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Abstract. In this paper, we aim at analyzing the classical information
spreading Push protocol in dynamic networks. We consider the edge-
Markovian evolving graph model which captures natural temporal de-
pendencies between the structure of the network at time t, and the one
at time t + 1. Precisely, a non-edge appears with probability p, while
an existing edge dies with probability q. In order to fit with real-world
traces, we mostly concentrate our study on the case where p = Ω( 1

n
) and

q is constant. We prove that, in this realistic scenario, the Push protocol
does perform well, completing information spreading in O(log n) time
steps, w.h.p., even when the network is, w.h.p., disconnected at every
time step (e.g., when p ≪

log n

n
). The bound is tight. We also address

other ranges of parameters p and q (e.g., p+q = 1 with arbitrary p and q,
and p = Θ

(

1

n

)

with arbitrary q). Although they do not precisely fit with
the measures performed on real-world traces, they can be of independent
interest for other settings. The results in these cases confirm the positive
impact of dynamism.

1 Introduction

Context and Objective. Rumor spreading is a well-known gossip-based dis-
tributed algorithm for disseminating information in large networks. According
to the synchronous Push version of this algorithm, an arbitrary source node is
initially informed, and, at each time step (a.k.a. round), each informed node
u chooses one of its neighbors v uniformly at random, and this node becomes
informed at the next time step.

Rumor spreading (originally called rumor mongering) was first introduced
by [13], in the context of replicated databases, as a solution to the problem of
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distributing updates and driving replicas towards consistency. Successively, it has
been proposed in several other application areas (for a nice survey of gossip-based
algorithm applications, see also [31]). Rumor spreading has also been deeply
analyzed from a theoretical and mathematical point of view. Indeed, as already
observed in [13], rumor spreading is just an example of an epidemic process:
hence, its analysis “benefits greatly from the existing mathematical theory of
epidemiology”.

In particular, the completion time of rumor spreading, that is, the number of
steps required in order to have all nodes informed with high probability1 (w.h.p.),
has been investigated in the case of several network topologies [6, 14, 17, 20–22,
30, 34], to mention just a few. Further works also derive deep connections between
the completion time itself and some classic measures of graph spectral theory [7,
8, 23, 24, 35]. Recently, rumor spreading has been also analysed in the presence
of transmission failures of the protocol [19, 15].

It is important to observe that the techniques and the arguments adopted in
these studies strongly rely on the fact that the underlying graph is static and
does not change over time. For instance, most of these analyses exploit the crucial
fact that the degree of every node (no matter whether this is a random variable
or a deterministic value) never changes during the entire execution of the rumor
spreading algorithm. This paper addresses the speed of rumor spreading in the
case of dynamic networks, where nodes and edges can appear and disappear over
time (several emerging networking technologies such as ad hoc wireless, sensor,
mobile networks, and peer-to-peer networks are indeed inherently dynamic).

In order to investigate the behavior of distributed protocols in the case of
dynamic networks, the concept of evolving graph has been introduced in the
literature. An evolving graph is a sequence of graphs (Gt)t≥0 where t ∈ N (to
indicate that we consider the graph snapshots at discrete time steps t, although
it may evolve in a continuous manner) with the same set of n nodes.2 This con-
cept is rater general, ranging from adversarial evolving graphs [11, 32] to random
evolving graphs [4]. In the case of random evolving graphs, at each time step,
the graph Gt is chosen randomly according to some probability distribution over
a specified family of graphs. One very well-known and deeply studied example
of such a family is the set Gn,p of Erdős-Rényi random graphs [1, 16, 25]. In the
evolving graph setting, at every time step t, each possible edge exists with prob-
ability p (independently of the previous graphs Gt′ , t

′ < t, and independently of
the other edges in Gt).

Random evolving graphs can exhibit communication properties which are
much stronger than static networks having the same expected edge density (for
a recent survey on computing over dynamic networks, see [33]). This has been
proved in the case of the simplest communication protocol that implements the
broadcast operation, that is, the Flooding protocol. It has been shown [3, 10, 12]
that the Flooding completion time may be very fast (typically poly-logarithmic
in the number of nodes) even when the network topology is, w.h.p., sparse, or

1 An event holds w.h.p. if it holds with probability 1−O(1/nc) for some c > 0.
2 As far as we know, this has been formally introduced for the first time in [18].
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even highly disconnected at every time step. Therefore, such previous results
provide analytical evidences of the fact that random network dynamics not only
do not hurt, but can actually help data communication, which is of the utmost
importance in several contexts, such as, e.g., delay-tolerant networking [37, 38].

The same observation has been made when the model includes some sort of
temporal dependency, as it is in the case of the random edge-Markovian model.
According to this model, at every time step t,

• if an edge does not exist in Gt, then it appears in Gt+1 with probability p;
• if an edge exists in Gt, then it disappears in Gt+1 with probability q.

For every initial graph G0, and 0 < p, q < 1, an edge-Markovian evolving
graph will eventually converge to a (random) graph in Gn,p̃ with stationary edge-
probability p̃ = p

p+q . However, there is a Markovian dependence between graphs
at two consecutive time steps, hence, given Gt, the next graph Gt+1 is not neces-
sarily a random graph in Gn,p̃. Interestingly enough, the edge-Markovian model
has been recently subject to experimental validations, in the context of sparse
opportunistic mobile networks [38], and of dynamic peer-to-peer systems [37].
These validations demonstrate a good fitting of the model with some real-world
data traces.

The completion time of the Flooding protocol has been recently analyzed in
the edge-Markovian model, for all possible values of p̃ (see [3, 12]). The Flooding
protocol however generates high message complexity. Moreover, although its
completion time is an interesting analog for dynamic graphs of the diameter
for static graphs, it is not reflecting the kinds of gossip protocols mentioned at
the beginning of this introduction, used for practical applications. Hence the
main objective of this paper is to analyze the more practical Push protocol, in
edge-Markovian evolving graphs.

Framework. We focus our attention on dynamic network topologies yielded
by the edge-Markovian evolving graphs for parameters p (birth) and q (death)
that correspond to a good fitting with real-world data traces, as observed in [37,
38]. These traces describe networks with relatively high dynamics, for which the
death probability q is at least one order of magnitude greater than the birth
probability p. In order to set parameters p and q fitting with these observations,
let us consider the expected number of edges m̄, and the expected node-degree
d̄ at the stationary regime, governed by p̃ = p

p+q . We have m̄ = p
p+q

(

n
2

)

, and

d̄ = 2m̄
n = (n − 1) p

p+q . Thus, at the stationary regime, the expected number of

edges ν that switch their state (from non existing to existing, or vice versa) in
one time step satisfies

ν = m̄q + (
(

n
2

)

− m̄)p = n(n−1)
2

(

pq
p+q +

(

1− p
p+q

)

p
)

= n(n− 1) pq
p+q = nqd̄.

Hence, in order to fit with the high dynamics observed in real-world data traces,
we set q constant, so that a constant fraction of the edges disappear at every
step, while a fraction p of the non-existing edges appear. We consider an arbi-
trary range for p, with the unique assumption that p ≥ 1

n . (For smaller p’s, the
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completion time of any communication protocol is subject to the expected time
1
np ≫ 1 required for a node to acquire just one link connected to another node).
To sum up, we essentially focus on the following range of parameters:

1

n
6 p < 1 and q = Ω(1). (1)

This range includes network topologies for a wide interval of expected edge
density (from very sparse and disconnected graphs, to almost-complete ones),
and with an expected number of switching edges per time step equal to some
constant fraction of the expected total number of edges. Other ranges are also
analyzed in the paper (e.g., p + q = 1 with arbitrary p and q, and p = Θ

(

1
n

)

with arbitrary q), but the range in Eq. (1) appears to be the most realistic one,
according to the current measurements on dynamic networks.

Our results. For the parameter range in Eq. (1), we show that, w.h.p., starting
from any n-node graph G0, the Push protocol informs all n nodes in Θ(log n)
time steps. Hence, in particular, even if the graph Gt is w.h.p. disconnected at
every time step (this is the case for p ≪ logn

n ), the completion time of the Push

protocol is as small as it could be (the Push protocol cannot perform faster than
Ω(log n) steps in any static or dynamic graph since the number of informed
nodes can at most double at every step).

We also address other ranges of parameters p and q. One such case is the
sequence of independent Gn,p graphs, that is, the case where p+ q = 1. Actually,
the analysis of this special case will allow us to focus on the first important
probabilistic issue that needs to be solved: spatial dependencies. Indeed, even in
this case, the Push protocol induces a positive correlation among some crucial
events that determine the number of new informed nodes at the next time step.
This holds despite the fact that every edge is set independently from the others.
For a sequence of independent Gn,p graphs, we prove that for every p (i.e., also
for p = o( 1n )) and q = 1 − p the completion time of the Push protocol is,
w.h.p., O(log n/(p̂n)), where p̂ = min{p, 1/n}. By comparing the lower bound
for Flooding in [12], it turns out that this bound is tight, even for very sparse
graphs.

Finally, we show that the logarithmic bound for the Push protocol holds for
more “static” network topologies as well, e.g., for the range p = c

n where c > 0
is a constant, and q is arbitrary. This parameter range includes edge-Markovian
graphs with a small expected number of switching edges (this happens when
q = o(1)). In this case, too, Push completes, w.h.p., in O(log n) rounds. This
gives yet another evidence that dynamism helps.

Due to lack of space several proofs are omitted. We refer the interested reader
to the full version of the paper [9].

2 Preliminaries

The number of vertices in the graph will always be denoted by n. We abbreviate
[n] := {1, . . . , n} and

(

[n]
2

)

:= {{i, j} | i, j ∈ [n]}. For any subset E ⊆
(

[n]
2

)
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and any two subsets A,B ⊆ [n], define E(A) = {edges of E incident to A} and
E(A,B) = {{u, v} ∈ E | u ∈ A, v ∈ B}. We consider the edge-Markovian
evolving graph model G(n, p, q;E0) where E0 is the starting set of edges.

The Push Protocol over G(n, p, q;E0) can be represented as a random process
over the set S of all possible pairs (E, I) where E is a subset of edges and I is
a subset of nodes. In particular, the combined Markov process works as follows

. . . → (Et, It)
edge-Markovian

−→ (Et+1, It)
Push protocol

−→ (Et+1, It+1)
edge-Markovian

−→ . . .

where Et and It represent the set of existing edges and the set of informed nodes
at time t, respectively. All events, probabilities and random variables are defined
over the above random process. Given a graphG = ([n], E), a node v ∈ [n], and a
subset of nodes A ⊆ [n] we define degG(v,A) = |{(v, a) ∈ E | a ∈ A}|. When we
have a sequence of graphs {Gt = ([n], Et) : t ∈ N} we write degt(v,A) instead
of degGt

(v,A).
Given a graph G and an informed node u ∈ I, we define δG(u) as the random

variable indicating the node selected by u in graph G according to the Push

protocol. When G and/or t are clear from the context, they will be omitted.

Remark. It is worth noticing that analyzing the Push protocol in edge-Markovian
graphs is not only subject to temporal dependencies, but also to spatial depen-
dencies. To see why, consider a time step of the Push protocol. For an informed
node u and a non-informed one v it is not hard to calculate the probability
that δ(u) = v by conditioning on the degree of u. However, if u1, u2 are two
informed nodes and v1, v2 are two non-informed ones, events “δ(u1) = v1” and
“δ(u2) = v2” are not independent. Indeed, since the underlying graph is random,
event “δ(u1) = v1” decreases the probability of existence of an edge between u1

and u2, and so it affects the value of the random variable δ(u2).

3 Warm up: the time-independent case

In this section we analyze the special case of a sequence of independent Gn,p

(observe that a sequence of independent Gn,p is edge-Markovian with q = 1−p).
We show that the completion time of the Push protocol is O(log n/(p̂n)) w.h.p.,
where p̂ = min{p, 1/n}. In Theorem 1 we prove the result for p > 1/n and in
Theorem 2 for p 6 1/n. From the lower bound on the flooding time for edge-
Markovian graphs [12], it turns out that our bound is optimal.

As mentioned in Section 2, even though in this case there is no time-dependency
in the sequence of graphs, the Push protocol introduces a kind of dependence
that has to be carefully handled. The key challenge is to evaluate the probabil-
ity that v receives the information from at least one of the informed nodes; i.e.,
1−P (∩u∈I{δ(u) 6= v}). We consider the Push operation on a modified random
graph where we prove that the above events become independent and the num-
ber of new informed nodes in the original random graph is at least as large as
in the modified version.
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Definition 1. Let G = ([n], E) be a graph, let I ⊆ [n] be a set of nodes, and
let b ∈ [n] be a positive integer. The (I, b)-modified graph G is the graph H =
([n] ∪ {v1, . . . , vb}), where {v1, . . . , vb} is a set of extra virtual nodes, obtained
from G by the following operations: 1. For every node u ∈ I with degG(u) > b,
remove all edges incident to u; 2. For every node u ∈ I with degG(u) 6 b, add all
edges {u, v1}, . . . , {u, vb} between u and the virtual nodes; 3. Remove all edges
between any pair of nodes that are both in I.

Let I be the set of informed nodes performing a Push operation on a Gn,p

random graph. As previously observed, if v ∈ [n]\I is a non-informed node, then
the events {{δG(u) = v} : u ∈ I} are not independent, but the events {{δH(u) =
v} : u ∈ I} on the (I, b)-modified graphH are independent because of Operation
3 in Definition 1. In the next lemma we prove that, if the informed nodes perform
a Push operation both in a graph and in its modified version, then the number
of new informed nodes in the original graph is (stochastically) larger than the
number of informed nodes in the modified one. We will then apply this result to
Gn,p random graphs.

Lemma 1. Let G([n], E) be a graph and let b an integer such that 1 6 b 6 n.
Let I ⊆ [n] be a set of nodes performing a Push operation in graphs G and
H, where H is the (I, b)-modified G according to Definition 1. Let X and Y be
the random variables counting the numbers of new informed nodes in G and H
respectively. Then for every h ∈ [0, n] it holds that P (X 6 h) 6 P (Y 6 h).

Proof. Consider the following coupling: Let u ∈ I be an informed node such
that degG(u) 6 b and let h and k be the number of informed and non-informed
neighbors of u respectively. Choose δH(u) u.a.r. among the neighbors of u in H .
As for δG(u), we do the following: If δH(u) ∈ [n] \ I then choose δG(u) = δH(u);
otherwise (i.e., when δH(u) is a virtual node) with probability 1−x choose δG(u)
u.a.r. among the informed neighbors of u in G, and with probability x choose

δG(u) u.a.r. among the non-informed ones, where x = k(b−h)
(h+k)b . Every informed

node u with degG(u) > b instead performs a Push operation in G independently.
By construction we have that the set of new (non-virtual) informed nodes in H
is a subset of the set of new informed nodes in G. Moreover, it is easy to check
that, for every informed node u in I, δG(u) is u.a.r. among neighbors of u. ⊓⊔

In the next lemma we give a lower bound on the probability that a non-
informed node gets informed in the modified Gn,p.

Lemma 2. Let I ⊆ [n] be the set of informed nodes performing the Push op-
eration in a Gn,p random graph and let X be the random variable counting the
number of non-informed nodes that get informed after the Push operation. It
holds that P (X > λ ·min{|I|, n− |I|}) > λ, where λ is a positive constant.

Proof. Let I be the set of currently informed nodes, let G = ([n], E) be the
random graph at the next time step and let H be its (I, 3np)-modified version.
Now we show that the number of nodes that gets informed in H is at least
λ ·min{|I|, n− |I|} with probability at least λ, for a suitable constant λ.
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Let u ∈ I be an informed node and let v ∈ [n] \ I be a non-informed one.
Observe that by the definition ofH , u cannot choose v inH if the edge {u, v} /∈ E
or if the degree of u in G is larger than 3np (see Operation 3 in Definition 1).
Thus the probability P (δH(u) = v) that node u chooses node v in random graph
H according to the Push protocol is equal to

P (δH(u) = v | {u, v} ∈ E ∧ degG(u) 6 3np) ·P ({u, v} ∈ G ∧ degG(u) 6 3np) .
(2)

If degG(u) 6 3np then node u in H has exactly 3np virtual neighbors plus at
most other 3np non-informed neighbors. It follows that

P (δH(u) = v | {u, v} ∈ E ∧ degG(u) 6 3np) > 1/(6np). (3)

We also have that

P ({u, v} ∈ E, degG(u) 6 3np) = P ({u, v} ∈ E)P (degG(u) 6 3np | {u, v} ∈ E)

= p ·P (degG(u) 6 3np | {u, v} ∈ E) .

Since E [degG(u) | {u, v} ∈ E] 6 np+ 1 with np > 1, from the Chernoff bound
we can choose a positive constant c and then a positive constant β < 1 such that

P (degG(u) > 3np | {u, v} ∈ E) 6 P (degG(u) > 2np+ 1 | {u, v} ∈ E)

6 e−cnp = β < 1. (4)

By replacing Eq.s 3 and 4 into Eq. 2 we get P (δH(u) = v) > α
n , for some

constant α > 0. Since the events {{δH(u) = v}, u ∈ I} are independent, the
probability that node v is not informed in H is thus P (∩u∈IδH(u) 6= v) 6

(1− α/n)
|I|

6 e−α|I|/n. Let Y be the random variable counting the number of
new informed nodes inH . The expectation of Y isE [Y ] > (n−|I|)

(

1− e−α|I|/n
)

>

(α/2)(n− |I|)|I|/n. Hence we get

E [Y ] >

{

(α/4)|I| if |I| 6 n/2 ,

(α/4)(n− |I|) if |I| > n/2 .

Since Y 6 min{|I|, n − |I|}, it follows that P (Y > (α/8) ·min{|I|, n− |I|}) >
α/8. Finally we get the thesis by applying Lemma 1. ⊓⊔

We can now derive the upper bound on the completion time of the Push protocol
on Gn,p random graphs.

Theorem 1. Let G = {Gt : t ∈ N} be a sequence of independent Gn,p with
p > 1/n. The completion time of the Push protocol over G is O(log n) w.h.p.

Proof. Consider a generic time step t of the execution of the Push protocol where
It ⊆ [n] is the set of informed nodes and mt = |It| is its size. For any t such
that mt 6 n/2, Lemma 2 implies that P (mt+1 > (1 + λ)mt) > λ, where λ is a
positive constant. Let us define event Et = {mt > (1 +λ)mt−1}∨ {mt−1 > n/2}
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and let Yt = Yt((E1, I1), . . . , (Et, It)) be the indicator random variable of that
event. Observe that if t = logn

log(1+λ) then (1 + λ)t > n/2. Hence, if we set

T1 = 2
λ

logn
log(1+λ) , we get P (mT1

6 n/2) 6 P
(

∑T1

t=1 Yt 6 (λ/2)T1

)

. This prob-

ability is at most as large as the probability that in a sequence of T1 inde-
pendent coin tosses, each one giving head with probability λ, we see less than
(λ/2)T1 heads (see e.g. Lemma 3.1 in [2]). A direct application of the Cher-
noff bound shows that this probability is smaller than e−(1/4)λT1 6 n−c, for
a suitable constant c > 0. We can thus state that, after O(log n) time steps,
there at least n/2 informed nodes w.h.p. If mT1

> n/2, then, for every t > T1,
Lemma 2 implies that P (n−mt+1 6 (1− λ)(n−mt)) > λ. Observe that if
t = logn

λ then (1 − λ)t 6 1/n, so that for T2 = 2
λ · logn

λ + T1 the probabil-
ity that the Push protocol has not completed at time T2 is P (mT2

< n) 6

P
(

mT2
< n |mT1

> n
2

)

+ P
(

mT1
< n

2

)

. As we argued in the analysis of the

spreading till n/2, the probability P
(

mT2
< n |mT1

> n
2

)

is not larger than the

probability that in a sequence of 2
λ ·

log n
λ independent coin tosses, each one giving

head with probability λ, there are less than log n
λ heads. Again, by applying the

Chernoff bound, the latter is not larger than n−c for a suitable positive con-
stant c. ⊓⊔

In order to prove the bound for p 6 1/n, we first show that one single Push

operation over the union of a sequence of graphs informs (stochastically) less
nodes than the sequence of Push operations performed in every single graph
(this fact will also be used later in Section 4 to analyse the edge-MEG).

Lemma 3. Let {Gt = ([n], Et) : t = 1, . . . , T } be a finite sequence of graphs
with the same set of nodes [n]. Let I ⊆ [n] be the set of informed nodes in the
initial graph G1. Suppose that at every time step every informed node performs
a Push operation, and let X be the random variable counting the number of
informed nodes at time step T . Let H = ([n], F ) be such that F = ∪T

t=1Et and let
Y be the random variable counting the number of informed nodes when the nodes
in I perform one single Push operation in graph H. Then for every ℓ = 0, 1, . . . , n
it holds that P (X 6 ℓ) 6 P (Y 6 ℓ) .

Observe that if we look at a sequence of independent Gn,p with p 6 1/n for
a time-window of approximately 1/(np) time steps, then every edge appears at
least once in the sequence with probability at least 1/n. The above lemma thus
allows us to reduce the case p 6 1/n to the case p > 1/n.

Theorem 2. Let G = {Gt : t ∈ N} be a sequence of independent Gn,p with
p 6 1/n and let s ∈ [n]. The Push protocol with source s over G completes the
broadcast in O(log n/(np)) time steps w.h.p.

4 Edge-Markovian graphs with high dynamics

In this section we prove that the Push protocol over an edge-Markovian graph
G(n, p, q;E0) with p > 1/n and q = Ω(1) has completion time O(log n) w.h.p.
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As observed in the Introduction, the stationary random graph is an Erdős-Rényi
Gn,p̃ where p̃ = p

p+q and the mixing time of the edge Markov chain is Θ( 1
p+q ).

Thus, if p and q fall into the range defined in Eq. 1, we get that the stationary
random graph can be sparse and disconnected (when p = o( log n

n )) and that the
mixing time of the edge Markov chain is O(1). Thus, we can omit the term E0

and assume it is random according to the stationary distribution.
The time-dependency between consecutive snapshots of the dynamic graph

does not allow us to obtain directly the increasing rate of the number of informed
nodes that we got for the independent-Gn,p model. In order to get a result like
Lemma 2 for the edge-Markovian case, we need in fact a bounded-degree condition
on the current set of informed nodes (see Definition 2) that does not apply when
the number of informed nodes is small (i.e., smaller than logn). However, in order
to reach a state where at least logn nodes are informed, we can use a different
ad-hoc technique that analyzes the spreading rate yielded by the source only.

Lemma 4. Let G = G(n, p, q) be an edge-Markovian graph with p > 1/n and
q = Ω(1), and consider the Push protocol in G starting with one informed node.
For any positive constant γ, after O(logn) time steps there are at least γ logn
informed nodes w.h.p.

We can now start the second part of our analysis where the Push operation of
all informed nodes (forming the subset I) will be considered and, thanks to the
bootstrap, we can assume that |I| = Ω(log n). As mentioned at the beginning
of the section, we need to introduce the concept of bounded-degree state (E, I)
of the Markovian process describing the information-spreading process over the
dynamic graph, where E is the set of edges and I is the set of informed nodes.

Definition 2. A state (E, I) such that |E(I)| 6 (8/q)np̃|I| (with p̃ = p
p+q the

stationary edge probability) will be called a bounded-degree state.

In the next lemma we show that, if I is the set of informed nodes with |I| >
logn, if in the starting random graph G0 every edge exists with probability
approximately (1± ε)p, and if it evolves according to the edge-Markovian model
and the informed nodes perform the Push protocol, then for a long sequence of
time steps the random process is in a bounded-degree state. We will use this
property in Theorem 3 by observing that, for every initial state, after O(log n)
time steps an edge-Markovian graph with p > 1/n and q ∈ Ω(1) is in a state
where every edge {u, v} exists with probability p{u,v} ∈ [(1− ε)p̃, (1 + ε)p̃].

Lemma 5. Let G = G(n, p, q, E0) be an edge-Markovian graph starting with G0

and consider the Push protocol in G where I0 is the set of informed nodes at time
t = 0. Then, for any constant c > 0, for a sequence of c logn time steps every
state is a bounded-degree one w.h.p.

Now we can bound the increasing rate of the number of informed nodes in an
edge-Markovian graph. The proof of the following lemma combines the analysis
adopted in the proof of Lemma 2 with some further ingredients required to
manage the time-dependency of the edge-Markovian model.
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Lemma 6. Let (E, I) be a bounded-degree state and let X be the random vari-
able counting the number of non-informed nodes that get informed after two
steps of the Push operation in the edge-Markovian graph model. It holds that
P (X > ε ·min{|I|, n− |I|}) > λ, where ε and λ are positive constants.

Now we can prove that in O(log n) time steps the Push protocol informs all
nodes in an edge-Markovian graph, w.h.p.

Theorem 3. Let G = G(n, p, q, E0) be an edge-Markovian graph with p > 1/n
and q = Ω(1) and let s ∈ [n] be a node. The Push protocol with source s completes
the broadcast over G in O(log n) time steps w.h.p.

Proof. Lemma 4 implies that after O(log n) time steps there are Ω(log n) in-
formed nodes w.h.p. From Lemma 5, it follows that, after further O(log n) time
steps, the edge-Markovian graph reaches a bounded-degree state and remains so
for further Ω(log n) time steps. Let us rename t = 0 the time step where there

are Ω(logn) informed nodes and every edge e ∈
(

[n]
2

)

exists with probability
pe ∈ [(1 − ε)p̃ , (1 + ε)p̃]. We again abbreviate mt := |It|. Observe that if re-
currence m2(t+1) > (1 + ε)m2t holds log n/ log(1 + ε) times, then there are n/2

informed nodes. Let us thus name T = 2
λ

logn
log(1+ε) . If at time 2T there are less

than n/2 informed nodes, then recurrence m2(t+1) > (1 + ε)m2t held less than
λT/2 times. Since, at each time step, the recurrence holds with probability at
least λ (there are less than n/2 informed nodes and the state is a bounded-degree
one w.h.p.), the above probability is at most as large as the probability that in
a sequence of T independent coin tosses, each one giving head with probability
λ, we see less than (λ/2)T heads (see, e.g., Lemma 3.1 in [2]). By the Chernoff
bound such a probability is smaller than e−γλT , for a suitable positive constant
γ. Since γ and λ are constants and T = Θ(log n) we have that

P (m2T 6 n/2) 6 n−δ (5)

for a suitable positive constant δ. When mt is larger than n/2 and the edge-
Markovian graph is in a bounded-degree state, from Lemma 6 it follows that
recurrence n−mt+1 6 (1− ε)(n−mt) holds with probability at least λ. If this
recurrence holds logn/ log (1/(1− ε)) times then the number of informed nodes
cannot be smaller than n. Hence, if we name T̃ := (2/λ) logn/ log (1/(1− ε)),
with the same argument we used to get Eq. 5, we obtain that after 2T +2T̃ time
steps all nodes are informed w.h.p. ⊓⊔

5 Edge-Markovian graphs with slow dynamics

We have also considered “more static” sparse dynamic graphs. In particular, we
can provide a logarithmic bound on the completion time of the Push protocol
over the G(n, p, q) model even for p = Θ(1/n) and for q = o(1). The proof of the
following result combines some new coupling arguments with a previous analysis
of the Push protocol for static random graphs given in [17].
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Theorem 4. Let p = d
n for some absolute constant d ∈ N and let q = q(n)

be such that q(n) = o(1). The Push protocol over edge-Markovian graphs in
G(n, p, q) completes in O(log n) time, w.h.p.

6 Conclusion

Completing the whole figure, i.e., for every (p, q) ∈ [0, 1]2, is of intellectual in-
terest. Our results obtained for the most realistic cases are however already
sufficient to measure the positive impact of a certain form of network dynam-
ics on information spreading. To go one step further, we think that the most
challenging question is to analyze rumor spreading over more general classes of
evolving graphs where edges may not be independent. For instance, it would
be interesting to analyze the Push protocol over geometric models of mobile
networks [12, 28].
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