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Abstract

We study Plurality Consensus in the GOSSTP Model
over a network of n anonymous agents. FEach agent
supports an initial opinion or color. We assume that
at the onset, the number of agents supporting the
plurality color exceeds that of the agents supporting any
other color by a sufficiently-large bias, though the initial
plurality itself might be very far from absolute majority.
The goal is to provide a protocol that, with high
probability, brings the system into the configuration in
which all agents support the (initial) plurality color.

We consider the Undecided-State Dynamics, a well-
known protocol which uses just one more state (the
undecided one) than those necessary to store colors.

We show that the speed of convergence of this
protocol depends on the initial color configuration as
a whole, not just on the gap between the plurality and
the second largest color community. This dependence is
best captured by a novel notion we introduce, namely,
the monochromatic distance md(c¢) which measures the
distance of the initial color configuration ¢ from the
closest monochromatic one. In the complete graph, we
prove that, for a wide range of the input parameters,
this dynamics converges within O(md(€)logn) rounds.
We prove that this upper bound is almost tight in the
strong sense: Starting from any color configuration c,
the convergence time is Q(md(c)).

Finally, we adapt the Undecided-State Dynamics to
obtain a fast, random walk-based protocol for plurality
consensus on reqular expanders. This protocol converges
in O(md(c) polylog(n)) rounds using only polylog(n) lo-
cal memory. A key-ingredient to achieve the above
bounds is a new analysis of the maximum node con-
gestion that results from performing n parallel random
walks on regular expanders.

All our bounds hold with high probability.
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1 Introduction

Reaching Plurality Consensus is a fundamental task in
distributed computing. Each agent of a distributed
system initially supports a color, i.e. a number i €
k] = {1,2,...,k} (with 2 < k£ < n). In the initial
color configuration ¢ = (¢y,...,¢) (where ¢; denotes
the number of agents supporting color i € [k]), there is
an initial plurality ¢; of agents supporting the plurality
color (wlog, we assume that color communities are
ordered, so that ¢ > ¢41 for any ¢ < k — 1).
Initially, every agent only knows its own color; the goal
is a distributed algorithm that, with high probability
(in short, w.h.p.)!, brings the system into the target
configuration, i.e., the monochromatic configuration in
which all agents support the initial plurality color. In
the remainder, the subset of agents supporting color ¢
is called the i-color community.

This problem is also known as majority consensus
or proportionate agreement [3, 1, 31], but we prefer the
term plurality in this paper, in order to emphasize that
the initial plurality ¢; might be far from the (absolute)
majority: for instance, it could be some root of n.
We study plurality consensus in the GOSSIP model
[9, 15, 23] in which each of n agents of a communication
network can, in every round, contact one (possibly
random) neighbor to exchange information. Agents
can be anonymous, i.e., they don’t need to possess
unique labels. A major open question for the plurality
consensus problem is whether a plurality protocol exists
that converges in polylogarithmic time and uses only
polylogarithmic local memory [3, 1, 31].

There is a strong interest for simple plurality proto-
cols (called dynamics) in which agents possess just a few
more states than those necessary to store the k possible
colors [3, 5, 13, 16, 8, 31]. In this paper, we consider the
Undecided-State Dynamics?, that has been introduced
in [3] and analyzed in [3, 31] only in the binary case
(i.e. k =2). The analysis of the multivalued case (i.e.
k > 2) has been proposed in [3, 1, 13, 16, 25] as an
open problem and considered in [22] on a different dis-

TAs usual, we say that an event &, holds w.h.p. if P (En) =
1—n—0@),

2The Protocol has been initially “designed” for the case k = 2
and, thus, it has been named the Third-State Dynamics.



tributed model when & is an absolute constant (which
we do not assume here). The interest for this dynamics
touches areas beyond the borders of computer science.
It appears to play a major role in important biological
processes modelled as so-called chemical reaction net-
works [8, 17].

As discussed further in the introduction, in previous
work, the performance of this dynamics on the complete
graph has been evaluated w.r.t. the following parame-
ters: the number n of nodes, the number k of colors,
and the initial bias towards the plurality color, with the
latter characterized in terms of a parameter that only
depends on the relative magnitude? of & and &.

However, when k£ > 2, any such measure of the
initial bias is not sensitive enough to accurately capture
the convergence time of a plurality protocol: a global
measure is needed, i.e., one that reflects the whole
initial color configuration. To better appreciate this
issue, consider the two configurations ¢ and & in Fig.
1.  Whether the absolute difference or the relative
ratio is used to measure the initial bias, the color
configuration ¢’ appears to be not “worse” than c.
Still, computer simulations and intuitive arguments
suggest that, under any “natural” plurality protocol, the
almost-uniform color distribution ¢’ can result in much
larger convergence times than the highly-concentrated
color configuration c.

To the best of our knowledge, the impact of the
whole initial color configuration on the speed of con-
vergence of plurality protocols has never been analyzed
before.

Color configuration ¢ Color configuration ¢’

Figure 1: Two different color configurations having the
same bias s = s(cq, ca)

Our Contributions.  We first introduce a suitable
distance d(-, ) (see Section 2 and Appendix B for a for-
mal definition) on the set S of all color configurations. It
naturally induces a function md(-), called the monochro-
matic distance, which equals the distance between any
configuration ¢ and the target configuration:

3Typically, this relative magnitude is defined in terms of the

absolute difference or the ratio.

md(c) = zf; (2—1)2

K2

We use md to characterize the bias of the initial
configuration. In particular, note that md(¢) measures
the extent to which ¢ is “uniform”: Indeed, the higher
the extent of the bias towards a small subset of the
colors (including the plurality one), the smaller the
value of md(¢). As an example, in Fig. 1, md(c) can
be substantially smaller than md(¢’). At the extremes,
when there are only O(1) color communities of size
©(¢1), we have md(c) = ©(1) while, when ©(k) color
communities have size ©(n/k), we have md(c) = ©(k).

The simple strategy of the
Undecided-State Dynamics [3, 31] is to “add” one
extra state to somewhat account for the “previ-
ous” opinion supported by an agent (see Section 2
and Table 1 for a definition of this dynamics). In
[1, 3, 4, 6, 18, 31, 22], the same dynamics has been
analyzed under different distributed models and/or
under very different initial assumptions (among others,
under the assumption that k is an absolute constant).
In these settings, important aspects of the complex
dependence of the dynamics’ evolution on the overall
shape of the initial color configuration are missed.

We analyse the Undecided-State Dynamics using a
technique that strongly departs from past work and that
allows us to address the plurality consensus problem in
the general setting. Our analysis achieves almost-tight
bounds on convergence time. Formally, let & = k(n)
be any function such that k& = O((n/logn)'/3), and
consider any initial configuration ¢ € S such that
¢1 = (1 + )tz where a > 0 is any arbitrarily-small
constant (this is a weak-bias condition that ensures
the convergence of the process towards the plurality
color). Then, the Undecided-State Dynamics converges
in O(md(¢)logn) rounds w.h.p.

This result is almost-tight in a strong sense.
In particular, we are able to prove that, for
k= O((n/logn)'/®) and for any initial k-
colors configurations ¢, the convergence time of the
Undecided-State Dynamics is linear in the monochro-
matic distance md(c) w.h.p.

The best previous results [5, 23] about plurality pro-
tocols will be compared to ours later in this introduc-
tion. We only emphasize that, when k is some root
of n, our refined analysis implies that this dynamics is
exponentially faster than the best protocol that uses
polylogarithmic bounded memory [5] on a large class
of initial color configurations. Moreover, we observe
that the Undecided-State Dynamics uses exponentially-
smaller message and memory size w.r.t. the fastest (i.e.



polylogarithmic-time) gossip protocol in [23].

Our analysis is rather general and it can be ex-
tended to other interesting topologies. As a case
supporting this claim, we show how to adapt the
Undecided-State Dynamics for the class of d-reqular ex-
panders [21], for any degree d > 1. Efficient dynamics
for this class of graphs have only been analyzed for the
binary case [13, 26].

In this variant of the Undecided-State Dynamics,
the task of selecting random neighbors is simulated
by performing n independent random-walks of suitable
length. Thanks to the well-known rapidly-mixing prop-
erties of d-regular expanders [21, 24], we can prove that
the new protocol converges in time O(md(¢)polylog(n)),
w.h.p.

The major technical hurdle here is proving that this
variant of the protocol still requires polylog(n) local
memory. To this aim, we prove that the node congestion
is at most polylog(n). The analysis of the process
that results from running parallel random walks over
a graph has been the subject of extensive research in
the past [2, 19, 20, 29, 14]. However, to the best of our
knowledge, none has addressed the issues we consider
here. In particular, the analysis of node congestion is far
from trivial and of independent interest, since efficient
protocols for several important tasks in the GOSSZP
model (such as node-sampling [14], network-discovery
problems [20], and averaging problems [7]) rely on the
use of parallel random walks.

Motivations and comparison to previous works.
Plurality consensus (a.k.a. majority consensus or pro-
portionate agreement) is a fundamental problem arising
in several areas such as distributed computing [3, 16, 30],
communication networks [31], social networks [11, 28,

26] and biology [8].

Applications include fault-tolerance in parallel com-
puting and in distributed database management where
data redundancy or replication and majority-rules are
used to manage the presence of unknown faulty pro-
cessors [16, 30]. Another application comes from the
task of distributed item ranking, in particular when
every node initially ranks some item and the goal is
to agree on the rank of the item based on the ini-
tial plurality opinion [31]. Further areas of interest
of the multi-valued case include distributed cooperative
decision-making and control in environmental monitor-
ing, surveillance and security [32]. Finally, converging to
the plurality color among a (large) set of initial node col-
ors has been recently used as a basic building block for
community detection in dynamic social networks [11].
We remark that, in all such applications, the data do-
main can span a relatively-large range of values, hence
the importance of this problem for large values of k.

Interestingly enough, only the binary case is essen-
tially settled, even for complete graphs. In the syn-
chronous model, a simple gossip protocol for computing
the median can be used to solve the majority consen-
sus problem in the binary case, with constant mem-
ory and message size [16]. The proposed protocol con-
verges in O(logn) time rounds if the initial difference
bias s = ¢; — &2 is Q(v/nlogn).

More recently, in [13], the authors provide a rigor-
ous analysis of a simple 2-voting dynamics for the binary
case on any (possibly random) regular graph: in the
latter case, they provide optimal bounds on the conver-
gence time as a function of the second-largest eigenvalue
of the graph.

For the multivalued case, in [5] the authors an-
alyze a gossip protocol, called 3-Majority Dynamics,
where at every round, each agent applies a simple ma-
jority rule over the colors of three randomly-sampled
neighbors. When the initial difference bias is s =
Q(yvknlogn), the 3-Majority Dynamics converges in
O(min{k,n'/?}logn) rounds using O(logk) memory
and message size.

Convergence times of the 3-Majority Dynamics
become polylogarithmic only if ¢ > n/polylog(n),
thus they are not polylogarithmic whenever k =
w(polylog(n)) and ¢ = o(n/polylog(n)). This
is the parameter range where our analysis of the
Undecided-State Dynamics leads to an exponential
speed up w.r.t. the convergence time of the 3-Majority
Dynamics. For example, consider an initial “oligarchic”
scenario where k = n'/* and a subset £ C [k] exists such
that |£| = polylog(n), for any i € L, & ~ n/Vk, and,
for any i € [k]\L, ¢; ~ n/k. Clearly, 1,2 € £ and the re-
sulting monochromatic distance is md(€) = polylog(n).
Assuming ¢; > (1 + «a)cp for some o > 0 our up-
per bound implies that, starting from any such con-
figuration, the Undecided-State Dynamics converges in
polylogarithmic time, whereas the 3-Majority Dynamics
converges in O(klogn) time [5].

In [23], the authors provide a gossip protocol to
compute aggregate functions, which can be used to
solve plurality consensus in polylog(n) time starting
from any positive bias, but it requires exponentially
larger memory and message size (namely O(klogn)).
The Undecided-State Dynamics has been introduced
and analyzed in [3] for the binary case in the popu-
lation protocol model (where only one edge is active
during a round). They prove that this dynamics has
“parallel” convergence time O(logn) whenever the bias
Q (v/nlogn). In [4, 6, 18, 31, 25, 22], the same dynam-
ics for the binary case or when k is an absolute constant
[22] has been analyzed in different distributed models.
Last but not least, interest for this dynamics was stim-



ulated by recent findings in biology: notably, as shown
in [8], the structure and dynamics of the “approximate
majority” protocol (as it is called there and in [3]) is to a
great extent similar to a mechanism that is collectively
implemented in the network that regulates the mitotic
entry of the cell cycle in eukaryotes.

We mention that similar majority-consensus prob-
lems have been studied (for example in [1, 27]) in the
LOCAL (communication) model [19, 29] where, how-
ever, node congestion and memory size are linear in the
node degree of the network.

2 Preliminaries

We consider a complete graph of n anonymous nodes
(agents), each of them is initially colored with one out
of k possible colors, where k = k(n) € [n]. We assume
an initial plurality of agents colored with the plurality
color j € [k]. Wlog, we assume j = 1. A synchronous
protocol for the plurality problem is a finite set of local
rules (applied by every agent) that eventually bring the
system into the absorbing target configuration, in which
all agents share the initial plurality color.

The Undecided-State Dynamics. We analyze the
synchronous version of the dynamics introduced in [3]
and [31] in the (uniform) GOSSTP model: in every
round, each agent pulls the color of a randomly-selected
neighbor. If this color differs from its own, the agent
enters the undecided state, an extra state that an agent
can support. When an agent is in the undecided state
and pulls a color, it gets that color. Finally, an agent
that pulls either the undecided color or its own color
remains in its current state (see also Table 1).

| u\v || undecided | color ¢ | color j |
undecided || undecided 1 J
i i i undecided
J J undecided J
Table 1: The  update rule of  the
Undecided-State Dynamics where 1,7 € [k] and
E

So, differently from other protocols (e.g., the major-
ity dynamics considered in [5]), after the first round
agents can also enter an undecided state, to which no
color is associated. At each round ¢, the global state
of the system is completely characterized by the cor-
responding color configuration, namely by the vector
c® = (cgt),cét), . ,cl(ct),q(t)), where cz(-t) (respectively
q") denotes the number of nodes that are colored i (re-
spectively are in the undecided state) at the end of the
t-th round. In the initial state, we always have ¢(® = 0.

As also remarked further, the dynamic process that

results from running this protocol on the complete graph
induces a finite-state Markov chain defined over the
space of all color configurations.

Basic notation.
uration ¢ =

Consider any initial color config-
(¢1,C2,...,Ck,0). Assume wlog that
C; = Ciqq for any ¢ < k — 1. Then, at any time
t > 0, the execution of the protocol (uniquely) de-
termines the probability distribution of the (vectorial)
random variable indicating the state at time t: C*) =
(C’ft), CQ(t), ey C’,gt), Q®™). Notice that we omit the de-
pendence of the random state on the initial color con-
figuration in our notation. Since we are considering
complete graphs, this random process is clearly a finite-
state Markov chain. Lower-case letters will be used to
denote functions of the observed color configuration at
any specified time. Upper-case letters instead will de-
note random variables (r.v.s). In particular, QW and
CZ-(t) denote the number of nodes that are undecided
and that have color i, respectively, at time ¢.

Finally, when we condition the system to be in a
fixed state ¢ at some round, the random community
sizes in the next round will be denoted by C; and @'.

Global bias. We define a distance* between color
configurations as follows:

c c 2
d(C,C/) = Z <a — Z)

In particular, consider the set M of the k possible
monochromatic color configurations. For any c, let
d(c, M) = mincepm{d(c,c')}. It is easy to see that
md(c) = d(c, M)+ 1.

3 Analysis of the Undecided-State Dynamics

Generally speaking, when the initial configuration is
sufficiently biased, the dynamics’ evolution follows a
typical pattern, characterized by well-distinct phases.

Understanding such a pattern requires a careful
analysis. In this section, we provide an overview of this
analysis, quantitatively describing a typical evolution of
the process. We start from the expectations of a few key
r.v.s

(t)
B B[O ]e0] = ¢ +2¢

n

TNote that d(g,&’) is not a distance in the strict sense. See

Appendix B for a formal discussion of this notion.



(32) E[QU |] =

@) 4 (- ) - 5, (o)’

n

These equations follow directly from the definition

of the Undecided-State Dynamics. From (3.1), we can

(f)+2q(t)
appreciate the crucial role of the function ——

It represents the expected growth rate of every color
community. The corresponding r.v. C’Z-(H_l) + 2Qt+1D)
is of particular interest when 7 is the plurality color®.
In fact, a major novelty of our contribution is the
discovery of a clean mathematical connection between
the expected growth rate of the plurality and the
monochromatic distance of the current configuration.
The following expression formalizes this connection and
plays a key role in our analysis. For every ¢ > 0,

(33) E[CTV 42040 0] =
n? + (n —2¢® — )2 4 2(R(c(t)) — md(c®)) (c@)2
- n
where
L
R(c) = =
i=1 @
Notice that 1 < md(c), R(c) < k and R(c) > md(c) (see

(B.4) in the appendix). The derivation of (3.3) becomes
straightforward only after guessing the (non obvious)
key role played by md as a measure of global bias. We
observe that it is not linear in several parameters and
its recursive form depends, through R and md, on the
previous color configuration, as a whole. The resulting
process evolution is thus rather complex and hard to
analyze in a rigorous way (the details of this analysis can
be found in Appendix C). However, (3.3) allows us to
informally characterize the main drivers of the process
evolution. At the extremes, we have two complementary
mechanisms that may determine an exponential (or
quasi exponential) growth of Cy and that qualitatively
explain the leftmost (first phase) and rightmost (third
phase) regions of Fig. 2: Namely, large values of @
or of C; itself. In the latter case, growth follows a
preferential attachment-like pattern. In the middle, we
have a phase of relative “flat” growth that corresponds

5We are implicitly assuming that 1 remains the plurality
color across the whole process. This holds w.h.p. under the

assumptions of Theorem 3.2.

to @ dropping to a value close to n/2 and C; not being
large enough to self-sustain an exponential growth.
During this phase, growth is basically driven by the
term (R(c)—md(c))c? /n, i.e., it crucially depends on the
distance from the closest monochromatic configuration.

A further remark concerning (3.3) is that its proof
crucially relies on properties of the plurality, the argu-
ment does not carry over to other colors. In the next
subsection, we give an overview of our analysis. For
the sake of space and simplicity, we omit some major
technical aspects, mostly related to the rigorous charac-
terization of phase-transition timings and the derivation
of concentration bounds.

The process in a nutshell. The typical behaviour of
the Undecided-State Dynamics follows a characteristic
pattern that exhibits three distinct phases, as exem-
plified in Fig. 2. Note that the quantitative overview
we provide below applies to typical evolutions. We re-
mark that the typical behavior holds w.h.p. under the
assumption that ¢; > (1 + «) - ¢a, where « is an arbi-
trarily small positive constant. Indeed this assumption
guarantees that the initial plurality is preserved w.h.p.
along the whole process.

First round: Rise of the undecided. The initial
state is extremely unstable®, since any node has a high
probability of sampling a node of different color in the
first round, ending up in the undecided state. Thus,
the first round sees dramatic changes in the system:
i) In general, a drastic drop in Ci(l)’s (with “small””
ones simply disappearing w.h.p.); i) An explosive surge
in Q, that possibly come to account for the vast
majority; iii) The initial plurality is preserved w.h.p.,
though it drops in absolute terms. The results below
follow immediately from (3.1) and (3.2) with ¢ = 0 and
recalling that ¢(©) = 0,

(3.4) E[c{” H - R(Z)Q’
(3.5) E[Q(l)‘é} - n 1A(1‘_:))
where . R(é)2

©) = 4@

and notice that 1 < A(e) < k (see (B.5) in the

. 1
appendix). Furthermore, Cf ) and QW are concen-
SExceptions include cases that are less interesting, such as the

one in which we have a strong absolute majority already at the
onset.

"Namely, o(y/n) in size.



trated around their expectations (see Lemma C.3 in Ap-
pendix C).

First phase: Age of the undecided. The first
phase starts right after round 1. In this phase, the
C;’s grow (almost) exponentially fast while Q decreases.
The duration of this phase depends on A(c) (and not
just the magnitude of the initial bias). Those facts are
discussed in the proof of Claim 1 that highlights key
properties of the process marking the end of the first
phase (for rigorous statements see Lemmas C.5 and C.6
in Appendix C).

50 T T T T T T T 20

w a
8 8
T

N
3
i

Value of (C} +2Q)/n

Size of | (log,-scale)
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.

80 100 120 140
time ¢

120 140 20 40 60

Figure 2: Typical evolution of the

Undecided-State Dynamics after the first round,
1

for n = 7-10' nodes and k = (%)% colors, with

cgo) =2%

logn
and c( ) = =2 (1 — %) for every i # 1.

Cram 1. Within T = O (log A(€)) rounds the system
reaches a configuration such that w.h.p.

@ — M4 1
¢ (1@ (mam
() _ n
R 5)
Furthermore, the relative ratios C1/C; are approxi-

mately preserved.

Sketch of Proof. We first sketch the proof for the
bound on Q). Assume that at some time ¢ we are in
a configuration ¢® such that ¢ = (n/2)(1 + B) for
some 3 > 0. Notice that, choosing 5 =1 — 0(1/A(c)),
this assumption holds w.h.p. for ¢ = 1 from the above
overview of the first round. Then, from (3.2), we
immediately have:
B Q0] = 2147 - L3 ()]
n < ‘

Under reasonable assumptions on k, from the above
inequality we have Q) < (n/2)(1 + 8%) w.h.p. (see
the proof of Lemma C.6 in Appendix C). Unfolding
this argument for ¢ rounds after round 1, we obtain
QD < (n/2)(1+ %) w.h.p. Recalling that 8 =1 —

O(1/A(€)), we obtain Q) < (n
for T' = log A(€) + O(log log md(c
Moreover, whenever Q) > 2
have QU+t > =z (1 -0 (#@)) w.h.p., hence
|Q™) —n/2| < 1/md( ) w.h.p.

As for the claim for C7, we next consider the evolu-
tion of the term C’ft) + 2Q™ which, up to the fac-
tor 1/n, determines the growth rate of Cftﬂ). As-
sume that cgl) +2¢M = (1 + €)n. We know from
the analysis of the first round and in particular from
(3.5), that this assumption holds w.h.p if we choose
©(1/A(c)) (note that we are neglecting the
contribution of Cfl)). Consequently, from (3.3) we get
E[C{") 420040 e & (14 )n.

Informally, by applying the argument above iteratively
we obtain

){2) (1+6(1/md(c)))
(140 (7)) we

e~ 1-—

1Y +20® = (1+ )
Cfg) +2Q® ~ (1 + €*)n;

C’ft) +2QW ~ (1 + thil)n

At this point, from (3.1) we get

t—1 t—1
o) = [l = TLew ()
i=0 i=0
t—1
~ C( exp ( 621>
=0
W t—1 1 2
1
& 1-—
q“%;( mQ)
Since T = log A(€) + O(loglog md(c)) it holds that

o = o) ~6 (i)

The last derivation follows from (3.5), which approx-
imately holds w.h.p. (see also Lemma C.3 in Ap-
pendix C). O

The proof outlined above highlights the following
properties of the first phase: i) The growth rate of
Plurality keeps “almost” exponential, while it quickly
decreases mirroring the decrease of Q; ii) The duration
of the second phase is determined by logA(c) (this
can be as large as O(logn) and as small as O(1)); iii)
From (3.5) it is possible to see that the factor 1/md(¢),

appearing in the expression of C{T) in the statement



of Claim 1, corresponds to the fraction of the not-
undecided nodes that belong to the plurality at the end
of round 1.

Second phase: Plateau or Age of stability.
The second phase is characterized by a slow increase of
Cq, roughly at a rate 1+ ©(1/md(€)) and a substantial
stability of @ around the value n/2. Indeed, if the
system is in a color configuration c¢ such that

&) -0k

Equations (3.1) and (3.2) imply that

3 (-0 ()
(10 (@)

By choosing the suitable constants we prove that the
above relations hold w.h.p. (see Lemma C.7 in Ap-
pendix C). This is also the main argument for proving
our lower bound.

E[Q"|c]

Q

E[C] |c] =

THEOREM 3.1. Let k = O ((n/logn)'/5).  Starting
from any color configuration € the convergence time of
the Undecided-State Dynamics is Q(md(c)) w.h.p.

However, as discussed above, since C increases at a rate
1+ ©(1/md(c)), after a plateau of O(md(c)log md(c))
rounds the system reaches a configuration c(*) such that
R(c®) = 140(1). This fact marks the end of the second
phase, since the next phase yields a much faster growth
of C'y. For a rigorous analysis of this part see Lemma C.8
and Lemma C.9 in Appendix C.

Third phase: From plurality to totality. Ob-
serve that, by definition of R, C; = % and, when
the third phase starts, we have R = 1 4+ o(1): hence,
Cy =~ n — Q. Now, from (3.3), the leading term of the
growth rate % becomes 1 + (%)2 So, as long as @
is large (say @ = © (n)), Cy has an exponential growth
while @) decreases. The above arguments, rigorously de-
scribed in the proofs of Lemma C.9 and Theorem C.2
in Appendix C, are the main ingredients to bound the
time of the last phase. Finally, the whole analysis above
yields the following upper bound

THEOREM 3.2. Let k = O ((n/logn)/?) and let ¢ be
any nitial configuration such that ¢ = (14 «) - c2
where o 1s an arbitrarily small positive constant. Then,
w.h.p. within time O (md(C) -logn) the system reaches
the target configuration.

4 The Undecided-State Dynamics on regular
expander graphs

We next show how to adapt the
Undecided-State Dynamics to achieve plurality consen-
sus on the class of d-regular expander graphs [21] (with
d denoting the degree of the nodes) at a polylogarithmic
extra-cost in terms of local memory and time. The sim-
ple idea is to simulate the (uniform) random sampling
of nodes’ colors by using n tokens, each originating at
a different node and performing a (short) independent
random-walk over the graph. It is well known [24]
that in every d-regular expander G = (V,E) a lazy
random walk has a uniform stationary distribution.
Moreover, it is rapidly mizing, i.e., its mixing time is
t = O(log(1/€)logn) where € is the desired bound on
the total variation distance.

The modified dynamics works in synchronous
phases, each of them consisting of exactly 27 rounds
(the suitable value for 7 will be defined later). During
the first 7 rounds a forward process takes place: Every
node sends a token performing a random walk of at least
t-hops and thus sampling the color of a random node.
In the next 7 rounds we have a backward process: Every
token is sent back to its source by “reversing” the path
followed in the forward process.

If we were in the LOCAL model [29], where each
node can communicate with all its neighbors in one
round, each phase of the above protocol would last
exactly 2¢ rounds. In the GOSSZP model [9], each
node can instead activate only one (bidirectional) link
per round. Moreover, since we want messages of limited
size, we assume that through each direction of an active
link only one token can be transmitted.

We further assume that nodes enqueue tokens with
a FIFO policy, breaking ties arbitrarily. The random
walk performed by a token will likely require more
than ¢ rounds to perform (at least) ¢ hops of the
random walk, depending on the congestion, i.e. the
maximum number of tokens in the queue of a node.
We thus need to bound the maximal congestion and
use this bound, together with #, to suitably set the
right value for 7, so that every random walk is w.h.p.
“mixed” enough. At time 27 each node gets back
its own token, and updates its state according to the
Undecided-State Dynamics. After that, a new phase
starts, and the process iterates. Further important
details and remarks about this modified dynamics:

- During the forward process, every token records the
link labels of its random-walk and each node records, for
any round, the (local) link label it has used (if any) to
send a token at that round. Thanks to this information,
every node can easily perform the backward process: At
every round each node knows (if any) the neighbor it



must contact to receive the right token back®. Notice
that, since the backward process is perfectly specular
to the forward one, the congestion is the same in both
phases. Hence, both node memory and token message
require O(7 logd) bits.

- By setting a suitable value for 7, every token will w.h.p.
perform at least ¢ hops (some tokens may perform
more hops than others). Thanks to the rapidly-mixing
property, the color reported to the sender belongs to a
random node, i.e., each node has probability 1/n + € to
be sampled (our analysis works setting € = O(1/n?)).

In the next paragraph, we provide the main argu-
ments of our congestion analysis (a formal analysis with
all the details can be found in Appendix D).

Highlights on the congestion analysis. Let u € [n]
be a node, for every round ¢ € [27] of a phase, we
consider the r.v. Q; defined as the number of tokens in
u at round ¢t. Consider the number Y; of tokens received
by node u at round t (for brevity’s sake, we will omit
index v in any r.v.). Then we can write Y; = Zie[d] Xit
where X; ¢ = 1 if the ¢-th neighbor of v sends a token to
u and 0 otherwise. Observe that the r.v.s X, are not
mutually independent. However, the crucial fact is that,
for any ¢t and any i, P (X, =1) < 1/d, regardless of
the state of the system (in particular, independently of
the value of the other r.v.s). So, if we consider a family
{Xis : i €[dte [27]} of iid. Bernoulli r.v.s with
P ()A(lt = 1) = 1/d, then Y; is stochastically dominated

by Y, = Zie[d] )A(” For any node u and any round ¢,
the r.v. Q; is thus stochastically dominated by the r.v.
9, defined recursively as follows.

{Qt = QAtfl‘i’Y/t*Xt
Q =1

1 ifQ; 1>0

h —
where xt { 0  otherwise

Since our goal is to provide a concentration upper bound
on @ we can do this by considering the “simpler”
process Q,. It turns out that “unrolling” 9, directly is
far from trivial: we thus need the “right” way to write
it by using only i.i.d. Bernoulli r.v.s. To this aim, for
any ¢ € [27] and for any s € [t], we define the r.v.

(4.6) Zst = Z Y;— (t—s)

Informally speaking, Zs: matches the value of 9,
whenever s < t was the last previous round s.t. @, = 0.

SRecall that in the GOSSTP model [9], agents can indeed
contact one arbitrary neighbor per round.

As a key fact (see the claim in the proof of Lemma
D.1 in the Appendix D), we show that Q; can be written
as a suitable function of Z,; and x; so that it holds

(4.7)

9; < max{Zs;} and thus max{9Q;} < max {Zs:}
s€lt] te[27]

s<t<L2T

From (4.6), the rv. Zs; + (t — s) is a sum of
d-(t—s+1)ii.d. Bernoullir.v.s, each with expectation
1/d. From the Chernoff bound, it thus follows that, for
constant ¢ > 0 and any 1 < s <t < 27 we have

P (Z&t < max {\/c(t — s+ 1)logn, 3clogn}}) >1-n"¢3

By taking the union bound over all 1 < s <t < 27,
from the above bound and (4.7), we get the desired
concentration bound on the maximal node congestion
during every phase:

2

-
>1_—
P (12%22; Q; < max{\/mlogn, 3c10gn}> >1 T3

The above congestion bound allows us to set the right
value of 7, thus getting the following final result (its
proof is given in Appendix D).

THEOREM 4.1. Let G = (V, E) be any regular expander
graph. For any initial configuration € such that the
Undecided-State Dynamics on the clique computes plu-
rality consensus in O(md(c)logn) rounds w.h.p., the
modified Undecided-State Dynamics computes plurality
consensus on G in O(md(c) polylog(n)) rounds w.h.p.

Remark. Notice that our analysis on the congestion
also works in a scenario where every node generates
a new token whenever its queue is empty. For this
reason our analysis does not take care of the bound
n on the overall number of nodes, and thus it is not
tight. However, we believe that any improvement of
the analysis taking into account this bound is far from
trivial.

5 Open Problems

There are several open research directions related to
the plurality problem on the gossip model. One of
the most interesting (and challenging) ones concerns
the monochromatic distance we have introduced in this
paper. We believe that this distance might represent
a general lower bound on the convergence time of any
plurality dynamics which uses only log k + ©(1) bits of
local memory.

Another interesting future research is the study of
the Undecided-State Dynamics (or other simple dynam-
ics) over other classes of graphs. In our paper, we com-
bined this dynamics with parallel random walks in order



to get an efficient protocol for regular expander graphs.
We believe that similar protocols can work also in other
classes of graphs such as Erd6s-Rényi graphs and dy-
namic graphs [12, 10].
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Appendix

A Probabilistic bounds

LEMMA A.l1. (CHERNOFF BOUND, MULT. FORM)

Let {Xi}ie[n] be a family of n independent r.v.s,
let § € (0,1] and let p1,u2, and pg be such that
w < E [Zie[n] Xz} < p2 and pz = 6-E {Zie[n] Xz}-
It holds that

2
(A1) P (Z X; < (1-9) .M1> < e~ T E[Tiemm Xi]
1€[n]
2
(A2) P (Z X, > (1+96) .m) < e~ 5 E[Tiemm Xi]
1€[n]

(A3) P (Z X; > ug) <27Hs
1€[n]

LEMMA A.2. (CHERNOFF BOUND, ADDITIVE FORM)
Let X1,...,X, be a sequence of independent {0,1}
r.o.s, let X =31 | X; be their sum, and let p = E [X].
Then for 0 < XA < 1 it holds that

P(X>2pu+n\) < e~ 2’

=
P(X<pu—n)\ < e~

LEMMA A.3. Let a and b be two constants such that
a>b>0, let B be an event and let {A;},.; be a family
of events such that |I| = O (n®) and P (A; | B) > 1-n".
Then, the event ﬂie[ “A;|B” holds with probability at

least 1 — %

LEMMA A 4. If f(n) =w (1) and g(n) = o(f (n)) then

(e7t) " =0 (563)

B Global bias

Our analysis will highlight a fundamental de-
pendence  of convergence properties of  the
Undecided-State Dynamics on a particular mea-

sure of the initial global bias. To mathematically
characterize this we next introduce the following notion
of distance between equivalent color configurations.
Given any color configuration c{cy,cs,...,ck,q),
consider the following ratio R(c) = Zle ¢i/c1. This
allows us to define an equivalence relation = in the space
S
iff R(c)= R(c)

and the following function over pairs of equivalence
classes (with an abuse of notation, for any color con-
figuration c, we will denote its equivalence class as c as

well)

— A
cC =2¢

It is easy to verify that the function d(-,-) is a dis-
tance over the quotient space of S. Let us now consider
the equivalence class M of the (k) possible monochro-
matic color configurations and recall the definition of
monochromatic distance (given in the introduction),

> (2)

i=1

md(c) =

Then, we immediatly have md (¢) = d(c, M) + 1.

The simple considerations above entail that md de-
fines a notion of distance from the monochromatic con-
figuration that corresponds to the initial plurality. Con-
sistently, it is straightforward to see that md is maxi-
mized by “uniform” configurations, i.e., configurations
c such that ¢; = n/k. For every c, it holds that

(B.4) 1 < R(c),md(c) < k

Finally, let us define the following ratio

R(c)®

Ae) = md(c)

From the definitions of R(c) and md(c) and from a
simple application of the Cauchy-Schwartz inequality
to R(c), we get for every configuration c

(B.5) Alc) < k

C Details of the analysis

In this section we give detailed proofs for the process
analysis sketched in Section 3.

C.1 General bounds. We here provide some crucial
properties that hold along the entire process.

If ¢ = {c1,...,ck,q) is the current color configura-
tion (i.e. state) of the Markov chain, then we can easily
derive the “expectation” of the next color configuration

_ ci+2 .
(C6)  w=E[C]|e]=ci- == (ic[k)
2
+3 . ccy
€N o= BlQ|e= Tt
I el D PG
n

From (C.6), we can see the crucial role of the quantity

&t29. it in fact represents the expected growth rate of
n



every color community. The following lemma in fact
formalizes such a connection by means of R(c) and it
plays a key role in our analysis of the entire process
evolution. As will see in Lemma C.4, R(c) and md(c)
are in fact strongly related.

LEMMA C.1. (PLURALITY DRIFT) Assume that, at
some round, the system is in a color configuration c
such that ¢; =2 (1+ «)¢; for any i # 1 and for some
constant o > 0. Then, at the next round, it holds that

E{@ c] > 1+T(c)
where
o= (1-254) s 2090 (3)

with v = (1+a) ",

Proof. Let 8 = (1 — 7).
1= (14 )¢ we get

By using the hypothesis

(&

2 1
md(C):ZZ—%<1+mZa:7R(C)+ﬂ

i#£1

Moreover, we can write ¢ as ¢ = n — R(c)c;. Thanks
to the above equations and (C.6) and (C.7), by simple
manipulations, we get

E[CiHQ/

2 N2 ()2
c} ST o) BN el Uk Ve BH )
n

n? n?

a+2¢ ¢+ (R(c)® —md(c)) - (c1)?

=c - +2

Another useful property that is often used in our
analysis is the fact that some crucial r.v.s are essentially
monotone along the entire process. In the next lemma,
we prove this monotonicity for the r.v.s R(C’) and the
ratios C}/C] (for i # 1).

LEMMA C.2. (MONOTONICITY) Assume that, at some
round, the system is in a color configuration c such that,
for some constant a > 0 and a large enough constant

A > 0 it holds

a1z (1+a)g foranyi#1 and pp > Nlogn

Then, at the next round, w.h.p. it holds that:
logn
H1
logn
%31

Proof. As for Claim (C.8), since R(C’) = Eé{C{’ it
suffices to bound, respectively, C] and ) ,Cj. By

applying the Chernoff bounds (A.1) and (A.2) and by
using the hypothesis u > p1 > Alogn we get

2a-logn> } ) 1
= = Jlec| g —
H1 ne

(C.8)  R(C')<Rc)- <1 +0 <

(C.9) c;>(1+a).c;.(1o<

(C.10) P (C{ < g - (1 -

(C.11) P(C{>u1-<1+ 3a10gn> c) gi
H1 ne
3alogn 1

12) P >p- (1 < —

e P (S (10122 ) <

for any constant a € (0, %)

Let A be the event in (C.10), let B be the event
in (C.12) and let A° and B¢ be their complimentary
events, respectively. Observe that from Lemma A.3 it
follows that P (A°N B¢) > 1 — 2. Moreover, since the
following inequality holds

3alogn 3alogn
I+ m 1+ Nogn balogn
< <1+
1— 2alogn 1— 2;110g n A IOg n
M1 ogn

2
with b = (f;}f) , we have that

p(re - DG See (1, foatozn) [ )
1 C1 1%

e ; G- (G
o p ZZ/,<ZZC (ci+q) 14 balogn o) =

a1 a - (e1+9q) 1

!

_p Zilcl<ﬁ 1+ balogn \ | >

&1 H1 12

3alogn

oz ()
~ C! < 2alogn ¢

T ()
SP(ANBY) 21— =

na

As for Claim (C.9), the hypothesis ¢; > (1+ )¢
clearly implies p1 > (14 «) - p;. Thus, by (C.10) we
get



(C13) P <c{ <(A+a) pi- <1

P<01<M1'<1— M) ’(:)gi
M1 ne

We now consider two cases. If u; < u1/(6(1+ «))
then, by the Chernoff bound (A.3) (choosing 6 =
p1/(1+ a)), with probability 1 — n~ T it holds that
C! < pu1/((1 + «)). Together with (C.10), this implies

that w.h.p.
2alogn
JT3

On the other hand, if p; > p1/(6 (1 + «)) then, from
the Chernoff bound (A.1) we get that

1
3alogn c
i
3alogn ¢l < 1
) ne

<P Cizp-|1 —
< s <+ n1/6(1 +

for any a € (0, 18(1+a)) Thus, by using (C.13), (C.14)
and Lemma A.4 we get that w.h.p.

C{>(1+a).c;-<1o< k;ﬂ»
1

C.2 First Round: Rise of the undecided. After
the first round, a strong decrease of the color communi-
ties happens, while the undecided community get to a
large majority of the agent.

The next lemmas provide some formal statements
about this behaviour which represent the key start-up
of the process (and its analysis).

We will implicitly assume that the process starts in
a fixed initial color configuration

2alogn
M1

’ 2a 1 ’
01>u1~<1— w) >(1+a)CZ~-<1—

H1

(C14) P <cg > i <1 +

O

é:<61,62,...,ck>

So, in the next lemmas, events and related probabilities
are conditioned on some fixed ¢.

We observe that when k is large, i.e. when k =
w (nb) for some b € (%, 1], if the process starts from
“almost-uniform” color configurations then, after the
first round, even the plurality may disappear (w.h.p.):
indeed, if we consider any ¢ such that ¢; = O (%), then
a simple application of the Markov inequality implies
that C] = 0 w.h.p. We will thus focus on ranges of k

such that k < y/n/logn.

Given any initial

LEmMMA C.3. Letk=o (s/n/ logn).

color configuration ¢, after the first round w.h.p. it

holds:

n(-x )
Proof. From (C.6)
configuration ¢ = 0, w

1S 2gee
Q< n(1- )

and recalling that in the initial

o=
N IN

we get
=2
C
ul = ( 1) = "
n R(c)?

Similarly, from (C.7) we get

~_\2
_n?=3@)
Ha = n N n

where the second equality follows from the definition
of md, while the third one from the definition of R(c)
and from simple manipulations. Since we assumed

k<o (\/n/ 1ogn) then we have that

n n
2_

R(e)? ~ &2

g = = w(logn)

The above inequality allows us to apply the Chernoff
bound and prove the first claim (i.e. that on C}).
Similarly, from (B.5), it holds

non
Al®) Tk

This allows us to apply the additive version of the
Chernoff bound and prove the second claim (i.e that

on Q). O

The next lemma relates R(c) to md(c) after the first
round.

LEMMA C.4. Letk=o0 (\/n/ logn).

color configuration ¢, after the first round w.h.p. it holds

Given any initial

R(CW) < md(e) - (1+0(1))

Proof. By definition of plurality color, it holds that
¢1 > n/k. Therefore, by the hypothesis on k and (C.6),
we get u; = w(logn) and then, by using the Chernoff
bounds of Lemma A.1, we can get concentration bounds
on both the numerator and the denominator of R(C™))
(as we did in the proof of Lemma C.2). Formally, we
have that w.h.p.




Observe that, since in the initial color configuration

q = 0, it holds
_\2
®o Ez (Ci)

{11 (&)
It follows that w.h.p.

RICY) < ﬁ-(uo(l))%-um(m

= md-(1+0(1))

C.3 First phase: Age of the undecided. In this
phase, the undecided community rapidly decreases to a
value close to n/2 while the plurality reaches a size close
to n/(2md). When this happens, the ratios C;/Cy and
R(c) will essentially keep their initial values and the @
will decrease to a value very close to n/2. The length
of this phase is at most logarithmic.

The next lemma formalizes the aspects of this
phase that will be used to get the upper bound on the
convergence time of the process.

LEmMA C.5. Letk=o (\/n/log2 n) and let € be any

constant in (0,3). Let € be any initial configuration
such that, for any j # 1 and for some arbitrarily small
constant o > 0, ¢1 = (1 4+ «) - ¢j. Then w.h.p. at some
round t = O (logn) the process reaches a configuration

C® such that:

({) 1 € n

R <16 8> R(C®)

(C.16) | R(CD) < md-(1+0(1))

(C.17) Cff) > (1 + %) -Ci(f) for any color i # 1
®) o 90 2

cas) [ G2 =

Proof. We prove one claim at a time.
Proof of (C.15). Let € be any positive constant in

(e/2,¢). L.

Two cases may arise. If ¢; > (Z — 5) - n, by applying

the Chernoff bound (A.1) on the expected value of C’fl)
and using (B.4), it is easy to see that w.h.p.

Wy (L_ey,s(L_€y_n
@ /<16 8)”/ 16 8) R(CO)

Assume now ¢; < (i — %) -n. From Lemma C.3 at

round ¢t = 1 we have w.h.p.

2 2c n
O>pl1-—)>n(1-2)>—q4e.
Q /n< A(c)>/n< - /2+en

where we used that A(€) > R(C) =n/é.
In the generic configuration c, as long as ¢ > 5 + € n,
from (C.6) we have

1
M1>C1'(§+€)

thus, by applying the Chernoff bound (A.1), we see that
w.h.p. C; grows exponentially fast.

It follows that we can consider the first round such that
t =0 (logn) and Q) < 5 + €-n. This implies that

n

n_Q@)) 5

€E-n

hence .
@ _ ”—th) > 7 —€n
R(C®) = R(C®)
This proves (C.15).

Proof of (C.16).  Observe that, since ¢; > %, then
from (C.6) and the Chernoff bound (A.1) it holds w.h.p.
that Cfl) = w(log®n). As we have already shown in
the proof of Claim (C.15), after the first round Ci
grows exponentially until round . It follows that we
can repeatedly apply Lemma C.2 and, together with
Lemma C.4, we get w.h.p. holds w.h.p. that

R(CY) < md - <1+0< ))logn <md-(1+0(1))

logn

This proves (C.16).

Proof of (C.17). Similarly to the previous Claim proof,
the repeated application of Lemma C.2 until round ¢ and
Lemma A.4 implies that w.h.p.

- - logn
@ o® 1
C;" =2 1Q+a)C <1 0<1ogn)>

=(1+a)-c?- -0 (1+5)-c

This proves (C.17).
Proof of (C.18). Since, by the definition of #, it holds
g™V > 2 + ¢ then by Lemma C.1 we get that

E [Cff) + QQ(f) ‘ c(f—l)} >(1+3)n
Observe that E [C{E) +20Q® |-
as the expected value of the sum of the following

independent r.v.s: given a color configuration 0(5*1),
for each node 17

1
.

Then (C.18) is an easy application of the Chernoff
bound (A.1). O

} can be written

if node 7 is 1-colored at the next round,
if node 7 is undecided at the next round.



From the state conditions achieved after the first
round (see Lemma C.3), the next lemma shows that,
within O(logn) rounds, the process w.h.p. reaches a
configuration where @ gets very close to n/2 and Cy is
still relatively small. In the next section, we will prove
(see Theorem C.1) that this fact forces the process to
“wait” for a time period € (md(€)) before the plurality
(re-)starts to grow fastly. This is the key ingredient of
the lower bound in Theorem C.1.

LeEMMA C.6. Let k < e - (n/logn)'/S be the initial
number of colors, where € > 0 is a sufficiently small
positive constant. Let € be the initial color configuration
and let ¢V be the color configuration after the first
round. If it holds that:

1
2 R(0)2

within the next O(logn) rounds there will be a round t
such that
n 2

oM <y 5

n ol
—— and ‘ ® _ ‘ <2
md(2) and |Q md(c)

w.h.p., where v > 0 is a sufficiently large constant.

Proof. First, we prove that if at an arbitrary round ¢
the number of undecided nodes is ¢ = (1 + §)(n/2)
with 1/md(€) < 6 < 1 — (2A(e))7!, then at the next
round it holds that Q" < (1 + 62) (n/2) w.h.p. Indeed,
if we replace ¢ = (1 +0)(n/2) in (C.7), we get that the
expected value of Q" at the next round is

k
1 n\ 2 n\2 2
we = = (a+03) +(a+03) —j;(c»
o 2 n 1 2
= (1+5)§—g2(0j)
j=1
Now observe that
1 & 1 n-—q 2 n
— 2 > _ — (1482
j=1
Lo (LY,
4k \2A(c)) T 16k3

where in the last inequality we used (B.5), that is
Ae) < k.

Therefore, since @’ is a sum of independent Bernoulli
r.v., from the Chernoff bound (Lemma A.2 with A =
1/16k3) it follows that

(C.19) P (Q’ > (1+52)g ’C) S exp (*%Skff)

< nfl/(uss“)
~X

where in the last inequality we used the hypothesis on
k.

Now we show that the number ) of undecided nodes,
while decreasing quickly, cannot jump over the whole
interval

n 2

2 7 md(e)’

n
— 4 9A2
g T

n
md(c)

Observe that function f(q) = ¢*> + (n — ¢)? has a
minimum for ¢ = n/2, so for any q > n/2+2v?n/md(c)
it holds that f(q) > f (n/2+ 2v*n/md(c)). Hence if at
some round ¢ we have that ¢ > (n/2) (1 + 4+%/md(c))
and ¢; < yn/md(c), in (C.7) we get

1 n 5 N 2 n 2 M 2 : 2
> —((=+2 242 - ;
Ha n <<2 +2 md((‘:)) +<2 +2 md((‘:)) ;Cf
n n 1<
— 44t _ = )2
2 +4y md(¢)? nZ(CJ)
Jj=1
k 2 _
n 1 2 n (c1)"md(€) _ n 2 N
> - — = R G b L A
) n;(cj) 2 n Z3 77 md(c)
where in the last inequality we used that c¢; <

~yn/md(c). Since Q' is a sum of n independent Bernoulli
r.v., from the Chernoff bound it follows that

(C.20) P(Q <n/2— 2v*n/md(c) |c) <
< exp (—nyQﬁ) < exp (—272]%)
o0 ()

From (C.19), we get that w.h.p.

(C.21) QW < (1 + 52‘) g

Hence, within
log (A(€)) + O(loglog md(c))

rounds, the number ) of undecided nodes will be below
(n/2)(1 + 442/md(c)) w.h.p. Moreover, from (C.20) it
follows that in one of such rounds we will have that

@

2| <222/mde)

w.h.p. It remains to show that, during this time, the
plurality C; does not increase from less 2n/R(c)? to
more than yn/md(c).

To simplify notation, let us define

log (A(e))
log (A(c)) + O(log log md(¢))

| =
L




From (C.6) and (C.21) it follows that, as long as ¢; <
~yn/md(c), the increasing rate of C; at round ¢ is w.h.p.

at most
Y

md(c)

For the first [ rounds, we can bound the above increasing
rate with 2. Thus, after [ rounds we get that the
plurality is C1 < 2n/md(¢) w.h.p. As for the next
O (loglog md(c)) rounds, we have that the plurality is
w.h.p. at most

1+6% +

n_. 2! v
2 d (@) E(”‘S +md(c)) S
L
n ot Y
S 2ndie) P (; (5 + md(é)))
n_ loglog md(c)
< 2y o (oW + TS
<,Ymd(é)

where in the last inequality we need to choose ~y suffi-
ciently large. O

Remark. The two lemmas above refer to some rounds
t,t = O(logn) in which the process lies in a state
satisfying certain properties. We observe that our
analysis does never combine the two lemmas and thus
it does not require that ¢ = £, indeed the first lemma is
used to get the upper bound while the second one to get
the lower bound on the convergence time. However, it
is possible to prove that there is in fact a time interval
(at the end of Phase 2) where both claims of the lemmas
hold w.h.p.

C.4 Second phase: Plateau or Age of stability.
This phase is characterized by a slow increase of ci,
roughly at a rate 1+0(1/md(c)). This fact is formalized
in the next lemma and it will be used to derive the
lower bound on the convergence time of the process in
Theorem C.1.

LEMMA C.7. Let ¢ be the initial color configuration, let
k <e-(n/logn)'/* be the initial number of colors, where
e > 0 is a sufficiently small positive constant. If there
is a round t such that

n

() G
e o <(n/md(e))

and

‘q@ - g‘ < 29°

(where v is an arbitrary positive constant), then the
plurality Cy remains smaller than 2y(n/md(c)) for the
next Q(md(c)) rounds w.h.p.

Proof. Let us define § = ¢ — n/2 and let A’ be the
random variable Q' —n/2 in the next round. From (C.6)
we get

k
/ _ l 2 12
(C22) E[A'|e] = — (20 ;(c])
(C.23) T <1+%ZQ>Q

We now show that, if § € (—2v?n/md(c), 2y?n/md(c))
and ¢; < 2yn/md(c), then the increasing rate of C; is
smaller than (1 + ©(1/md(c))) w.h.p. More precisely,
we prove that w.h.p.

md(¢)

o] <
-
n
e < md(2)

As for the increasing rate of the plurality, from (C.23)
it follows that

2 n
md(e)

22 1 A" < 2y

2y < (HM)Q

md(e)

26 +
M1 = (1 + 61) c1
n
2 — —
< (1 N 2v*n/md(€) + 2'yn/md(c)> o
n
29(v+1)
= 1 _—
( T mdle) )
Since C] can be written as a sum of ¢ + ¢; < n inde-

pendent Bernoulli random variables, from the Chernoff
bound (Lemma A.2 with A = ¢;/(nmd(c))) it follows

that
c) <

c2n (o (14 20T,

md(c)
< exp <_2 (q/md(c»?)

n

< 2n
<exp | —

—2/(9e*
%an/w>
where in the second inequality we used the fact that
c1 =2 n—q/k>n/(3k) and md(c) < k, and in the last
inequality we used the hypothesis k < ¢ - (n/logn)/%.
As for E[A’ | ¢], according to (C.22), we have the upper
bound

2
w%)mﬁmgﬁ<&4
n

md@)z =7 md(e)

where in the first inequality we discarded the non-
negative term 2521 (cj)Q, in the second inequality we
have used |[§| < 2v*n/md(c), and in the third one



we simply assumed that md(c) is a sufficiently large
constant, namely md(¢) > 8+2.
On the other hand, we have the lower bound

(C26) E[A"[c]=—[20"-) (¢;)*| >
j=1
1 k k (n—
SN (o) s -
nj:1 i) n k:
4 n 4 n
> - >—
9 Kk~ 9 md(c)

From the first to the second line we used the fact that all
c¢;’s are smaller than n — ¢q. Then we used the fact that
q is close to n/2, so n — ¢ is smaller than, say, (2/3)n
Finally we used the fact that k > md(c).

Hence, from (C.25) and (C.26) we get

4 n n
= E A/ < 2
9 md(c) [ATlel < 755
Since A’ = Q' — n/2 can be written as a sum of n

independent random variables taking values +1/2, from
the appropriate version of Chernoff bound it thus follows

that
(C27) P (A’ ¢ (—272m:(c), 272m£‘(c)) c) <

<ow (-0 (i) ) <ew (-0 (7))

where in the last inequality we used again the fact that
md(e) < k < & (n/logn)"/*.
In order to formally complete the proof, let us now

define event & = A; A B;, where A; and B; are the
events

« A(t) <2 2 N,
A R T5)
279(14+7) + 1\ n
B — “C(t) < 1 . b
' 1 T d(e) md(c)

Observe that

29(1+7y)+1
O* md(c)

)t<2f t< !
X or S
dy(1+7)

| sickymd(@) |, from (C.24)
and (C.27) it follows that, for every j € [t,t+ T, we get

P (5j | i) &-) > (1-n"9

for a positive constant ¢ that we can make arbitrarily
large. Thus, starting from the given color configuration

md(c)

Hence, if we set T =

c¢® . the probability that after 7' rounds the plurality

CfEJrT) is at most 2yn/md(c) is

P (z?—irT)<2 n Q) >
(e < i |
t+T t+T
>P (& HP<5|ﬂ5>
j=t
>(1-n") " 21-Tn°>1-n"0
O

THEOREM C.1. Let € be the initial color configuration.
If the initial number of colors is k < & - (n/logn)*/S,
where € > 0 is a sufficiently small positive constant, then
the convergence time of the Undecided-State Dynamics

is Q(md(c)) w.h.p.

Proof. From Lemma C.3 and Lemma C.6 it follows that
there is a round ¢, within the first O(logn) rounds,
such that the process lies in a color configuration c(¥)
where the number of undecided nodes is ‘Q@ —n/2| <
292/md(e) and the plurality is C\? < ~(n/md(e))
w.h.p., where v is a sufficiently large constant. From
Lemma C.7, it then follows that the plurality C; re-
mains smaller than 2y(n/md(c)) for the next Q(md(c))
rounds. U

There is, however, a “positive” drift for the plurality
working in this “long” phase as well: this minimal
drift (see the next lemma) allows the process to reach
a state (representing the end of this phase) by which
the plurality can re-start to grow fast (this phase-
completion state is formalized in Lemma C.9).

LEMMA C.8. (MINIMAL DRIFT) Let k = o(1 /logn)

and let € € (0,%) be an arbitrarily small positive
constant. Given a color configuration c such that

for some constant 8 > 0

for some constant o > 0
and any i # 1

w.h.p. it holds either

R(C') < 1+§ and Q' < en

Cl + 20 1
-1l 7% S -
m /1+“<R@Q

or

Proof. First, let us derive a lower bound on C] + 2@’
that holds w.h.p.



By Lemma C.1
E[C]+2Q |c]=n-(1+T(c))

where

I(c) = <1 -

with v = (14+a)"'. As in the proof of Lemma C.5,
observe that E[C] +2Q’ |c] can be written as the
expected value of the sum of the following independent
r.v.s: given ¢, for each node 4

1
xi={,

Thus, we can apply the Chernoff bound (A.1) to them

and get that w.h.p.
1
n-(14T(c)) <1 -0 < Og”))
n

Let us analyze (C.28) when R(c) > 1+ § or Q' >
If R(c) > 1+ § we have that

r20-) (R -1 ()

1+ 2q 2
n n

if node 7 is 1-colored at round ¢ + 1,
if node 7 is undecided at round ¢ + 1.

(C.28) C] +2Q" >

—67’L

(©29) T(e) >2(1—7) (R(e) ~ 1) (L)’
091 o) ()
e3> 1

2(14+ «)(1 +€/4) R(c)
<1+ ¢ then

Q1L —e€/4) >

On the other hand, if R(c)
n—q n—q > (n—
= >
" R(e) T 1+e/47

€
n—q—-n

4

hence, if it also holds that g >
implies that

en the latter inequality

1 c1 + 2q E_gg_f
n 4 n 2
that is
2¢\? _ €
S e
n

Therefore, if R(c) > 1+ or ¢ > 3en, then using (C.29),
(C.30) and the given upper bound on the value of R(c),
from (C.28) we get

Cl +2¢Q’

2 1o (10 E5))
i) (o (V7))
> (1+%(c))

> (14

where

= R(c) aefS?
o =minq —R(c
4 "2(14 a)(1+€/4)
It remains to show that if R(c) < 1+ £ and ¢ < 3en
then w.h.p. R(C') <1+ § and Q' < en.
In order to do so, observe that

S e =(R(c) — ey < in
i#1
It follows that
q2 + Zz;é] CiCj
pg = ———""—
n
_ e +2012j¢1cj +Zi;ﬁ1ci2j;ﬁ1cj

X
n

< 32 n n €2
<|-€) n c —n
4 "6
Thanks to the Chernoff bound (A.2) and since € < 3,
the previous inequality implies that w.h.p. Q' < en
As for R(C’), by applying Lemma C.2 and using the

Chernoff bound (A.2), we get that w.h.p. R(C') < 143,
concluding the proof. 0

LEMMA C.9. Let k = O((n/logn)'/*) and let € > 0 be
an arbitrarily small constant. If the process is in a color
configuration ¢ that satisfies the following conditions:

(t) @
+ 2¢ 1
C.31 — =1+ -
. (7em)
&1 7
32 >
(C 3 ) Cl 17 R(C(t))
(C.33) | R(cD) = O(md(¢))
(C.34) cgg) >(1+a)- cl@ for some constant a > 0
and for any color i # 1

then, after T = O (md(c) - logn) rounds, the process is
w.h.p. in a color configuration COT) such that

ot > %m
R(CHTY < 1+ %
Q) < en
CT*) > (14 a)- T (1 - (1))
for any color i # 1

Proof. First, we show that, if we start in a color
configuration c satisfying properties (C.31), (C.32),



(C.33) and (C.34), then w.h.p. C’ still satisfies the
conditions (C.32), (C.33) and (C.34).
Using the Chernoff bound (A.1) and conditions (C.32)

and (C.31), we get that w.h.p.
logn
M1

' 2q® (0
n 1

1 1 n

—(1+0(— >

(+ (R(c)))q 17 R(o)

In the first equality, we used that (C.31) and (C.32)
together imply that pu; > ¢ > 1—17% > ﬁ w.h.p.,
thus proving that C’ also satisfies Condition (C.32)
w.h.p. Moreover, Condition (C.32) allows us to apply
Lemma C.2 to get that w.h.p.

(1+0a)-Cf- (1-0((ogn/m)""?))
R(C) < R(e)- (140 ((ogn/m)""?))

proving that w.h.p. C’ satisfies the hypotheses (C.33)
and (C.34).

Now, by Lemma C.8 and (C.33), it follows that w.h.p.
either R(C') < 1+ £ and Q" < en (in which case, we
have done), or it holds w.h.p. that

Cr >

Cy =

In the latter case, C’ satisfies also Condition (C.31) and
the above argument can be iterated again. In particular,
(C.31) implies that after T = Q(md(c)logn) further

rounds w.h.p. we have
)) T

(i+T) 1
=1+Q
G ( " (md(@)

and thus

R(CHT) 1 =

C.5 Third phase: From plurality to totality.
The next theorem connects the results achieved in the
previous sections into a consistent picture, establishing
an upper bound on the overall convergence time of the
process. Its proof also highlights the main features of
the final phase, during which plurality turns into totality
of the agents at an exponential rate.

THEOREM C.2. Let k = O ((n/logn)'/?) and let ¢ be
any nitial configuration such that for any i # 1 ¢1 >
(14 «)-c; holds, where « is an arbitrarily small positive
constant. Then, w.h.p. after at most T = O (md-logn)
time steps all agents support the initial plurality color.

Proof. Let ¢ > 0 be an arbitrarily small positive
constant. Thanks to Lemma C.5, we can assume that
at some time = O(logn) the process w.h.p. reaches a
configuration C®) where

€8i3@31+9<
n

Assuming c(‘?), Lemma C.9 determines the kick-off
condition for a new phase in which both the undecided
and the non-plurality color communities decrease ex-
ponentially fast. In particular, it implies that w.h.p.,
within O(mdlogn) further rounds, the process reaches
a configuration C(*er¢) such that the following proper-
ties hold:

(C.35) cﬁm”>3%§@£zﬁ

(C.36) clterd) > (14 a) - ) (1 — o(1))
for any color i # 1

(C.37) R@%wh<1+§

(C.38) Q' L en

Now, we show that starting from any configuration sat-
isfying the conditions above, any community (including
the undecided) other than the plurality decreases ex-
ponentially fast until disappearance. To this aim, let
P = 2#1 ¢; +q and, as usual, let ¥’ be the r.v. associ-
ated to the value of ¥ at the next time step. We prove
that the following holds in any round following tc,q4: 1)
w.h.p., both @ and 2#1 C; are bounded by quanti-
ties that decrease by a constant factor, so that at any
time following tenq, ¥ is (upper) bounded by a quan-
tity that decreases exponentially fast, thus C; =n — ¥
is (lower) bounded by an increasing quantity; ii) prop-
erties (C.36), still holds. In the rest of this proof we
assume € < 1/3, which is consistent with the assump-
tions of Lemma C.9.



To begin with, note that Property (C.37) implies
Zi# c¢; < §n, so that

ci-ci <20 c; + Ci ci < —2 n?
SagaY et e (e f)

i#£j J#1 £l j#L
Therefore, properties (C.37) and (C.38) together imply

2
(¢)" + ngj Ci - Cj

(C.39) pg= n
9 2 € 3
<(6 +§6+§)n<zen
i+ 2
©10) B| St e| = X (a2E2)
i#£1 £l "
1/1
<§<§+2)62n562n<2—776

where we use the assumption that ¢ < 1/3. At this
point, we can use the Chernoff bound (A.2) to show that
(C.39) and (C.40) hold w.h.p. (up to a multiplicative
factor 1 + o(1)). This proves that w.h.p., both @ and
>iz1 Ci (and hence U) decrease by a constant factor
in a round®. It remains to observe that, when ¢ and/or
>_iz1 ¢ become O(logn), an application of the Chernoff
bound (A.3) shows that w.h.p., they remain below this
value in the subsequent rounds. This completes the
proof of i). Moreover, since C; = n — ¥’ i) implies
that Cf is lower bounded by an increasing quantity
w.h.p. Additionally, property (C.35) and i) just proved,
together with property (C.36), imply the assumptions
of Lemma C.2, allowing us to show that w.h.p. property
(C.36) still holds at the end of next round as well.

As a consequence, we have that in at most 7 = O(logn)
rounds w.h.p. we reach a color configuration C(fena®7)
such that Q(tenat™) 4+ 3, "7 = O(log n).
Finally, we can apply Markov s inequality on the value
of >2, 4 Ci(te"”ﬂ to show that at the next round
w.h.p. all color communities except for the plurality
one disappear. O

D Node congestion analysis

The parallel random walks described in Section 4 yield
variable token queues in the nodes. For each node
u € [n], and for every round t € [27] of the phase, we
consider the r.v. 9, defined as the number of tokens in
u at round t of any phase of the modified dynamics. In

9n fact, a more careful analysis, unnecessary to prove our

result, could use (C.40) to show that 3, +1 Ci decreases superex-
ponentially fast.

the next lemma we prove a useful bound on the maximal
congestion in a phase of length 27.

LEMMA D.1. Consider a phase of length 21 > 1 of the
above protocol on a d-regular graph G = (V, E). Let
u € V be any node and let t be any round of the phase.
Then, for any constant ¢ > 0, it holds that

(27)?
- ne/3

P < max Q. < max{\/chlogn7 3010gn}> >1

1<t<2T

Proof. Consider the number Y; of tokens received by a
fixed node u at round ¢ (for brevity’s sake, we will omit
index w in any r.v.). Then we can write

= Z Xit

i€ [d]

where X;: = 1 if the i-th neighbor of u sends a token
to u and 0 o.w.. Observe (again) that the r.v.s X, are
not mutually independent. However, the crucial fact
is that, for any ¢ and any 4, it holds P (X;; =1) <
1/d, regardless the state of the system (in particular,
independently of the value of the other r.v.s).

So, if we consider a family {X;, : i € [d] t € [27]} of
iid. Bernoulli r.v.s with P (Xt - 1) = 1/d, then Y,
is stochastically smaller than

d

=2 X

i=1
For any node w and any round ¢, the r.v. Qy is
thus stochastically smaller than the r.v. ©Q; defined
recursively as follows.

{ Qt = Q1 +Yi—
Qo 1
1 if Q1 >0

where x; = { 0  otherwise
Since our goal is to provide a concentration upper bound
on Qy, we can do it by considering the “simpler” process
9. By the way, unrolling 9, directly is far from trivial:
We need the “right” way to write it by using only i.i.d.
Bernoulli r.v.s. Let’s see how.

For any t € [27] and for any s € [t], define the r.v.

t
Z (t—s)

Informally speaking, Zs: matches the value of 9,

(D.41)

whenever s < ¢t was the last prev1ous round s.t. QS =0.
As a key-fact we show that 9, can be bounded by
the maximum of Z, ; for s < ¢.



CLAIM 2. For any t € [27] it holds that

thmaX{Zsyt cs=1,...,t}

and thus

(D.42) max{Q; : 1<t <27} <

<max{Zs; : 1 <s<t< 27}

Proof. (of the Claim). For any s € [t], let

t
Xs,t = H Xr
r=s

be the r.v. taking value 1 if O, 1>0foral s<r<t
and 0 otherwise. It is easy to prove by induction that
Qt can be written as
(D.43)
t
Q= Z(l — Xs—1)Xs,tZs—1,t + X1,0 21,0 + (1 = x¢) Ze e
s=2

Since
t

Z(l - Xsfl)Xs,t + X1,t = 1

s=2

the sum in (D.43) is not larger than the maximum of
the Z, +, hence

Or < max{Z,, :

£}

s=1,...
and

max{Q; : 1 <t <27} <max{Z,; : 1 <s<t<27}

O(of the Claim).

Let us consider (D.41): The r.v. Zs;+ (t — s) is a sum
of d-(t —s+ 1) iid. Bernoulli r.v.s each one with
expectation 1/d. From the Chernoff bounds (A.2) and
(A.3), for any 1 < s < ¢, it holds that

P (Zsyt < max {\/c(t — s+ 1)logn, 6clogn}}) >1-n"3

By taking the union bound over all 1 < s < ¢ < 27,
from the above bound and (D.42) we can get the desired
concentration bound on the maximal node congestion
during every phase:

oo Tonn (27)?

P (1222); Q¢ < max{ 2ct logn, 6610gn}> >1- /8
O
Let t&. () be the first round such that the total varia-

tion distance between the simple random walk starting

at an arbitrary node and the uniform distribution is
smaller than e, i.e.,

t¢ (e)=inf{t e N : ||P'(u,-) — || <e forallueV}

Notice that for any € > 0 it holds that (see e.g. (4.36)
in [24])

i (€) < log(1/€)t 5, (1/(2e))

As a consequence of the above Lemma, we can now set
the right value of 7, thus getting the following result.

(D.44)

THEOREM D.1. Let G = ([n], E) be a d-regular graph
with 15, (1/4) = polylog(n).  Each round of the
Undecided-State Dynamics on the clique can be simu-
lated on G in the GOSSTP model in polylog(n) rounds
by exchanging messages of polylog(n) size, w.h.p.

Proof. Let 27 = at?logn be the length of the phase,
where £ = t%, (1/n2) and « is a suitable constant
that we fix later. From Lemma D.1, we have that the
maximum number of tokens in every node at any round

of the phase is w.h.p at most

V2crlogn = v/ac-tlogn

Since tokens are enqueued with a FIFO policy, each
single hop of the random walk performed by a token
can be delayed for at most the above number of rounds.
Hence, in order to perform ¢ hops of the random walk,
a token takes at most \/ac - £2 logn rounds w.h.p.

By choosing a > 4¢ we have that this number is smaller
than 7, this allows us to set 7 so that the forward process
and the backward one can both complete safely.

By union bounding over all tokens we thus have that
during the phase all tokens perform at least ¢ hops of a
random walk and report back to the sender the color of
the node they reached after £ hops w.h.p.

Finally, notice that from (D.44) it follows that ¢ =

polylog(n). The phase length and the size of the
exchanged messages are thus polylog(n) as well. O
Since a lazy random walk on regular ex-

panders (see e.g. [21]) has polylog(n) mixing time,
from the above theorem and our result on the
Undecided-State Dynamics on the clique we easily get
the following final result.

COROLLARY 1. From
tion ¢ such that

any initial configura-
the Undecided-State Dynamics
on the clique completes  plurality  consensus
in  O(md(c)logn) rounds w.h.p., the modified
Undecided-State Dynamics completes plurality
sensus on any d-reqular expander graph within
O(md(c) - polylog(n)) rounds w.h.p.

con-



