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Abstract

Markovian evolving graphs [2] are dynamic-graph mod-
els where the links among a fixed set of nodes change dur-
ing time according to an arbitrary Markovian rule. They
are extremely general and they can well describe important
dynamic-network scenarios.

We study the speed of information spreading in the sta-
tionary phase by analyzing the completion time of the flood-
ing mechanism. We prove a general theorem that estab-
lishes an upper bound on flooding time in any stationary
Markovian evolving graph in terms of its node-expansion
properties.

We apply our theorem in two natural and relevant
cases of such dynamic graphs: edge-Markovian evolving
graphs [24, 7] where the probability of existence of any
edge at time t depends on the existence (or not) of the
same edge at time t − 1; geometric Markovian evolving
graphs [4, 10, 9] where the Markovian behaviour is yielded
by n mobile radio stations, with fixed transmission radius,
that perform n independent random walks over a square re-
gion of the plane. In both cases, the obtained upper bounds
are shown to be nearly tight and, in fact, they turn out to be
tight for a large range of the values of the input parameters.

1 Introduction

Markovian evolving graphs and Flooding. Graphs that
evolve over time are currently a very hot topic in com-

∗Partially supported by the EU under the EU/IST Project 15964 AEO-
LUS.

puter science. They arise from several areas such as mo-
bile networks, networks of users exchanging e-mail or
instant messages, citation networks and hyperlinks net-
works, peer-to-peer networks, social networks (who-trust-
whom, who-talks-to-whom, etc.), and many other more
[2, 11, 8, 21, 16, 22, 23].

Markovian evolving graphs are a natural and very gen-
eral class of models for evolving graphs introduced in [2].
In these models, the set of nodes is fixed and the edge set at
time t stochastically depends on the edge set at time t − 1:
so, we have an infinite sequence of graphs that is a Markov
chain. It is important to observe that, on one hand, these
models make the underlying mechanism of how the graph
evolves explicit; on the other hand, they are very general
since, by a suitable choice of the matrix transition prob-
ability yielding the graph Markovian process, it is possi-
ble to model several important network scenarios such as
faulty-networks and geometric-mobile networks (such sce-
narios will be described later).

In [2], the hitting time and cover time of random walks
in some specific cases of Markovian evolving graphs have
been analytically studied. We instead investigate the speed
of information spreading on general Markovian evolving
graphs. Reaching all nodes from a given source/initiator
node is typically required to disseminate or retrieve in-
formation: this task is performed via suitable protocols
that aim to achieve low delay and message overhead.
However, when the network topology is highly dynamic
and unknown, (e.g. unstructured peer-to-peer networks,
faulty/mobile networks, etc), it is very hard to design ef-
ficient protocols for that task and, as a result, the flooding
mechanism is often adopted [6, 12, 13, 19]. In the flooding
mechanism, any informed node (i.e. any node that has the



source message) always sends the source message to all its
neighbors. So, the source is informed since the beginning
and, clearly, any other node gets informed at time step t iff
any of its neighbors (w.r.t. the edge set at time t) is informed
at time step t− 1.
The completion time of the flooding mechanism (shortly
flooding time) is the first time step in which all nodes of
the network are informed.

It is important to observe that flooding time in dynamic
networks plays the same role of diameter in static net-
works. Indeed, flooding time and diameter represent “nat-
ural” lower bounds for broadcast protocols in dynamic net-
works and static ones, respectively. For this reason, flooding
is often used in order to evaluate the relative efficiency of
alternative protocols, especially in networks with unknown
dynamic topology [6, 12, 21].

Our results. We study flooding time in stationary Marko-
vian evolving graphs, i.e., when the initial graph is random
with a stationary distribution of the underlying Markov
chain [1]. In network mobility simulation, this corresponds
to the important concept of perfect simulation (see [18, 5]).

We prove an upper bound on flooding time in any sta-
tionary Markovian evolving graph. This upper bound is ex-
pressed in terms of the parameterized node-expansion prop-
erties satisfied by the stationary graphs. As far as we know,
this is the first analytical result on the speed of information
spreading in so general dynamic models.
We then show the tightness (so the “goodness”) of this
bound in two relevant and natural dynamic scenarios: edge-
Markovian evolving graphs (in short, edge-MEG) and ge-
ometric Markovian evolving graphs (in short, geometric-
MEG).

Edge-Markovian evolving graphs. In several networks sce-
narios, there is a strong dependence between the existence
(or the absence) of a link between two nodes at a given time
step and the existence (or the absence) of the same link at
the previous time step. Important examples of this behavior
arise in faulty communication networks, peer-to-peer net-
works1, and social networks.

We thus consider edge-MEG, special Markovian evolv-
ing graphs, recently studied in [7], which are a time-discrete
version of the reciprocity graph model introduced in the
context of evolving social networks [24]. At every time
step, every edge changes its state (existing or not) accord-
ing to a two-state Markovian process with probabilities p(n)
and q(n) where n is the number of nodes. If an edge exists
at time t then at time t + 1 it dies with probability q(n) (i.e.
death-rate). If instead the edge does not exist at time t, then
it will come into existence at time t+1 with probability p(n)
(i.e.birth-rate). For brevity’s sake, functions p(n) and q(n)

1Notice that, in some of these settings, there is an underlying physical
network that supports the abstraction of point-to-point communication.

will be simply denoted as p and q, respectively2. Observe
that setting q = 1 − p yields the (time-independent) dy-
namic random graph model [8] where links, at every time,
are chosen independently at random. So, edge-MEG are (in
turn) a wide generalization of dynamic random graphs. Ob-
serve that when 0 < p, q < 1, the stationary distribution is
unique.

We first prove that stationary edge-MEG, yielding
connected graphs, satisfy certain parameterized node-
expansion properties. Thanks to these properties, we can
apply our general result and achieve an upper bound on
flooding time. The obtained bound is shown to be tight
whenever flooding time is Ω(log log n): this includes, for
instance, the relevant case where the expected node-degree
is O(polylog n). In general, our upper bound for edge-
MEG is thus at most an O(log log n) factor larger than the
optimum.

In [7], it has been studied the maximal flooding time in
edge-MEG with respect to any initial probability distribu-
tion. In that paper, in fact, almost tight bounds for the worst-
case flooding time have been derived. However, those re-
sults do not say whether flooding can be (significantly)
faster in stationary edge-MEG. Interestingly enough, our
stationary bound implies that, whenever the birth-rate p
is O(1/n1+ε) and the death-rate q is O(np/ log n), there
is an exponential gap between the stationary case and
the worst-case. An exponential gap also holds whenever
p = O(log n/n) and q = O(p

√
n) (for instance, set

q = polylog n/n).

Geometric Markovian evolving graphs. We consider a
model of evolving graphs that is based on node mobility.
It is the discrete version of the well-known random-walk
model [4, 9, 14]. In this model, denoted here as geometric-
MEG, nodes (i.e. radio stations) move on a region of the
plane (typically a square region) and each node performs,
independently from the others, a sort of Brownian motion.
At any time there is an edge (i.e. a bidirectional connection
link) between two nodes if they are at distance at most R
(typically R represents the transmission range). We make
time discrete and consider a square grid as a node support-
space (see Section 4 for details). This model can also be
viewed as the walkers model [9] on the square grid.
Differently from edge-MEG, geometric-MEG yield spatial
stochastic dependency among the dynamic edges, i.e., the
probability of an edge depends on the existence of other
edges.
Similarly to the edge-MEG case, we first prove that sta-
tionary geometric MEG, yielding connected graphs, sat-
isfy certain parameterized node-expansion properties. We
then apply our general result and achieve an upper bound
on flooding time. The obtained bound is shown to be tight

2Hence, any inequality p 6 (>)b(n) means that p(n) is eventually not
larger (not smaller) than b(n). The same holds for q = q(n).



whenever flooding time is Ω(log log n). Informally speak-
ing, this happens whenever (i) the transmission radius is
not “almost” equal to the diameter of the square region
and (ii) the maximal node-velocity is less than the message-
transmission speed. Both assumptions are satisfied by most
of real mobile networks. In general, our upper bound is thus
at most an O(log log n) factor larger than the optimum.

Further mobility models. The node-expansion properties of
geometric-MEG are mainly due to the fact that the station-
ary distribution of node positions is almost uniform. In this
paper, we provide formal results and proofs only for flood-
ing in geometric-MEG. However, our expansion technique
can be applied to any mobility model yielding a uniform
or almost uniform stationary distribution of node positions.
Several variants of the random waypoint model, one of the
most commonly used mobility models [17, 4], enjoy this
uniformity property. Among the others, we mention the
random-direction model with reflection (also called the bil-
liard model) [3, 18, 20], the random waypoint on a torus
[14, 15, 18, 20] and the random waypoint on a sphere [18].
Furthermore, the uniformity property is also satisfied by the
walkers model on a toroidal grid [10].

To the best of our knowledge, our results are the the first
analytical (tight) bounds on flooding time for natural and
relevant models of mobile networks.

We finally remark that our flooding analysis does not
take care about the interference problem in message trans-
missions: this is typically managed at the MAC layer of a
wireless network architecture [3, 8]. The impact of message
interferences in geometric-MEG is a further interesting is-
sue which is out of the scope of our work focussing, instead,
on dynamic-connectivity properties of MEG.

Organization of the paper. In Section 2, we prove our up-
per bound for flooding time in general Markovian evolving
graphs. The results for edge-MEG and geometric-MEG are
described in Sections 3 and 4, respectively. Finally, further
generalizations of our general theorem and some potential
applications to other important classes of evolving graphs
are discussed in Section 5.

2 Markovian evolving graphs: the general
theorem

Through this paper, the set [n] = {1, . . . , n} will repre-
sent the set of n nodes. Let G = ([n], E) be a graph and
I ⊆ [n] be a subset of nodes. We denote by N(I) the out-
neighborhood of I , i.e.

N(I) = {v ∈ [n] \ I : {u, v} ∈ E, for some u ∈ I}

Given a source node s ∈ [n], the flooding process can be
represented by the sequence {It ⊆ [n] : t ∈ N} where It is

the subset of informed nodes defined recursively as follows
I0 = {s}
It+1 = It ∪N(It)

Notice that the subset N(It) refers to the graph at time step
t. Let T (s) be the first time step such that all nodes are
informed. The flooding time is the maximum T (s) over all
possible choices of source s.

Definition 2.1 (Markovian evolving graph) Let G be a
family of graphs with the same node set [n]. A Markovian
evolving graph M = {Gt : t ∈ N} is a Markov chain with
state space G.
A stationary Markovian evolving graph is a Markovian
evolving graphM = {Gt : t ∈ N} such that G0 is random
with a stationary distribution of M.

The following definition concerns a sort of parameterized
node-expansion. This is a key-ingredient, in our analysis
of flooding in Markovian evolving graphs, to cope with the
difficulties due to the stochastic dependence.

Definition 2.2 (Expander) A graph G = ([n], E) is a
(h, k)-expander if, for every set of nodes I ⊆ [n] with
|I| 6 h, it holds that |N(I)| > k|I|.

The above definition naturally extends to random variables
and their probability distributions.

Definition 2.3 (Expander II) Let X be a random variable
with values in a family of graphs with the same node set [n].
Then X is a (h, k)-expander with probability p if

P (X is a (h, k)-expander) > p

In this case, we also say that the probability distribution of
X yields an (h, k)-expander with probability p.

We are now able to provide our main result for general sta-
tionary Markovian evolving graphs.

Theorem 2.4 Let M = {Gt : t ∈ N} be a stationary
Markovian evolving graph. Assume an increasing sequence
1 = h0 6 h1 < · · · < hs = n/2 and a decreasing se-
quence k1 > · · · > ks of positive real numbers exist such
that, for every i = 1, . . . , s, the stationary distribution ofM
yields an (hi, ki)-expander with probability 1 − 1

n4 . Then
flooding time in M is w.h.p.

O

 
sX

i=1

log(hi/hi−1)

log(1 + ki)

!

Proof. We first give an idea of the proof. Since by The-
orem’s hypothesis, the distribution of G0 is the stationary
distribution of the Markov chain M, then for every t ∈ N,
r.v. Gt has the same distribution of G0.



Let us call mt = |It| the number of informed nodes at time
step t; at the beginning we have m0 = 1. Since every r.v.
Gt is an (h1, k1)-expander w.h.p. then, as long as mt 6 h1,
the recurrence

mt+1 > (1 + k1)mt (1)

holds w.h.p. Indeed, whatever the stochastic dependence
were till time step t, the node-expansion property guaran-
tees that |N(It)| is at least k1mt. The closed form of the
above recurrence is mt > (1 + k1)tm0, hence

O
„

log(h1/m0)

log(1 + k1)

«

time steps are enough to get mt > h1 w.h.p. However, the
latter bound might be o(1) and this requires some technical
care to be treated. Now, let t1 be the smallest time step
such that mt1 > h1. From that time step on, we cannot
use Recurrence (1) anymore, but as Gt is also an (h2, k2)-
expander w.h.p., as long as mt 6 h2, the new recurrence
mt+1+t1 > (1 + k2)mt+t1 holds w.h.p. By solving the
recurrence, we obtain mt+t1 > (1+k2)tmt1 > (1+k2)th1.
So the number of time steps required to reach h2 informed
nodes is w.h.p.

O
„

log(h2/h1)

log(1 + k2)

«
+O

„
log h1

log(1 + k1)

«
We apply this way of reasoning over all sequence of expan-
sion parameters and we thus get that at least n/2 nodes will
be informed within a number of time steps that is w.h.p.
within the bound of the theorem.
Once there are n/2 informed nodes, a symmetric argument
shows that the number of non-informed nodes decreases at
the same rate.
We now provide the formal proof. Let us call t̄ =

∑s
i=1 ti

where

ti =
log(hi/hi−1)
log(1 + ki)

The proof is splitted in two parts: in the first part we prove
that after O(t̄) time steps, there are at least n/2 informed
nodes w.h.p.; in the second part we assume to have at least
n/2 informed nodes and then prove that, after further O(t̄)
time steps, all nodes will be informed w.h.p.
First part (From 1 to n/2). For i = 0, 1, . . . , s, let Ti be the
random variable defined by

Ti = min{t ∈ N : mt > hi}

where mt is the r.v. counting the number of informed nodes
at time step t. We now show that Ts ∈ O(t̄) w.h.p.

Claim 1 If ti > 1 then

P (Ti − Ti−1 > 2ti) 6
1
n2

Proof. (of Claim.) For t ∈ N define the events

E i
t =

{
mt+Ti−1 > (1 + ki)mt−1+Ti−1

}
Zi

t =
{
mt−1+Ti−1 6 hi

}
F i

t =
{
mt+Ti−1 < (1 + ki)tmTi−1

}
Firstly, it holds that 3

Zt+1 ⊆ Zt (2)

Indeed, if the number of informed nodes were less than hi

in time step t + Ti−1, then they would be less than that in
the previous time step. Moreover, we have that

t⋂
j=1

Ej ⊆ Ft

Indeed, if mj+Ti−1 > (1 + ki)mj−1+Ti−1 for every j =
1, . . . , t, then it holds that mt+Ti−1 > (1 + ki)tmTi−1 . By
considering the complementary sets, we get

Ft ⊆
t⋃

j=1

Ej (3)

Finally, define t̂i = dtie =
⌈

log(hi/hi−1)
log(1+ki)

⌉
and notice that

since ti > 1 then ti 6 t̂i 6 2ti. Since mTi−1 > hi−1, it
holds that

{mt̂i+Ti−1
< hi} ⊆

{
mt̂i+Ti−1

<
hi

hi−1
mTi−1

}
⊆ Ft̂i

(4)
We also easily have that {mt̂i+Ti−1

< hi} ⊆ Zt̂i
. Now we

can evaluate

P (Ti − Ti−1 > 2ti) 6 P
`
Ti − Ti−1 > t̂i

´
= P

“
mt̂i+Ti−1

< hi

”
= P

“
{mt̂i+Ti−1

< hi} ∩ Zt̂i

”
6 P

“
Ft̂i

∩ Zt̂i

”
6 P

0@0@ t̂i[
j=1

Ej

1A ∩ Zt̂i

1A = P

0@ t̂i[
j=1

“
Ej ∩ Zt̂i

”1A
6 P

0@ t̂i[
j=1

(Ej ∩ Zj)

1A 6
t̂iX

j=1

P (Ej | Zj)P (Zj) 6
t̂iX

j=1

P (Ej | Zj)

In the second line we used (4), in the third (3), and in the
fourth line we used (2).
For j = 1, . . . , t̂i, r.v. Gj is a (hi, ki)-expander with proba-
bility at least 1−1/n4; indeed Gj has the same distribution
of G0 and this one is a (hi, ki)-expander w.h.p. by hypothe-
sis. Hence P (Ej | Zj) 6 1/n4. We can bound t̂i 6 n log n:
indeed, we surely have hi 6 n and ki > 1/n. This gives
the bound

P (Ti − Ti−1 > 2ti) 6
t̂i
n4

6
1
n2

3In what follows, we omit superscript i to simplify the notation



�
(Theorem’s Proof follows). Let {α(j)}j be a subsequence
of {0, 1, . . . , s} defined recursively as follows: α(0) = 0,

α(j) = min

α ∈ [s] :
α∑

i=α(j−1)+1

ti > 1


if the set is not empty, and

α(j) = s otherwise

Let us call j̄ the last index of sequence {α(j)} so that
α(j̄) = s. For every j = 1, . . . , j̄, define

l(j) =
α(j)∑

i=α(j−1)+1

ti

By using union bound, we get

P (Ts > 2t̄) 6
j̄∑

j=1

P
(
Tα(j) − Tα(j−1) > 2l(j)

)
In what follows, we show that, for every j = 1, . . . , j̄, it
holds that

P
(
Tα(j) − Tα(j−1) > 2l(j)

)
6

1
n2

(5)

By definition of α(j), If α(j) = α(j−1)+1 then tα(j) > 1;
hence

P
`
Tα(j) − Tα(j−1) > 2l(j)

´
= P

`
Tα(j) − Tα(j)−1 > 2tα(j)

´
Thus, from Claim 1 we get (5).
Assume now that α(j) > α(j− 1) + 1 and observe that, by
union bound, it holds that

P
`
Tα(j) − Tα(j−1) > 2l(j)

´
6 P

`
Tα(j)−1 − Tα(j−1) > l(j)

´
+P

`
Tα(j) − Tα(j)−1 > l(j)

´
If mTα(j−1) > hs = n/2 then the first part is proved. Oth-

erwise, let

γ = min{i ∈ [s] : mTα(j−1) 6 hi}

The graph is w.h.p. a (hγ , kγ)-expander and it holds that
mTα(j−1) 6 hγ ; so, we have w.h.p. that

mTα(j−1)+1 > (1 + kγ)mTα(j−1)

Since γ is the minimum index such that mTα(j−1) 6 hγ , we
also have that mTα(j−1) > hγ−1 and so w.h.p.

mTα(j−1)+1 > (1 + kγ)hγ−1

If (1 + kγ)hγ−1 > hs = n/2, then, in this step, we achieve
n/2 informed nodes w.h.p. Otherwise, define

Γ = min{i ∈ [s] : hi > (1 + kγ)hγ−1}

Claim 2 Γ > α(j).

Proof.
ΓX

i=γ

ti =

ΓX
i=γ

log(hi/hi−1)

log(1 + ki)

>
1

log(1 + kγ)

ΓX
i=γ

log(hi/hi−1) =
log(hΓ/hγ−1)

log(1 + kγ)
> 1

where we used the fact that sequence {ki} is decreasing and
the definition of Γ. Since γ > α(j − 1) + 1 then

1 6
Γ∑

i=γ

ti 6
Γ∑

i=α(j−1)+1

ti

But, by definition, α(j) is the smallest index that satisfies

α(j)∑
i=α(j−1)+1

ti > 1

�
(Theorem’s Proof follows). Thanks to the above claim and
the (hγ , kγ)-expansion property, we get

mTα(j−1)+1 > (1 + kγ)hγ−1 > hΓ−1 > hα(j)−1

Since

{mTα(j−1)+1 > hα(j)−1} = {Tα(j)−1 6 Tα(j−1) + 1}

then we have that

P
`
Tα(j)−1 − Tα(j−1) > l(j)

´
6 P

`
Tα(j)−1 − Tα(j−1) > 1

´
6 P (G0 is not an (hγ , kγ)-expander) 6

1

n4

Finally consider P
(
Tα(j) − Tα(j)−1 > l(j)

)
. If tα(j) > 1

then we can apply Claim 1 and get

P
`
Tα(j) − Tα(j)−1 > l(j)

´
6 P

`
Tα(j) − Tα(j)−1 > tα(j)

´
6

1

n2

Otherwise, if

tα(j) =
log(hα(j)/hα(j)−1)

log(1 + kα(j))
< 1

then hα(j) 6 (1 + kα(j))hα(j)−1 and since, by the expan-
sion property, it holds w.h.p.

mTα(j) > (1 + kα(j))mTα(j)−1

we have that

P
`
Tα(j) − Tα(j)−1 > l(j)

´
6 P

`
Tα(j) − Tα(j)−1 > 1

´
6 P

“
mTα(j) < (1 + kα(j))mTα(j)−1

”
6

1

n4



Thus, we can conclude that

P
`
Tα(j) − Tα(j−1) > 2l(j)

´
6 P

`
Tα(j) − Tα(j)−1 > l(j)

´
+

+ P
`
Tα(j)−1 − Tα(j−1) > l(j)

´
6

2

n2
,

andP (Ts > 2t̄) 6
j̄X

j=1

P
`
Tα(j) − Tα(j−1) > 2l(j)

´
6

2s

n2
6

1

n

Second part (From n/2 to n).
In the first part we showed that after O(t̄) time steps there
are at least n/2 informed nodes w.h.p. In this second part,
define for t ∈ N the random variable m̄t that counts the
number of non-informed nodes at time steps t, i.e. m̄t =
n−mt. At the beginning of the second part, we have m̄Ts

6
n/2 w.h.p.

Given a graph G = ([n], E) and a subset of nodes J ⊆ [n],
let us define

W (J) = {u ∈ J : {u, v} ∈ E, for some v ∈ [n] \ J}

Observe that if J is the set of non-informed nodes in a fixed
time step, then W (J) is the set of nodes that will be in-
formed in the next time step.

Claim 3 Let G be a (h, k)-expander, then for every set J ⊆
[n] with |J | 6 h it holds that

|W (J)| > k

k + 1
|J |

Proof. For every set J ⊆ V it holds that N (J \W (J)) ⊆
W (J). So, if |J | 6 h we have that |J \ W (J)| 6 h and,
from the definition of (h, k)-expander, it holds that

|W (J)| > |N (J \W (J)) | > k|J \W (J)| = k(|J | − |W (J)|)

�
Since r.v. Gt is w.h.p. a (hi, ki)-expander, the previous
claim implies that if m̄t−1 6 hi then the recurrence

m̄t 6 m̄t−1 −
ki

1 + ki
m̄t−1

holds w.h.p. If t0 is the first time step such that m̄t0 6
hi then the closed form of the recurrence is m̄t+t0 6(

1
1+ki

)t

m̄t0 and, in order to have m̄t+t0 6 hi−1, it suf-
fices to have (

1
1 + ki

)t

6 hi−1/m̄t0 (6)

If t > log(hi/hi−1)
log(1+ki)

then (6) is satisfied. Thus, for each stage
i = 1, . . . , s, we have the same expression of the first part,
and the proof can proceed in the same way.

Formally, for each i = 0, 1, . . . , s define the r.v. T̄i =
min{t ∈ N : m̄t 6 hi}. Symmetrically to the first part,
it comes out that T̄α(j−1) − T̄α(j) ∈ O

(∑α(j)
i=α(j−1)+1 ti

)
w.h.p. �

An easy consequence of Theorem 2.4 is the following

Corollary 2.5 Let M = {Gt : t ∈ N} be a stationary
Markovian evolving graph. Assume a decreasing sequence
k1 > · · · > kn/2 of positive real numbers exists such that,
for every i = 1, . . . , n/2, the stationary distribution of M
yields an (i, ki)-expander with probability 1 − 1

n4 . Then
flooding time in M is w.h.p.

O

0@n/2X
i=1

1

i log(1 + ki)

1A
Definition 2.1 naturally extends in the following way. We
will need this generalization to include geometric-MEG
(see Section 4).

Definition 2.6 (Markovian Evolving Graph II) Let G be
a family of graphs with the same node set [n]. A Markovian
evolving graph G = {Gt : t ∈ N} is a sequence of random
variables with state space G and such that there exist both
a Markov chain X = {Xt : t ∈ N} and a function f so
that Gt = f(Xt).
A stationary Markovian evolving graph is a Markovian
evolving graph G = {Gt : t ∈ N} such that G0 is ran-
dom with a stationary distribution of X translated by f .

It is not hard to show that Theorem 2.4 easily extends to the
above generalized definition of Markovian evolving graphs.

3 Edge-Markovian evolving graphs

We recall the model introduced in [7, 24]. An edge-MEG
M(n, p, q) = {Gt : t ∈ N} is a Markov chain such that
Gt = ([n], Et) with

Et =
{

e ∈
(

[n]
2

)
: Xt(e) = 1

}
where {Xt(e) : e ∈

(
[n]
2

)
} are independent Markov chains

with transition matrix

M =

0B@ 0 1

0 1− p p

1 q 1− q

1CA
Remind that p is the birth-rate and q is the death-rate and
notice that an edge-MEG is a Markovian evolving graph
according to Definition 2.1. Observe that if 0 < p, q, < 1



the Markov chains {Xt(e) : t ∈ N} are irreducible and
aperiodic; so there is a unique stationary distribution

πe =
(

q

p + q
,

p

p + q

)
Hence, the stationary distribution ofM(n, p, q) is Gn,p̂ (i.e.
Erdös-Rényi distribution in which each possible edge oc-
curs independently with probability p̂) where here and in
the sequel

p̂ =
p

p + q

Stationary edge-MEG enjoy the following node-expansion
properties.

Theorem 3.1 Let M(n, p, q) be an edge-MEG such that
p̂ > c log n

n for a sufficiently large constant c. Then, the
stationary distribution of M(n, p, q) yields, with probabil-

ity at least 1− 1
n4 , a

(
h, np̂

c

)
-expander for 1 6 h 6 1

p̂ and

a
(
h, n

ch

)
-expander for 1

p̂ 6 h 6 n
2 .

The proof of the theorem is a simple consequence of the
following lemma.

Lemma 3.2 Let p̂ > c log n
n for a sufficiently large constant

c. With probability 1 − 1
n4 for Gn,p̂ it holds that for any

I ⊆ [n] with |I| 6 n
2 ,

|N(I)| > min
{
|I|np̂

c
,
n

c

}
Proof. Fix the constant c = 28. We first consider the case
when |I| 6 1

p̂ and prove that, with probability at least 1 −
1

n4 , it holds |N(I)| > |I|np̂
c . Then we consider the case

1
p̂ 6 |I| 6 n

2 and prove that, with probability at least 1− 1
n4 ,

it holds |N(I)| > n
c .

Let m = |I| 6 1
p̂ . For any u ∈ [n] \ I consider the random

variable Xu so that Xu = 1 if u ∈ N(I) and Xu = 0
otherwise. Since P (Xv = 1) > mp̂ we have

E [|N(I)|] =
X

u∈[n]\I

E [Xu] = (n−m)mp̂

>

„
n− 1

p̂

«
mp̂ >

1

2
nmp̂

From Chernoff’s bound we get

P

„
|N(I)| 6

1

c
nmp̂

«
6 e−

1
4 nmp̂( c−2

c )2

6 e−
1
4 m log n

(c−2)2

c 6 n−
c−4
4 m

Therefore

P

„
∃I ⊆ [n], 1 6 |I| 6 1/p̂ : |N(I)| 6

1

c
nmp̂

«

6
X

I ⊆ [n]
1 6 |I| 6 1/p̂

P

„
|N(I)| 6

1

c
nmp̂

«

6
b1/p̂cX
m=1

 
n

m

!
n−

c−4
4 m 6

b1/p̂cX
m=1

nmn−
c−4
4 m

6
1

p̂
n−

c−8
4 6 n−

c−12
4 6 n−4

Now consider the case where 1
p̂ 6 |I| = m 6 n

2 . Notice
that |N(I)| 6 n

c if and only if there exists a set A ⊆ [n] \
(I ∪N(I)) such that |A| > n−m− n

c . Hence

P
“
∃I ⊆ [n], |I| = m : |N(I)| 6

n

c

”
=

 
n

m

! 
n−m

|A|

!
(1−p̂)m|A|

From the following inequalities

•
(

n
m

)
6

(
en
m

)m
6 em log(en) = emnp̂

log(en)
np̂ 6

emnp̂
log(en)
c log n = emnp̂( 1

c log n + 1
c )

•
(
n−m
|A|

)
=

(
n−m

n−m−|A|
)

=
(
n−m

n
c

)
6

(
n
n
c

)
6 (ec)

n
c =

e
n
c log(ec) 6 emnp̂( 1

c + log c
c )

• (1 − p̂)m|A| 6 e−mp̂|A| 6 e−mp̂(n−n
2−

n
c ) =

e−mnp̂( 1
2−

1
c )

we get

P
“
∃I ⊆ [n], |I| = m : |N(I)| 6

n

c

”
6 e

−mnp̂
“

1
2−

3
c
− log c

c
− 1

c log n

”

6 e−
n
5

Hence

P

„
∃I ⊆ [n],

1

p̂
6 |I| 6

n

2
: |N(I)| 6

n

c

«
6

X
I ⊆ [n]1/p̂ 6 m 6 n/2

P
“
∃I ⊆ [n], |I| = m : |N(I)| 6

n

c

”

6
dn/2eX

m=b1/p̂c

e−
n
5 6 ne−

n
5 6 n−4

where the last inequality holds for sufficiently large n. �
The expansion properties of stationary edge-MEG, stated
in Theorem 3.1, allow us to apply Corollary 2.5 and, thus,
getting the following

Theorem 3.3 Let M(n, p, q) be a stationary edge-MEG
such that p̂ > c log n

n for a sufficiently large constant c. Then
flooding time in M(n, p, q) is w.h.p.

O
(

log n

log(np̂)
+ log log(np̂)

)



Proof. Thanks to Theorem 3.1, we can apply Corollary 2.5
with sequence

ki =


np̂
c for 1 6 i 6

⌊
1
p̂

⌋
n
ci for

⌊
1
p̂

⌋
< i 6 n

2

Thus we obtain that the order of flooding time is w.h.p.
bounded by

b1/p̂cX
i=1

1

i log(1 + np̂
c

)
+

dn/ce−1X
i=b1/p̂c+1

1

i log(1 + n
ci

)

+

n/2X
i=dn/ce

1

i log(1 + n
ci

)

We now evaluate the above sums separately. For the first
sum, by using

∑m
i=1

1
i 6 log m + 1, we have

b1/p̂cX
i=1

1

i log(1 + np̂
c

)
=

log 1
p̂

+ 1

log(1 + np̂
c

)
= O

„
log n

log(np̂)

«

For the second sum, by using log(1+x) > log x for x > 1,
we have

dn/ce−1X
i=b1/p̂c+1

1

i log(1 + n
ci

)
6

dn/ce−1X
i=b1/p̂c+1

1

i log n
ci

6
Z dn/ce−1

b1/p̂c

1

x log n
cx

dx =
h
− log log

n

cx

idn/ce−1

b1/p̂c
= O(log log(np̂))

For the third sum, we apply log(1 + x) > x/(1 + x) for
x < 1 and get

n/2X
i=dn/ce

1

i log(1 + n
ci

)
6

n/2X
i=dn/ce

`
1 + n

ci

´
i n

ci

=

n/2X
i=dn/ce

„
c

n
+

1

i

«
6

n/2X
i=dn/ce

“ c

n
+

c

n

”
= O(1)

�
Next theorem gives a lower bound on flooding time in sta-
tionary edge-MEG.

Theorem 3.4 Let M(n, p, q) be a stationary edge-MEG
such that p̂ > c log n

n for a sufficiently large constant c. Then
flooding time in M(n, p, q) is w.h.p.

Ω

„
log n

log(np̂)

«
Proof. Consider the sequence M(n, p, q) = {Gt : t ∈ N}
, where each graph Gt, is random with distribution Gn.p̂.
For a sufficiently large c (say c = 4), it holds w.h.p. that, for
every t = O(n), the maximal node degree of Gt is O(np̂).
Then, by evaluating the maximum number of new informed
nodes at every time step, we get the thesis. �
By comparing the upper bound of Theorem 3.3 and the
lower bound of Theorem 3.4 we obtain the following

Corollary 3.5 Let M(n, p, q) be a stationary edge-MEG

such that c log n
n 6 p̂ 6 n

1
log log n

n , for a sufficiently large
constant c. Then flooding time in M(n, p, q) is w.h.p.

Θ
(

log n

log(np̂)

)
4 Geometric Markovian evolving graph

We introduce a model of dynamic graphs that is a discrete
version of the random walk mobility model for radio net-
works [4]. In the latter model, nodes (i.e. radio stations)
move on a bounded region of the plane (typically a square
region) and each node performs, independently from the
others, a sort of Brownian motion. At any time there is
an edge (i.e. a bidirectional connection link) between two
nodes if they are at distance at most R (typically R repre-
sents the transmission range). In our model we discretize
time and space. We choose to keep constant the density (i.e.
the ratio between the number of nodes and the area) as the
number n of nodes grows. The node region is a square of
side

√
n and the density equals to 1. This choice is only

for the sake of simplicity and all the results can be scaled
to any density δ(n). The nodes can assume positions whose
coordinates are integer multiple of a resolution coefficient
ε > 0. Formally, nodes move on the following set of points

Ln,ε = {(iε, jε) | i, j ∈ N ∧ i, j 6

√
n

ε
}

At any time step, a node can move to one of the positions
of Ln,ε within distance r from the previous position. The
positive real number r is a fixed parameter that we call move
radius. It can be interpreted as the maximum velocity of a
node4. Formally, we introduce the move graph Mn,r,ε =
(Ln,ε, En,r,ε), where

En,r,ε = {(x,y) | x,y ∈ Ln,ε d(x,y) 6 r}

and d(·, ·) is the Euclidean distance. A node in position x,
in one time step, can move in any position in Γ(x), where
Γ(x) = {y | (x,y) ∈ En,r,ε}. The nodes are identified
by the first n positive integers [n]. The time-evolution of
the movement of a single node i is represented by a Markov
chain {Pi,t ; t ∈ N}where Pi,t are random variables whose
state-space is Ln,ε and

P (Pi,t+1 = x) =
{ 1

|Γ(Pi,t)| if x ∈ Γ(Pi,t)
0 otherwise

In other words, Pi,t is the position of node i at time t. Thus,
the time-evolution of the movements of all the nodes is rep-
resented by a Markov chain P(n, r, ε) = {Pt : t ∈ N}

4Indeed, a node can run through a distance of at most r in a unit of
time.



whose state-space is Ln,ε×Ln,ε×· · ·×Ln,ε (n times) and

Pt = (P1,t, P2,t, . . . , Pn,t)

Let us fix a transmission radius R > 0. A geometric-MEG
is a sequence of random variables G(n, r, R, ε) = {Gt :
t ∈ N} such that Gt = ([n], Et) with

Et = {(i, j) | d(Pi,t, Pj,t) 6 R}

Clearly, a geometric-MEG is a Markovian evolving graph
according to Definition 2.6.
As for the stationary case, we observe that the stationary
distribution πi of Markov chain {Pi,t ; t ∈ N} is (see [1])

πi(x) =
|Γ(x)|∑

y∈Ln,ε
|Γ(y)|

Notice that πi is almost uniform since, for any two posi-
tions x and y, the values πi(x) and πi(y) can differ by at
most a constant factor. Moreover, the stationary distribu-
tion of P(n, r, ε) is the product of the independent distri-
butions πi for all i ∈ [n]. We say that a geometric-MEG
G(n, r, R, ε) = {Gt : t ∈ N} is a stationary geometric-
MEG if the underlying P0 is random with the stationary dis-
tribution of the Markov chain P(n, r, ε) = {Pt : t ∈ N}.
Notice that if G(n, r, R, ε) = {Gt : t ∈ N} is a stationary
geometric-MEG then all random variables Gt are random
with the same probability distribution that we call station-
ary distribution of G(n, r, R, ε).
Stationary geometric-MEG enjoy of the following expan-
sion properties.

Theorem 4.1 If ε 6 1 and c
√

log n 6 R 6
√

n for a
sufficiently large constant c, then constants α, β > 0 exist
such that, with probability 1− 1

n4 , the stationary distribution
of G(n, r, R, ε) yields:

• A (h, αR2

h )-expander for 1 6 h 6 αR2;

• A (h, β R√
h
)-expander for αR2 6 h 6 n/2.

Proof. Let m = d
√

5n/Re. Consider the partition of the
square

√
n×

√
n into m×m congruent sub-squares, called

cells. Every cell can be identified by the pair of indices
(i, j), for 1 6 i, j 6 m, such that i is the index of row and
j is the index of column of the cell. Let ci,j be the subset of
the points of Ln,ε that fall into the cell (i, j). Notice that the
side length ` of a cell satisfies R/(

√
5 + 1) 6 ` 6 R/

√
5.

Thus, any point of a cell is at distance less than R from any
point of a side-by-side adjacent cell.
Through the following, we assume that the positions of the
nodes are random with the stationary distribution of the
Markov chain P(n, r, ε). Moreover, we say that a node be-
longs to a cell whenever its position belongs to the cell. Let
Ni,j be the random variable counting the number of nodes
in cell ci,j . Now, we state a simple but crucial claim. The
proof is quite standard and it is omitted.

Claim 4 If ε 6 1 and R > c
√

log n for a sufficiently large
constant c, then a constant λ > 1 exists such that, with
probability 1− 1

n4 , it holds that, for every 1 6 i, j 6 m,

R2

λ
6 Ni,j 6 λR2

Let B be the event that occurs when, for every 1 6 i, j 6
m,

R2

λ
6 Ni,j 6 λR2

where λ is the constant of Claim 4. We now prove event B
implies the expansion properties stated in the thesis of the
theorem.

Claim 5 If event B holds then the graph induced by R and
by the positions of the nodes is a (h, αR2

h )-expander for
1 6 h 6 αR2, where α = 1/(2λ).

Proof. Let I ⊆ [n] be such that |I| 6 αR2. Consider a node
u in I and let ci,j be the cell that contains u. Since B holds,
Ni,j > R2

λ . All the nodes in ci,j are adjacent to u. Thus,
there are at least Ni,j − |I| nodes that are adjacent to u and
that are not in I . It follows that

|N(I)| > Ni,j − |I| >
R2

λ
− αR2 >

R2

2λ
= αR2

In other terms, |N(I)| > αR2

|I| |I|. �

Claim 6 If event B holds then the graph induced by R 6√
n and by the positions of the nodes is a (h, β R√

h
)-

expander for αR2 6 h 6 n/2, where β = 1
8λ2 .

Proof. Let I ⊆ [n] be any subset of nodes with |I| 6 n/2.
We say that a cell is black if it contains at least a node in I .
We say that a cell is white if it does not contain any node
in I . Let B be the random variable that is the set of black
cells. Let J be the random variable defined as follows

J = {u ∈ [n] | u 6∈ I ∧ ∃c ∈ B : node u belongs to c}

Now, two cases are possibile: either |J | > βR
√
|I| or not.

Firstly, suppose that |J | > βR
√
|I|. Since every node in J

is in a black cell, it holds that J ⊆ N(I), and thus

|N(I)| > |J | > βR
p
|I|

In other terms, N(I) > β R√
|I|
|I| and the expansion prop-

erty is proved.
Consider now the case |J | < βR

√
|I|. We say that a row

(column) of cells is black if all the cells of the row (column)
are black. Similarly, we say that a row (column) is white if
all the cells of the row (column) are white. A row (column)
that is neither black nor white is said to be gray. Notice
that a gray row (column) contains at least two adjacent cells
such that one is white and the other is black. Let Br and Bc



be, respectively, the number of black rows and the number
of black columns. Three cases may arise.
[Br > 1]: Observe that in this case all the columns are
either black or gray. Let Y be the number of gray columns.
It holds that

Y > m−Bc > m− |B|
m

Since event B holds, the number of nodes in non-black cells
is bounded by λR2(m2 − |B|) and thus

λR2(m2 − |B|) > n− |I| − |J | > n− |I| − βR
p
|I|

It follows that

|B| 6 m2 −
n− |I| − βR

p
|I|

λR2

By combining this bound with the previous bound on Y we
obtain

Y >
n− |I| − βR

p
|I|

λR2m
>

n− |I| − βR
p
|I|

λ2
√

5nR

where the last inequality follows from m = d
√

5n/Re and
R 6

√
n.

Observe that every gray column contains at least a white cell
that is adjacent to a black cell. So, all the nodes belonging
to those white cells are included in N(I). Since event B
holds, it follows that

|N(I)| > Y
R2

λ
> R

 
n− |I| − βR

p
|I|

λ22
√

5n

!

Now, recalling that β = 1
8λ2 , |I| 6 n/2, and R 6

√
n, it is

easy to verify that

n− |I| − βR
p
|I|

λ22
√

5n
> β

p
|I|

It follows that |N(I)| > βR
√
|I| and the expansion prop-

erty holds.

[Bc > 1 (and Br = 0)]: This case is symmetric to the pre-
vious one.
[Br = 0 and Bc = 0]: In this case, all the rows and
columns are either gray or white. Let Yr and Yc be the num-
ber of gray rows and the number of gray columns, respec-
tively. Since there are neither black rows nor black columns,
it must be the case that every black cell belongs to both a
gray row and a gray column. As a consequence it holds that
Yr · Yc > |B|. Without loss of generality, assume that
Yr > Yc. Then Y 2

r > |B| and thus Yr >
√
|B|. Since event

B holds and every gray row contains a white cell adjacent
to a black one, it holds that

|N(I)| > Yr
R2

λ
>
p
|B|R

2

λ

By using again the fact (implied by event B) that every cell
contains at most λR2 nodes, we have that |B|λR2 > |I|
and thus

√
|B| >

√
|I|√
λR

. It follows that

|N(I)| >
R
p
|I|

λ
√

λ
> βR

p
|I|

and the expansion property holds. �
Since, by Claim 4, event B occurs with probability at least
1− 1

n4 , Claims 5 and 6 imply that also the expansion prop-
erties will hold with probability 1− 1

n4 . �
Thanks to the general bound given by Corollary 2.5, the
above expansion properties can be exploited in order to
bound the flooding time in stationary geometric-MEG.

Theorem 4.2 Let G(n, r, R, ε) be a stationary geometric-
MEG. If ε 6 1 and c

√
log n 6 R 6

√
n for a sufficiently

large constant c, then flooding time in G(n, r, R, ε) is w.h.p.

O
„√

n

R
+ log log R

«
Proof. From Theorem 4.1, the stationary geometric-MEG
G(n, r, R, ε) enjoys, with probability 1− 1

n4 , of the follow-
ing expansion properties:

• (h, αR2

h )-expander for 1 6 h 6 αR2

• (h, β R√
h
)-expander for αR2 6 h 6 n/2.

Thus, by applying Theorem 2.4, we obtain that flooding
time is w.h.p.

O

0@αR2X
h=1

1

h log(1 + αR2

h
)

+

n/2X
h=αR2

1

h log(1 + β R√
h
)

1A
We now evaluate the above two sums separately. For the

sake of convenience, set T = αR2. It holds that
TX

h=1

1

h log(1 + T
h
)

6 2

TX
h=1

1

h log(1 + T
h
)

T

(T + h)

This holds because T
(T+h) > 1/2 for h 6 T . Moreover,

PT
h=1

1

h log(1+ T
h

)

T
(T+h)

= T
(T+1) log(T+1)

+

+
PT

h=2
1

h log(1+ T
h

)

T
(T+h)

6 1 +
R T

1
T

x(T+x) log(1+ T
x

)
dx

= 1 + [− log log(1 + T
x
)]T1

= log log(T ) + c

where c is a constant. Therefore we have shown that
αR2X
h=1

1

h log(1 + αR2

h
)

= O(log log R)

Now consider the second sum. By using the inequality
log(1 + x) > x

1+x we have that

n/2X
h=αR2

1

h log(1 + β R√
h
)

6
n/2X

h=αR2

√
h + βR

hβR



6
1 + β√

α

βR

n/2X
h=αR2

1√
h

.

where the last inequality comes from inequality
√

h + βR 6 (1 +
β√
α

)
√

h

for h > αR2. Moreover, it holds that
n/2X

h=αR2

1√
h

6
Z n/2

αR2−1

dx√
x

6 2
√

n

By combining the above inequalities we obtain

n/2X
h=αR2

1

h log(1 + β R√
h
)

6 2
1 + β√

α

βR

√
n

that is,
n/2X

h=αR2

1

h log(1 + β R√
h
)

= O
„√

n

R

«
�

We remark that the proof of the expansion properties of
Theorem 4.1 only relies on the fact that the stationary distri-
bution of node positions is almost uniform. In fact we can
get the same expansion properties for any mobility model
yielding a stationary distribution of node position that is
uniform or almost uniform. As mentioned in the Introduc-
tion, several relevant mobility models enjoy of this unifor-
mity property. So, thanks to our Theorem 2.4, we can get
an upper bound on flooding time similar to that of Theo-
rem 4.2.
Next theorem shows a lower bound on flooding time in sta-
tionary geometric-MEG.

Theorem 4.3 Let G(n, r, R, ε) be a stationary geometric-
MEG. If ε 6 1, then flooding time in G(n, r, R, ε) is w.h.p.

Ω

„ √
n

R + r

«
Proof. Since the geometric-MEG is stationary, it is not hard
to see that, w.h.p., at time 0 there exist at least two nodes u
and v that are at distance greater than

√
n/2. Consider the

flooding process with source node v. Let x0 be the position
of v at time 0. For any t, let dt be the minimum distance
from x0 that node u has ever reached during the first t time
steps. It is immediate to see that dt+1 > dt − r. Since
d0 >

√
n/2, it holds that dt >

√
n/2− r · t.

Let Dt be the maximal distance from x0 that any informed
node has ever reached during the first t time steps. It is easy
to see that Dt+1 6 Dt +R + r. Since D0 = 0, it holds that
Dt 6 (R + r)t.
Let τ be the time step in which node u gets informed. It
must be the case that Dτ > dτ . It follows that

(R + r)τ > Dτ > dτ >
√

n/2− r · τ.

It follows that τ >
√

n/(2(R + 2r)). Therefore, the flood-
ing cannot be completed in less than Ω

( √
n

R+r

)
time steps.

�

By comparing Theorem 4.2 and Theorem 4.3 we obtain the
following

Corollary 4.4 Let G(n, r, R, ε) be a stationary geometric-
MEG. If ε 6 1, r = O(R), and c

√
log n 6 R 6

√
n

log log n

for a sufficiently large constant c, then flooding time in
G(n, r, R, ε) is w.h.p.

Θ

„√
n

R

«

Under the very reasonable conditions of the above corollary,
the general bound on flooding time in Markovian evolving
graphs thus turns out to be asymptotically tight for station-
ary geometric-MEG.

5 Conclusions

As a general remark, we can say that our results provide
an analytical evidence of the phenomenon that certain node
mobility do not slow down information spreading. In [7],
some cases have been shown where certain dynamicity
even significantly speeds up information spreading. Our
general upper bound for Markovian evolving graphs has
been used by considering node-expansion properties of con-
nected (random) graphs. However, since such graphs are
dynamic, we strongly believe that our approach may work
below the connectivity threshold of such random graphs as
well. To this aim, it might be useful to consider a dy-
namic version of the parameterized node-expansion prop-
erties similar to that used in [7]. This would allow us to
provide new strong upper bounds on flooding time in sta-
tionary Markovian evolving graphs that are almost never
connected. Such results would be an analytical evidence
of the phenomenon that node mobility can even speed up
information spreading.

Our method provides “good” upper bounds in Markovian
evolving graphs having an almost homogeneous topology.
Another important issue is to investigate evolving graphs
that are somewhat non homogeneous. For instance, we can
consider mobility models yielded by node random walks
over highly-irregular support graphs. A further instance
is that yielded by the random-waypoint model over a non-
convex, irregular region.
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