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Abstract. We study deterministic fault-tolerant gossiping protocols in directed
Geometric Radio Networks(in short, directed GRN). Unpredictable node and link
faults may happen during every time slot of the protocol’s execution.
We first consider thesingle-messagemodel where every node can send at most
one message per time slot. We provide a protocol that, in any directed GRNG of
n nodes, completes gossiping inO(n∆) time (where∆ is the maximal in-degree
of G) and has message complexityO(n2). Both bounds are then shown to be
optimal.
As for thecombined-messagemodel, we give a protocol working in optimal com-
pletion timeO(D∆) (whereD is the maximal source eccentricity) and message
complexityO(Dn). Finally, our protocol performs the (single) broadcast opera-
tion within the same optimal time and optimal message complexity O(n).

1 Introduction

In a radio network, every node (station) can directly transmit to somesubset of the
nodes depending on the power of its transmitter and on the topological characteristics
of the surrounding region. When a nodeu can directly transmit to a nodev, we say
that there is a (wireless) directed link(u, v). The set of nodes together with the set
of these links form a directed communication graph that represents the radio network.
In the radio network model [BGI92,CGR02,CGGPR00,CR06], the communication is
assumed to be synchronous: this allows to focus on the impactof the interferencephe-
nomenon on the network performance. When a node sends a message, the latter is sent
in parallel on all outgoing links. However, since a single radio frequence is used (see
[ABLP89,BGI92,CGGPR00]), when two or more neighbors of a node transmit at the
same time slot, acollision occurs (due to interference) and the message is lost. So, a
node can recover a message from one of its incoming links if and only if this link is
the only one bringing in a message. The broadcast task consists of sending asource
messagefrom a givensourcenode to all nodes of the network. Thecompletion timeof
a broadcast protocol is the number of time slots required by the protocol to inform all
(reachable) nodes. A node isinformedif it has received the source message.
Another important task in radio networks isgossiping, i.e.,n simultaneous and indepen-
dent broadcast operations, each one from a different node [CGR02,CMS03,GPX05].
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The completion time of a gossiping protocol is the number of time slots the proto-
col requires so that every source messagem is received by all nodes reachable from
the source ofm. We will consider two transmission models: thesingle-messagemodel
[BII93] and thecombined-messageone [CGR02]: in the former every node can transmit
and receive at most one source message per time-slot while, in the latter, source mes-
sages can be arbitrarily combined and sent/received in one time slot [CGR02,GPX05].
Broadcasting and gossiping are fundamental communicationtasks in radio networks
and they are the subject of several research works in both algorithmic and network-
ing areas [BGI92,CGR02,CGGPR00,PR97,R96]. It is reasonable to claim that almost
all major theoretical questions related to such tasks can beconsidered closed as far as
staticnetworks are considered: the network never changes during the entire protocol’s
execution (see Subsection 1.1).

However, radio networks are typically adopted in scenarioswhereunpredictablenode
and link faults happen very frequently. Node failures happen when some hardware or
software component of a station does not work, while link failures are due to the pres-
ence of a new (artificial or natural) hurdle that does not allow the communication along
that link. In ad-hoc networking, while it is sometimes reasonable to assume that nodes
(thus the protocol) know theinitial topology, nothing is known about the duration and
the location of faults. Such faults may clearly happeneven during the execution of a
protocol. In the sequel, such kind of faults will be calleddynamical faultsor, simply,
faults.

Theoretical results on broadcast and gossiping protocols in any scenario where the net-
work topology may change during the protocol’s execution are very few (see Subsec-
tion 1.1).

The model of faulty networks. We follow a high-level approach by consideringad-
versarial networks[AS98,ABBS01,CMS04,P02,S01]. Arbitrary dynamical faults are
decided by a deterministic adaptiveadversary. We analyze the completion time and the
message complexity (i.e. maximum number of transmitted messages) of broadcast and
gossiping protocols with respect toworst-caseadversary’s strategies.

The (worst-case) completion time of aFault-tolerant Broadcast(in short,FB) protocol
on a networkG is defined as the maximal number (with respect to any possiblead-
versarial strategy) of time slots required toinform all nodes reachable from the source
in the unpredictablefault-free part of the network. More precisely, according to the
fault-tolerance model adopted in [KKP98,P02,CMS04], afault patternF is a function
(managed by the adaptive adversary) that maps every time-slot t to the subsetF (t)
of nodes and links that are faulty during time slott. The residual subgraphGF is the
graph obtained fromG by removingall those nodes and links that belong toF (t), for
sometime-slott during the protocol’s execution. Then, a FB protocol for a graphG is
a broadcast protocol that, for any sources, and for anyfault patternF , guarantees that
every node, which is reachable froms in the residual subgraphGF , will receive the
source message. Theresidual eccentricityof a nodev is its eccentricity in the residual
graph. The eccentricity ofv is the maximal oriented distance (i.e. number of hops) from
v to a reachable node.



The above definitions can be easily extended toFault-tolerant Gossiping(in shortFG)
protocols: For any sources, messagems must be received by every node reachable
from s in GF , for any choice of fault patternF .
It is important to remark that if a nodev is not reachable from a source in the residual
subgraph, then the arrival ofms to v is not considered in the analysis of the completion
time. This assumption might be considered too strong but it is necessary. Indeed, it is
easy to see that any attempt to consider larger residual subgraphs makes the worst-case
completion time ofanydeterministic FG protocolinfinite. This is well-explained by the
following simple game. Considerk informed nodes that are in the in-neighborhood of a
non informed nodew. It is easy to see thatanydeterministic protocol, trying to inform
w, fails foreveragainst the following simple adversary’s strategy: if at least two of the
k in-neighbors transmit then the adversary leaves all edges on, while if there is exactly
one of them transmitting, then the adversary makes only thislink faulty. Observe that
w is alwaysconnectedto the informed part of the network but it will never receive the
message (w is indeed not in theresidualgraph).
On the other hand, broadcasting and gossiping (and their analysis) in the residual graph
is much harder than the same operation in fault-free radio networks. This is mainly due
to the presence of unknown collisions that the adversary canproduce at any time-sloton
the residual graph too. As a matter of fact, while the completion time of broadcast on
general fault-free radio networks of source eccentricityD is O(D + log3 n) [GPX05],
it turns out that there is a class of radio networks ofconstantsource eccentricity where
the same operation, in the above fault model, requiresΘ(n

√
n) time slots [CMS04].

So, in general graphs of “small” source eccentricity, the completion time gap may be
exponential. The lower boundΩ(n

√
n) in [CMS04] provides also a strong evidence of

the significant difference betweendynamicalfaults (on the residual graph) andperma-
nentfaults: in the latter network scenario, worst-case broadcasting time isO(n log2 n)
[CGR02].

Our results. We investigatedirected Geometric Radio Networks, in short directed GRN
[ENW00,KKKP00,CKOZ03,CCPRV01,DP07]. A directed GRNG(V, E) is constructed
by arbitrarily placingn nodes on the Euclidean plane; then, to each nodev a transmis-
sion rangerv ≥ 0 is assigned. These transmission ranges uniquely determinethe setE
of directedlinks: (u, v) ∈ E iff d(u, v) ≤ ru, whered(u, v) denotes the Euclidean dis-
tance betweenu andv. When all nodes have the same transmission range, the resulting
graph is symmetric: this restriction is denoted assymmetricGRN.
We provide the first optimal bounds on the completion time andmessage complexity of
FG protocols (and FB ones) in directed GRN for both single-message and combined-
message models. More precisely, for the first model, given any directed GRNG of n
nodes and maximal in-degree∆, our FG protocol works inO(n∆) time-slots and it has
message complexityO(n2). Such bounds are then shown to be optimal.
Then, we consider the combined-message model and provide anFG protocol that works
in optimal O(D∆) time-slots (D denotes the maximal residual source eccentricity)
and it has message complexityO(n2). We emphasize that this is the first FG protocol
whose completion-time does not (explicitly) depend onn. Furthermore, the protocol
can be easily analyzed for the (single) broadcast task: in this case, the completion time
is still O(D∆) while the message complexity reduces toO(n). Both upper bounds are



again optimal and, as for time complexity, it improves over the best (polynomial-time
constructible) FB upper bound for general graphs by anO(log3 n) factor ([CMS04] -
see Subsection 1.1).

Adopted techniques.Since the fault pattern is unpredictable, an FG protocol must have
the following “connectivity” property: it must consider all possible paths from a source
to any node reachable from that source. To this aim, our protocols make an iterative
use of collision-free families. Acollision-free familyis a set family (defined on the
out-neighborhoods of the input graph - see Definition 2.1) that induces a transmission
scheduling that somewhat guarantees the above connectivity property and yieldsnocol-
lision. So, when a node is scheduled as transmitter, its message is safely received byall
its out-neighbors in the residual graph. This important fact is one of the key ingredients
to get optimal message complexity (and thus energy efficiency) of our protocols. On the
other hand, the size of the collision-free family is a linearfactor in the completion time
of our FG protocols. A crucial step in our protocol design is thus the efficient construc-
tion of a collision-free family for the input graphs. We indeed provide an algorithm that
constructs an optimal-size collision-free family for any directed GRN working in time
O(n2).
We observe that, given access to a collision-free family forthe input graph, our pro-
tocols run in a fully-distributed fashion. However, in order to construct such optimal
collision-free family it is necessary to know theinitial graph topology. In Section 3,
we also provide an efficient distributed construction of collision-free families under a
much weaker knowledge condition: each node construct its own scheduling (so, “its”
component of the collision-free family) by assuming that itonly knows its position and
a good approximation of the minimal distance among nodes. Wethen prove that if the
(unknown) initial topology iswell spread[CPS04], the returned collision-free family
has optimal size, thus yielding the same protocol’s performance given by the central-
ized construction. Well spread instances (see Definition 3.11) are a natural and broad
generalization ofgrid networks.

1.1 Related works

Permanent faults. In [KKP98], the authors consider the broadcast operation inpres-
ence of permanent unknown node faults for two restricted classes of networks. They
derive aΘ(D+log min{∆, t}) bound whereD is the source eccentricity in the residual
graph andt is the number of faults. More recently, the issue of permanent-fault-tolerant
broadcasting in general networks has been studied in [CGGPR00,CGR02,CMS03]. In
these papers, several lower and upper bounds on the completion time of broadcasting are
obtained in theunknownfault-free network model. We observe that the results obtained
in unknown networks apply to general networks with permanent faults. In particular, in
[CMS03], anΩ(n log D) lower bound for the broadcast completion time is proved. The
best general upper bound isO(n log2 n) [CGR02]. In [CMS03], the authors provide a
protocol havingO(D∆ log2 n) completion time.
In [GL02], a gossiping protocol for unknown networks is given that works in
O(n1.5 log2 n) time. [CMS03] provides a permanent-fault tolerant gossiping protocol
havingO(D∆2 log2 n) completion time. The above results work for the combined-



message model. As for the single-message model, in [CMS03],a deterministic gossip-
ing protocol is given that hasO(n∆2 log3 n) completion time. We also mention the pro-
tocol for unknown directed GRN working inO(n) time given in [DP07], even though
it does not work for faulty networks.

Dynamical faults. We emphasize thatall the above protocolsdo not workin presence
of dynamical faults. As mentioned before, this is mainly dueto the collisions yielded
by any unpredictable wake-up of a faulty node/link during the protocol execution. Our
dynamical fault model has been studied in [CMS04] where theround robinstrategy
is proved to be optimal for general graphs. Then, they show the existence of a de-
terministic FG protocol havingO(D∆ log n) completion time. The protocol is based
on a probabilistic construction ofad-hoc strongly-selective families[CMS03,I02] for
general graphs. Such families have a weaker property than collision-free ones: this
weakness yields a not efficient message complexity. By adopting the efficient con-
struction of such families in [I97], they can efficiently construct a FG protocol having
O(D∆ log3 n) completion time. These protocols only hold for the combined-message
model. In [PP05] an initial graph is given and, at each time slot, every node is faulty
with probability p, wherep is a fixed positiveconstantsuch that0 < p < 1. They
prove anO(optlog n) bound for the broadcast completion time whereopt is the op-
timal completion time in the fault-free case. They also prove that it is impossible to
achieveO(opt+ log n) completion time.
It is not hard to see that, when the graph issymmetric, anydistance-2 coloring[C06]
of sizek yields a collision-free family of sizek and viceversa. For some classes of
undirected graphs, there are efficient constant-factor approximation algorithms that
find a distance-2 coloring. In particular, forunit disk graphs[C06,CCJ90,SM97] a 7-
approximation algorithm is presented in [SM97]. Since symmetric GRN in the plane are
equivalent to unit disk graphs, the latter algorithm can be used to construct a collision-
free family for this class of symmetric radio networks. However, this coloring algorithm
does not workfor directedGRN.

2 Collision-free families and fault-tolerant gossiping

In this section we introduce collision-free families and weshow how to exploit them to
design fault-tolerant gossiping protocols.

Definition 2.1 (Collision-free families).Let G(V, E) be a directed graph and letV ′

be the set of nodes that have at least one out-neighbor. Acollision-free familyS for G
is a partitionS = {S1, . . . , Sk} of V ′, such that, for eachS ∈ S and for eachx, y ∈ S
with x 6= y, Nout(x) ∩ Nout(y) = ∅.

In the sequel, we assume that, given any directed graphG(V, E), we have at hand a
collision-free familyS = {S1, S2, . . . , Sk} for G. In Section 3 we will then show how
to construct collision-free families of small size.

Single-message model.In this model every transmission can contain only one of the
source messages. We assume that each message contains the unique ID number of its
source so that different messages have different ID’s. The following FG protocol makes
use of message IDs to define apriority queue in every node.



ProtocolPRIO-SELECT(S) consists of a sequence of consecutivephases. Eachphase
consists ofk = |S| time-slots. At the very beginning, the priority queue of every node
u contains onlymu. At the beginning of every phase, every nodev extracts (if any) the
messagêm of highest priority(i.e. the maximal ID number) from its priority queue.
Then, at time-slotj of a phase, nodev acts according to the following rules

– If v ∈ Sj andm̂ exists thenv transmitsm̂.
– In all other cases,v acts as receiver. Ifv receives a messagem for thefirst timethen

m is enqueued, otherwise it is discarded.

Theorem 2.2. Given a collision-free familyS of size k for a directed graphG,
PRIO-SELECT(S) completes fault-tolerant gossiping inG within O(nk) time slots and
message complexityO(n2).

Sketch of Proof.Let F be the fault-pattern. As a direct consequence of the collision-free
property ofS, we have the following

Claim. Every nodev, having a new messagem to send at the beginning of a
phase, will successfully sendm to all its out-neighbors in the residual graph
GF by the end of the phase.

Another important fact is that any message cannot be delayed“too much” from any
other message. Indeed, consider any pathp(s, v) of lengthl, from a sources to a node
v in GF . If ms does never meet any other message of higher priority inp(s, v), then
Claim 2 implies thatv receivesms within l phases. On the other hand, assume a mes-
sagemq of priority higher thanms is in some priority queue of a nodeu in the path
p(s, v). It is possible to prove thatmq can delayms on p(s, v) for at most one phase.
Since at mostn messages are contained in any priority queue inp(s, v) andl 6 n, we
get theO(nk) upper bound.
The collision-free property of the family implies that every node transmits every source
message at most once, so the message complexity isO(n2). �

Combined-message model.In this model, source messages can be arbitrarily com-
bined and sent in one transmission.

ProtocolMULTI -SELECT(S). Each nodev keeps the setMold(v) of the messages al-
ready sent by nodev and the setMnew(v) of the messages that nodev has to send. At
the beginning of the protocol,Mnew(v) contains only the source message of nodev and
the setMold(v) is empty. The protocol consists of a sequence of consecutivephases.
Eachphaseconsists ofk = |S| time-slots. All phases are identical. At time slotj of a
phase, nodev acts according to the following rules

– If v ∈ Sj andMnew(v) is not empty thenv transmits all the messages inMnew(v)
and moves all these messages to the setMold(v);

– In all other cases,v acts as receiver. Whenv receives a messagem, if it is not in
Mold(v) then it is added toMnew(v). Otherwisem is discarded.

The proof of the following theorem is similar (even simpler)to that of Theorem 2.2.



Theorem 2.3. Given a collision-free familyS of size k for a directed graphG,
MULTI -SELECT(S) completes fault-tolerant gossiping inG within O(Dk) time-slots
and message complexityO(Dn), whereD is the maximal residual source eccentricity.
Moreover, an easy adaptation ofMULTI -SELECT(S) for the broadcast operation works
with the same completion time while the message complexity reduces toO(n).

3 Explicit constructions of collision-free families

In this section we first present a greedy algorithm that, given any directed GRN, con-
structs a collision-free family of optimal size. Then we show a distributed construction
that, for well spreadinstances (see Definition 3.11), yields collision-free families of
optimal size as well.

Centralized construction.Given a setV of points (i.e. nodes) inR2 and a range assign-
mentr : V → R

+, the directed GRN is uniquely determined and it will be denoted as
Gr(V ). Indeed, for each nodev ∈ V , letB(v) be the closed disk of centerv and radius
r(v), i.e.,B(v) = {x ∈ R

2 : d(v, x) 6 r(v)}. We define the in-neighborhood of a
nodev ∈ V as the setN in(v) = {w ∈ V : v ∈ B(w)}. We define∆(v) = |N in(v)|
and the maximal in-degree ofGr(V ) as∆ = maxv∈V ∆(v).
We will show that, given any directed GRNGr(V ) as input, the following algorithm
CFF returns a collision-free familyS for Gr(V ) of sizeO(∆). SinceΩ(∆) is a trivial
lower bound for such families, the one returned byCFF is asymptotically optimal.
The algorithm constructs every set ofS by inserting nodes whose range disks are pair-
wise disjoint. Nodes are inserted in a non increasing order w.r.t. their ranges. This set
construction is repeated until no node ofV ′ is left outsideS.

Algorithm CFF(a finite setV ⊆ R
2, a functionr : V → R

+)
1 LetX := V ′ = {v ∈ V : Nout(v) 6= ∅};
2 LetS := ∅;
3 Let i := 0;
4 while X 6= ∅ do begin
5 i := i + 1;
6 Si := ∅;
7 U := ∅;
8 Y := X;
9 while Y 6= ∅ do begin
10 Choosev ∈ Y such thatr(v) is maximum;
11 if U ∩ B(v) = ∅ then begin
12 Si := Si ∪ {v};
13 U := U ∪ B(v);
14 end;
15 Y := Y − {v};
16 end;
17 S := S ∪ {Si};
18 X := X − Si;
19 end;
20 return S .



It is easy to see that, by using standard data structures, thealgorithm works inO(n2)
time.

Lemma 3.1. FamilyS is collision-free forGr(V ).

Proof. We first observe thatS is a partition ofV ′. Let Si ∈ S andu, v ∈ Si such
that u 6= v. Thanks to line 11 of the algorithm, it holds thatB(u) ∩ B(v) = ∅; so
Nout(u) ∩ Nout(v) = ∅. ut

We now provide a preliminary bound on the size ofS. For everyv ∈ V ′, we define the
setI(v) of all nodes ofV ′ that could interfere withv and that have range not smaller
than the range ofv, i.e.,

I(v) = {w ∈ V ′ : B(v) ∩ B(w) 6= ∅ and r(w) > r(v)}

Lemma 3.2. FamilyS has size at mostmaxv∈V ′ |I(v)|.

Proof. At every iteration of the external loop (line 4), a new set ofS is constructed.
Consider thei-th iteration and letv ∈ V ′ be any node not yet inserted in any of sets
S1, S2, . . . , Si−1 constructed in the previous iterations. For everyj = 1, 2, . . . , i − 1,
Sj must contain at least one node inI(v). Indeed, assume by contradiction that there
existsj 6 i − 1 such thatSj ∩ I(v) = ∅. Then, for everyw ∈ Sj with r(w) > r(v),
it holds thatB(w) ∩ B(v) = ∅. When the algorithm selectsv in line 10, the condition
at line 11 is true, sov should be inserted inSj : a contradiction. Since the sets ofS
are pairwise disjoints, the number of iterations of the external loop does not exceed
maxv∈V ′ |I(v)|. ut

Our next goal is to prove thatmaxv∈V ′ |I(v)| ∈ O(∆). To this aim, we will show that,
for everyv ∈ V ′, we can partitionR2 into a constant number ofregionsso that each
region contains at most∆ nodes ofI(v) (see Fig. 1).

Fig. 1.Partition ofR2 around nodev ∈ V . In each region there are at most∆ points ofI(v)

Lemma 3.3. For everyv ∈ V ′, it holds that|B(v) ∩ I(v)| 6 ∆.



Proof. Nodes inI(v) have range at leastr(v). Hence, all nodes ofI(v) in B(v) are
points ofN in(v), i.e.,I(v) ∩ B(v) ⊆ N in(v). ut

We now consider the region outside diskB(v) and define the circular crown

Cλ(v) = {y ∈ R
2 : r(v) < d(v, y) 6 λr(v)}, whereλ > 1

Lemma 3.4. Let 1 < λ < 2 and letk ∈ N be large enough such thatcos 2π
k

> λ/2.
Then, for anyv ∈ V ′, Cλ(v) contains at mostk∆ nodes ofI(v).

Proof. Consider a polar coordinate system centered inv and consider the partition of
Cλ(v) defined by the regions

]r(v), λr(v)] × [ϑi, ϑi+1[ where ϑi =
2πi

k
, for every i = 0, 1, . . . , k − 1

Then, sincecos 2π
k

> λ/2, it is easy to see that the square of the maximal distance
between two points in the same region is

r(v)2 + λ2r(v)2 − 2λr(v)2 cos
2π

k
6 r(v)2

For anyw ∈ I(v), it holds thatr(w) > r(v), sow is in the in-neighborhood of all
points in the same region ofw. So, in every region there are at most∆ points ofI(v)
and, since there arek regions inCλ(v), the thesis follows. ut

Lemma 3.5. For eachλ > 1, there exists an angleϕ > 0 such that for eacha, b ∈ R

with a > b > λ, it holds that

a2 + b2 − 2ab cosϕ 6 (a − 1)2

Proof. Let bea > b > λ > 1. It holds that

a2 + b2 − 2ab cosϕ 6 (a − 1)2 ⇐⇒ cosϕ >
b2 + 2a − 1

2ab

Consider the function

f(a, b) =
b2 + 2a − 1

2ab
=

b2 − 1

2b
· 1

a
+

1

b

For any fixedb > 1, functionf is decreasing in variablea and, since it must bea > b,
the maximum is obtained whena = b. Then, consider function

g(b) = f(b, b) =
b2 − 1 + 2b

2b2
=

1

2
+

1

b
− 1

2b2

its derivative isg′(b) = 1

b3
− 1

b2
. Henceg′(b) < 0 for eachb > 1, so alsog(b) is

decreasing and, since it must beb > λ, the maximum is obtained whenb = λ. This
maximum is

g(λ) =
1

2
+

2λ − 1

2λ2



By summarizing, forλ > 1 functiong is decreasing, strictly less than1 and tends to
1/2 asλ → ∞. So for eachλ > 1, we have that1/2 < g(λ) < 1. Then for eachλ > 1
we can choose an angleϕ > 0 such thatcosϕ > g(λ). This implies that

g(λ) >
b2 + 2a − 1

2ab

for eacha > b > λ. ut

Consider the functiong(λ) = λ2
+2λ−1

2λ2 and observe that1/2 < g(λ) < 1, for any
λ > 1.

Lemma 3.6. Letλ > 1 and letk ∈ N be large enough such thatcos 2π
k

> g(λ). Then,
for anyv ∈ V ′, there are at mostk∆ nodes ofI(v) outsideB(v) ∪ Cλ(v).

Proof. Consider a polar coordinate system centered inv, and define a partition of the
space outsideB(v) ∪ Cλ(v) in the regions

[λr(v), +∞[ × [ϑi, ϑi+1[ where ϑi =
2πi

k
, i = 0, 1, . . . , k − 1

Let x = (%x, ϕx) andy = (%y, ϕy) two nodes ofI(v) that lie in the same region and
suppose wlog that%x > %y. Then, two constantsa, b ∈ R exist witha > b > λ such
that%x = a · r(v) and%y = b · r(v). We thus get

d(x, y)2 = %2
x + %2

y − 2%x%y cos (ϕx − ϕy) 6 %2
x + %2

y − 2%x%y cos
2π

k

= r(v)2
(

a2 + b2 − 2ab cos
2π

k

)

where in the first inequality we used the fact thatx andy lie in the same region. From
Lemma 3.5, we get

d(x, y)2 6 r(v)2(a − 1)2 = (a · r(v) − r(v))2 = (%x − r(v))2

Sincex ∈ I(v), it must hold thatB(x) ∩ B(v) 6= ∅, so %x − r(v) 6 r(x), and
d(x, y)2 6 r(x)2. Therefore,y lies inB(x) and, thus,x ∈ N in(y).
It follows that, for every regionT , if y ∈ T ∩ I(v) is a node with minimum distance
from v, i.e, a node with minimum%y, thenT ∩ I(v) ⊆ N in(y). This implies that
in every region there are at most∆ points ofI(v): since the regions arek, the thesis
follows. ut

Lemma 3.7. Let 1 < λ < 2 and letk ∈ N be such thatcos 2π
k

> max
{

λ
2
, g(λ)

}

.
Then, for anyv ∈ V ′, it holds that|I(v)| 6 (1 + 2k)∆.

Proof. Consider the partition ofR2 into the following three sets: 1. DiskB(v); 2. Cir-
cular crownCλ(v); 3. The complement ofB(v) ∪ Cλ(v). By combining Lemmas 3.3,
3.4, and 3.6, we get|I(v)| 6 (1 + k + k)∆. ut

Theorem 3.8. Algorithm CFF returns a collision-free familyS for Gr(V ) of size at
mostc∆, wherec 6 33.



Proof. From Lemma 3.1,S is collision-free forGr(V ). Let λ be such that1 < λ < 2.
From Lemmas 3.2 and 3.7, we obtain|S| 6 maxv∈V ′ |I(v)| 6 (1 + 2k)∆, with k ∈ N

such thatcos 2π
k

> max{λ/2, g(λ)}. Then, in order to minimizek, we chooseλ such
that

λ

2
=

λ2 + 2λ − 1

2λ2
(1)

Consider the functionf(λ) = λ3 −λ2 − 2λ+1. Thenf(1) = −1 andf(2) = 1, so (1)
has a solution between1 and2. By numerical arguments, we can setλ ≈ 1.8 and get

cos
2π

k
> max

{

λ

2
,

λ2 + 2λ − 1

2λ2

}

, for anyk > 16

ut

Distributed construction.Let us consider GRNGr(V ) wherer(v) = R for eachv ∈ V
(soGr(V ) is symmetric). Directed GRN will be discussed at the end of this section. Our
distributed construction of a collision-free family forGr(V ) is based on the following
idea. Consider a partition ofR2 into squares small enough to guarantee that in each
square there is at most one node ofV . Then we partition the set of such small squares
so that the distance between two squares in the same set of thepartition is at least2R.
Finally, consider the subsets ofV obtained by collecting all nodes in the same squares’
set (see Fig. 2).
Let γ = min{d(u, v) : u, v ∈ V, u 6= v}. For anyx ∈ R we define[x] as

[x] =

{

bxc if x − bxc 6 1/2
bxc + 1 if x − bxc > 1/2

We now assume that each node knows its own position, the transmission rangeR and the
minimum distanceγ. In the following algorithm,ε > 0 is an arbitrary small constant:
we need it in order to have strict inequalities.

ALGORITHM FOR NODEu (position(xu, yu), transmission rangeR, min distanceγ)
1 Defineλ = γ/

√
2 − ε;

2 Definek = d(2R + ε)/λe + 1;
3 Define x̂u = [xu/λ] andŷu = [yu/λ];
4 Return f(u) = (x̂u modk, ŷu modk);

Let us consider the familyS = {Si,j}i,j=0,1,...,k−1 whereSi,j = {u ∈ V : f(u) =
(i, j)}. We now show thatS is a collision-free family.

Lemma 3.9. Letu, v be two distinct nodes in the same setSi,j , thend(u, v) > 2R.

Proof. Let u, v ∈ Si,j then by line 4 in the algorithm we have

x̂u = i + auk x̂v = i + avk

ŷu = j + buk ŷv = j + bvk



λ

2R + λ

R

Fig. 2. In each small square there is at most one point. In each big square there areΘ(R2/γ2)
small squares. Two nodes in the same set of the family do not create collisions.

with au, av, bu, bv ∈ N. Hence

|x̂u − x̂v| = |au − av|k
|ŷu − ŷv| = |bu − bv|k

Observe that, by line 3 in the algorithm, it follows that

x

λ
− 1

2
6 x̂ 6

x

λ
+

1

2
(2)

and

λx̂ − λ

2
6 x 6 λx̂ +

λ

2
(3)

If it were au = av andbu = bv then we would have|x̂u − x̂v| = |ŷu − ŷv| = 0. By (3),
we get

|xu − xv| 6 |λx̂u +
λ

2
− (λx̂v − λ

2
)| = λ

|yu − yv| 6 |λŷu +
λ

2
− (λŷv − λ

2
)| = λ

So it would bed(u, v)2 6 2λ2 < γ2. And this is a contradiction becauseγ is the
minimal distance between two nodes. Now suppose wlog thatau 6= av, then we have



|x̂u − x̂v| = |au − av|k > k. From Equation (2) it holds that

|x̂u − x̂v| 6

∣

∣

∣

∣

xu

λ
+

1

2
− xv

λ
+

1

2

∣

∣

∣

∣

6
|xu − xv|

λ
+ 1

Sod(u, v) > |xu − xv| > (k − 1)λ > 2R. ut

Theorem 3.10. FamilyS is collision-free forGr(V ) of sizeO(R2/γ2).

Proof. By definition ofk (line 2 of the algorithm) we have that|S| = k2 ∈ O(R2/γ2).
Let u, v ∈ Si,j with u 6= v. Assume, by contradiction, thatNout(u) ∩ Nout(v) 6= ∅
and letw ∈ Nout(u) ∩ Nout(v). Sod(u, w) 6 R andd(v, w) 6 R. By triangular
inequality we getd(u, v) 6 2R thus contradicting Lemma 3.9. ut

We now show that when nodes arewell spread, the size of the family is asymptotically
optimal.

Definition 3.11 (Well spread instances).Let V ⊆ R
2 be a set ofn points in the Eu-

clidean plane. Letγ andΓ be respectively the minimal and the maximal distance be-
tween two points inV . Let c be any positive constant, setV is saidc-well spreadif
Γ/γ 6 c

√
n.

Observe that square-grid networks are the most regular caseof c-well spread instances
wherec =

√
2 [CPS04].

Theorem 3.12. If V ⊆ R
2 is a c-well spread instance, thenR2/γ2 ∈ O(c2∆), where

∆ is the maximal degree ofGr(V ).

Proof. There exists a disk of radiusΓ that contains all then nodes. That disk can be
covered withO(Γ 2/R2) disks of radiusR. Then there exists a diskU with radiusR

such that it containsΩ
(

nR2

Γ 2

)

nodes. SinceV is c-well spread,n/Γ 2 ∈ Ω(1/c2γ2)

and so diskU containsΩ(R2/c2γ2) nodes. It follows thatR2/γ2 ∈ O(c2∆). ut

Our distributed construction also works for directed GRN where parameterR is re-
placed by the maximal node rangeRmax. Theorem 3.10 holds withRmax in place of
R and Theorem 3.12 holds withRmin in place ofR, whereRmin is the minimal node
range. Thus ifRmax ∈ O(Rmin) the construction is still optimal.

4 Optimal Bounds

The results obtained in the previous two sections allow us toget optimal bounds for
fault-tolerant protocols.



Single-message model.

Corollary 4.1.

(a) Given a directed GRNGr(V ), there exists an explicit FG protocol having comple-
tion timeO(n∆) and message complexityO(n2), where∆ is the maximal in-degree
of Gr(V ).

(b) There exists a distributed FG protocol that, on anyc-well spread symmetric GRN
Gr(V ), completes gossiping inO(nc2∆) time slots and has message complexity
O(n2). The protocol requires the knowledge of the minimal distanceγ.

Proof. Part(a) is a direct consequence of Theorem 2.2 and Theorem 3.8. Part(b) is
obtained by combining Theorems 2.2, 3.10 and 3.12. ut
Next theorem shows that these bounds are tight.

Theorem 4.2. For any sufficiently largen and∆, such thatn−∆ ∈ Ω(n), there exists
a GRNGr(V ) of n nodes and maximal in-degree∆ such that, for any FG protocol for
Gr(V ), an adversary’s fault-patternF exists such that the protocol is forced to execute
Ω(n∆) time-slots and to have message complexityΩ(n2).

Proof. For any sufficiently largen and for any∆ such thatn−∆ ∈ Ω(n), we consider
a directed GRNG(V, E) (see Fig. 4) consisting in a directed pathC of n−∆−1 nodes
whose last node is connected to a setL of ∆ nodes. These latter nodes are connected
to one sink nodew. Observe that it is always possible to set the relative distance among
such nodes so that all the above described links are directedfrom left to right (no back-
wards edge exists). Consider any fixed FG protocolP working onG. The adversary
first makes faulty all the edges among the nodes inL for the entire execution ofP .
Such permanent-fault pattern will be denoted asF . In this way, the nodes inL cannot
exchange any information.

Claim. For anyu ∈ C and for anyv ∈ L, there must exist a time slotτ where
nodev transmitsmu and all the other nodes inL do not transmit.

Proof. We first observe that, for any dynamical-fault pattern of thelinks from
L to w that is combined withF , the actions ofP do not change. Assume by
way of contradiction that the claim does not hold for someû andv̂. Two cases
may arise. If there is no time slot in whicĥv transmitmû, then the adversary
makes all the links fromL to w faulty but link (v̂, w) which is always fault-
free. In the second case, wheneverv̂ transmitsmû, there is another node inL
that transmits. Then, in this case, link(v̂, w) is always fault-free and all the
other links fromL to w are not faulty only when̂v transmits. It is then easy to
see that, in both cases,w will never receivemû, but in the residual graph there
is a path from̂u to w. ut

From the above claim, it follows that FG ProtocolP must execute at least(n−∆−1)∆
time slots.
As for message complexity, we observe that every node in the rightmost half of pathC
must transmit all theΩ(n) source messages of the nodes in the leftmost half of pathC.
This clearly yields theΩ(n2) lower bound. ut



∆ nodes

w

Fig. 3. Strategy of faults for lower boundΩ(∆n)

Combined-message model.

Corollary 4.3.

(a) Given a directed GRNGr(V ), there exists an explicit FG protocol having com-
pletion timeO(D∆) and message complexityO(Dn), whereD is the maximal
residual source eccentricity.

(b) There exists a distributed FG protocol that, on anyc-well spread symmetric GRN
Gr(V ), completes gossiping inO(Dc2∆) time slots and has message complexity
O(Dn). The protocol requires the knowledge of the minimal distanceγ.

As for the (single) broadcast operation, the same protocolswork in the same completion
time while the message complexity reduces toO(n).

Proof. Part(a) is a direct consequence of Theorem 2.3 and Theorem 3.8. Part(b) is
obtained by combining Theorems 2.3, 3.10 and 3.12. ut

The above completion time bound is now shown to be tight.

Theorem 4.4. For any n, ∆ and D such thatD∆ 6 n, there exists a GRNGr(V )
of n nodes and maximal in-degree∆ such that, for any FB protocol forGr(V ), there
are a sources ∈ V and an adversary’s fault-patternF , yielding source eccentricity
D, such that the protocol is forced to executeΩ(D∆) time-slots and to have message
complexityΩ(n).

Proof. Let PROT be any deterministic FB protocol. The adversary considers the fol-
lowing directed GRNG. Nodes are located on the plane and organized inLayers. All
nodes of thel-th layer are (initially) connected to all nodes of thel + 1-th layer, but not
viceversa. This can be obtained by setting the distance between thel-th layer and the
l + 1-th one to be larger than the distance between thel + 1-th layer and thel + 2-th
one, and so on. Nodes of the same Layer are connected to each other due to simple
geometrical reasons. The first layerL0 contains only the source node. The other layers
are of two kinds and they alternate each other from left to right. LayerLi consists in



∆ ≥ 2 nodes and layerL′

i consists in only one node (see Fig. 4). Clearly the number of
layers isO(n/∆).
The first adversary’s action is to make all links between nodes of the same layer faulty,
for all time slots, while links fromL′

i to Li+1 are never faulty. Then, it allows the
source to informL1. Now, the line of reasoning works by induction and it is basedon
the following fact.

Claim. Let us assume levelLi is all informed at time slott. Then, for any
strategy ofPROT the adversary can keep (at least) one link fromLi to L′

i never
faulty (so it belongs to the residual graph) andL′

i is not informed before time-
slot t + ∆.

Proof. Nodes inLi are denoted aszj , j = 1, . . . , ∆ and the node inL′

i is
denoted asy. Then, the adversary reads the protocol’s deterministic schedule
and acts as follows. Consider any time slott′ such thatt ≤ t′ < t + ∆: If there
is exactly one nodẽzj in Li that transmits, then the adversary makes (only)
edge(z̃j , y) faulty, otherwise the adversary keeps all the edges on. It should be
clear that, as far ast′ ≤ ∆ − 1, this adversary’s strategy does not allow node
y to be informed and it can keep at least one link fromLi to L′

i (always) non
faulty. ut

The above Claim implies that the adversary can define a fault pattern so that the source
has eccentricityD and its message requires at least∆ time slots to go from any LevelLi

to L′

i. Then, for any source eccentricityD and max in-degree∆ such thatD∆ ∈ O(n),
the directed GRNG together with the fault pattern described above yields theΩ(D∆)
lower bound. ut

L0 L′

0 Li L′

i Li+1

Fig. 4.Layered network

As for the caseD ·∆ > n, we observe that a lower boundΩ(n
√

n) holds for FB proto-
cols on directed GRN of unbounded maximal in-degree and residual source eccentricity



D = Θ(
√

n). This result is an easy consequence of the lower bound for arbitrary graphs
proved in [CMS04]: The graph yielding such lower bound is indeed a GRN of maximal
in-degree∆ = Θ(n).

5 Future work

In the combined-message model, we observe that our FB protocol has also optimal
message complexity while it is an open question whether theO(Dn) bound for the FG
message complexity is optimal.
Another future work is that of extending our distributed construction of collision-free
families to other important classes of radio networks.
Finally, an interesting issue is that of designingrandomizedFG protocols. Such proto-
cols may yield a much better completion time on the residual graph and, more impor-
tantly, they might have good performancesoutsidethe residual graph too.

References

[AS98] M. Adler and C. Scheideler (1998), Efficient communication strategies for ad hoc wire-
less networks. Proc. of10th ACM SPAA, 259-268.

[ABLP89] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg (1991),A lower bound for radio broad-
cast,Journal of Computer and System Science, 43, 290-298.

[ABBS01] B. Awerbuch, P. Berenbrink, A. Brinkmann, and C. Scheideler (2001), Simple routing
strategies for adversarial systems. Proc. of42th IEEE FOCS, 158-167.

[BGI92] R. Bar-Yehuda, O. Goldreich, and A. Itai (1992), On the time-complexity of broadcast
in multi-hop radio networks: An exponential gap between determinism and randomization,
Journal of Computer and System Science, 45, 104-126.

[BII93] R. Bar-Yehuda, A. Israeli, and A. Itai (1993), Multiple communication in multi-hop
radio networks,SICOMP, 22 (4), 875-887.

[C06] T. Calamoneri (2006), TheL(h, k)-Labeling problem: Survey and Annotated Bibliogra-
phy,The Computer Journal, 49, 585-608.

[CKOZ03] G. Calinescu, S. Kapoor, A. Olshevsky, and A. Zelikovsky (2003), Network Life
Time and Power Assignment in ad hoc Wireless Networks, Proc.of 11th ESA, LNCS 2832,
114-126.

[CGGPR00] B. Chlebus, L. Gasieniec, A. Gibbons, A. Pelc, andW. Rytter (2000), Deterministic
broadcasting in unknown radio networks. Proc. of11th ACM-SIAM SODA, 861-870.

[CGR02] M. Chrobak, L. Gasieniec, and W. Rytter (2002), FastBroadcasting and Gossiping in
Radio Networks.Journal of Algorithms, 43 (2), 177-189.

[CCJ90] B.N. Clark, C.J. Colbourn, and D.S. Johnson (1990),Unit disk graphs,Discrete Math-
ematics, 86, 165-177.

[CCPRV01] A.E.F. Clementi, P. Crescenzi, P. Penna, and P. Vocca (2001), On the complexity of
minimum energy consumption broadcast subgraphs, Proc of11th STACS, 121-131.

[CMS03] A.E.F. Clementi, A. Monti, and R. Silvestri (2003),Distributed broadcast in radio
networks of unknown topology.Theoretical Computer Science, 302, 337-364.

[CMS04] A.E.F. Clementi, A. Monti, and R. Silvestri (2004),Round Robin is optimal for fault-
tolerant broadcasting on wireless networks,Journal of Parallel and Distributed Computing,
64(1), 89-96.

[CPS04] A.E.F. Clementi, P. Penna, R. Silvestri (2004), On the power assignment problem in
radio networks,MONET(9), 125-140.



[CR06] A. Czumaj and W. Rytter (2006), Broadcasting algorithms in radio networks with un-
known topology.Journal of Algorithms, 60 (2), 115-143.

[DP07] A. Dessmark and A. Pelc (2007), Broadcasting in geometric radio networks,Journal of
Discrete Algorithms, 5, 187-201.

[ENW00] A. Ephremides, G. Nguyen, and J. Wieselthier (2000), On the construction of energy-
efficient broadcast and multi-cast trees in wireless networks, Proc. of19th IEEE INFOCOM,
585-594.

[GL02] L. Gasieniec and A. Lingas (2002), On adaptive deterministic gossiping in ad-hoc radio
networks, Information Processing Letters, 2, 89-93.

[GPX05] L. Gasieniec, D. Peleg, and Q. Xin (2005), Faster Communication in Known Topology
Radio Networks, Proc. of24th ACM PODC, 129-137.

[I97] P. Indyk (1997), Deterministic Superimposed Coding with Application to Pattern Match-
ing, Proc. of38th IEEE FOCS, 127-136.

[I02] P. Indyk (2002), Explicit constructions of selectorsand related combinatorial structures,
with applications. Proc of13th ACM-SIAM SODA, 697-704.

[KKKP00] L. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc (2000), Power consumption in
packet radio networks,Theoretical Computer Science, 243, 289-305.

[KKP98] E. Kranakis, D. Krizanc, and A. Pelc (1998), Fault-Tolerant Broadcasting in Radio
Networks, Proc. of6th ESA, LNCS 1461, 283-294.

[P02] A. Pelc (2002), Broadcasting in radio networks,Handbook of Wireless Networks and Mo-
bile Computing, John Wiley and Sons, Inc., 509-528.

[PP05] A. Pelc and D. Peleg (2005), Feasibility and complexity of broadcasting with random
transmission failures. Proc. of24th ACM PODC, 334-341.

[PR97] E. Pagani and G. Rossi (1997), Reliable Broadcast in Mobile Multihop Packet Networks,
Proc. of3rd ACM-IEEE MOBICOM, 34-42.

[R96] T. S. Rappaport (1996),Wireless Communications: Principles and Practice, Prentice Hall.
[SM97] A. Sen and E. Malesinska (1997), On Approximation algorithms for packet radio

scheduling, Proc. of35th Allerton Conference on Communication, Control and Computing,
Allerton, 573-582.

[S01] C. Scheideler (2001), Models and Techniques for Communication in Dynamic Networks.
Proc. of18th STACS, 27-49.


