that, on anyell spread symmetric GRN
G, (V), completes gossiping i@(Dc? A) time slots and has message complexity
O(Dn). The protocol requires the knowledge of the minimal distanc

As for the (single) broadcast operation, the same protoaoik in the same completion
time while the message complexity reduce@(a).

Proof. Part(a) is a direct consequence of Theorem 2.3 and Theorem 3.8(iPast
obtained by combining Theorems 2.3, 3.10 and 3.12. a

The above completion time bound is now shown to be tight.

Theorem 4.4. For anyn, A and D such thatDA < n, there exists a GRNF,.(V)

of n nodes and maximal in-degre& such that, for any FB protocol fo&,.(V'), there
are a sources € V and an adversary’s fault-patterfy, yielding source eccentricity
D, such that the protocol is forced to executéD A) time-slots and to have message
complexity2(n).

Proof. Let PROT be any deterministic FB protocol. The adversary consideesfal-
lowing directed GRNG. Nodes are located on the plane and organizddyers All
nodes of thé-th layer are (initially) connected to all nodes of the 1-th layer, but not
viceversa. This can be obtained by setting the distancedaetthel-th layer and the

[ + 1-th one to be larger than the distance betweer thel-th layer and thé + 2-th
one, and so on. Nodes of the same Layer are connected to derhdoie to simple
geometrical reasons. The first layley contains only the source node. The other layers
are of two kinds and they alternate each other from left thtrigayer L; consists in



A > 2 nodes and layek consists in only one node (see Fig. 4). Clearly the number of
layers isO(n/A).

The first adversary’s action is to make all links between sarfehe same layer faulty,
for all time slots, while links fromZ, to L, are never faulty. Then, it allows the
source to informL;. Now, the line of reasoning works by induction and it is basad
the following fact.

Claim. Let us assume levdl; is all informed at time slot. Then, for any
strategy ofPROT the adversary can keep (at least) one link frégto L, never
faulty (so it belongs to the residual graph) afglis not informed before time-
slott + A.

Proof. Nodes inL; are denoted as;, j = 1,..., A and the node irL; is
denoted ag. Then, the adversary reads the protocol’s deterministiedale
and acts as follows. Consider any time slaguch that < ¢’ <t + A: If there

is exactly one nod€; in L; that transmits, then the adversary makes (only)
edge(z;, y) faulty, otherwise the adversary keeps all the edges onolildibe
clear that, as far a8 < A — 1, this adversary’s strategy does not allow node
y to be informed and it can keep at least one link frépto L, (always) non
faulty. a

The above Claim implies that the adversary can define a fattitqm so that the source
has eccentricityp and its message requires at ledgime slots to go from any Levdl;
to L. Then, for any source eccentricity and max in-degreé\ such thatD A € O(n),
the directed GRN= together with the fault pattern described above yields#® A)
lower bound. a0

hV4

Lo L Li

Fig. 4. Layered network

As for the casé) - A > n, we observe that a lower boutig{n+/n) holds for FB proto-
cols on directed GRN of unbounded maximal in-degree anduassource eccentricity



D = 6(y/n). Thisresultis an easy consequence of the lower bound farambgraphs
proved in [CMS04]: The graph yielding such lower bound issed a GRN of maximal
in-degreeA = O(n).

5 Future work

In the combined-message model, we observe that our FB miotas also optimal

message complexity while it is an open question whethe®itien) bound for the FG

message complexity is optimal.

Another future work is that of extending our distributed swuaction of collision-free

families to other important classes of radio networks.

Finally, an interesting issue is that of designmgdomized-G protocols. Such proto-
cols may yield a much better completion time on the residuegbly and, more impor-
tantly, they might have good performaneegsidethe residual graph too.
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