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ABSTRACT
We study the following synchronous process that we call re-
peated balls-into-bins. The process is started by assigning
n balls to n bins in an arbitrary way. Then, in every sub-
sequent round, one ball is chosen according to some fixed
strategy (random, FIFO, etc) from each non-empty bin, and
re-assigned to one of the n bins uniformly at random. This
process corresponds to a non-reversible Markov chain and
our aim is to study its self-stabilization properties with re-
spect to the maximum (bin) load and some related perfor-
mance measures.

We define a configuration (i.e., a state) legitimate if its
maximum load is Oplognq. We first prove that, starting
from any legitimate configuration, the process will only take
on legitimate configurations over a period of length bounded
by any polynomial in n, with high probability (w.h.p.). Fur-
ther we prove that, starting from any configuration, the pro-
cess converges to a legitimate configuration in linear time,
w.h.p. This implies that the process is self-stabilizing w.h.p.
and, moreover, that every ball traverses all bins inOpn log2 nq
rounds, w.h.p.

The latter result can also be interpreted as an almost tight
bound on the cover time for the problem of parallel resource
assignment in the complete graph.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity.

General Terms
Theory, Algorithms.
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1. INTRODUCTION
We study the following repeated balls-into-bins process.

Given any n ě 2, we initially assign n balls to n bins in an
arbitrary way. Then, at every round, from each non-empty
bin one ball is chosen according to some strategy (random,
FIFO, etc) and re-assigned to one of the n bins uniformly at
random. Every ball thus performs a sort of delayed random
walk over the bins and the delays of such random walks
depend on the size of the bin queues encountered during
their paths. It thus follows that these random walks are
correlated. We study the impact of such correlation on the
maximum load.

Inspired by previous concepts of (load) stability [1, 8], we

study the maximum load M ptq, i.e., the maximum number
of balls inside one bin at round t and we are interested in
the largest M ptq achieved by the process over a period of
any polynomial length. We say that a configuration is legiti-
mate if its maximum load is Oplognq and a process is stable
if, starting from any legitimate configuration, it only takes
on legitimate configurations over a period of polypnq length,
w.h.p. We also investigate a probabilistic version of self-
stabilization [14]: we say that a process is self-stabilizing1 if
it is stable and if, moreover, starting from any configuration,
it converges to a legitimate configuration, w.h.p. The con-
vergence time of a self-stabilizing process is the maximum
number of rounds required to reach a legitimate configura-
tion starting from any configuration. This natural notion
of (probabilistic) self-stabilization has also been inspired by
that in [21] for other distributed processes.

Stability has consequences for other important aspects of
this process. For instance, if the process is stable, we can
get good upper bounds on the progress of a ball, namely the
number of rounds the ball is selected from its current bin
queue, along a sequence of t ě 1 rounds. Furthermore, we
can eventually bound the parallel cover time, i.e., the time
required for every ball to visit all bins. Self-stabilization
has also important consequences when the system is prone
to some transient faults [14,15,24].

1We observe that the probabilistic version of self-
stabilization adopted here is different from the one intro-
duced in [15], the latter being unsuitable in our context.
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To the best of our knowledge, the repeated balls-into-bins
process was first studied in [7] where it is used there as a
crucial sub-procedure to optimize the message complexity
of a gossip algorithm in the complete graph. The previous
analysis in [7, 17] (only) holds for very-short (i.e. logarith-
mic) periods, while the analysis in [5] considers periods of
arbitrary length but it (only) allows to achieve a bound on
the maximum load that rapidly increases with time: after t
rounds, the maximum load is w.h.p. bounded by O

`?
t
˘

. By
adopting the FIFO strategy at every bin queue, the latter
result easily implies that the progress of any ball is w.h.p.
Ωp
?
tq. Moreover, it is well known that the cover time for the

single-ball process is w.h.p. Θpn lognq (it is in fact equiva-
lent to the coupon’s collector process [28]). These two facts
easily imply an upper bound O

`

n2 log2 n
˘

for the parallel
cover time of the repeated balls-into-bins process.

Previous results are thus not helpful to establish whether
this process is stable (or, even more, self-stabilizing) or not.
Moreover, the previous analyses of the maximum load in
[5,7,17] are far from tight, since they rely on some rough ap-
proximations of the studied process via other, much simpler
Markov chains: for instance, in [5], the authors consider the
process - which clearly dominates the original one - where,
at every round, a new ball is inserted in every empty bin.
Clearly, that analysis does not exploit the global invariant
(a fixed number n of balls) of the original process.

Our Results. We provide a new, tight analysis of the re-
peated balls-into-bins process that significantly departs from
previous ones and show that the system is self-stabilizing.
These results are summarized in the following

Theorem 1. Let c be an arbitrarily-large constant, and
let the process start from any legitimate configuration. The
maximum load M ptq is Oplognq for all t “ Opncq, w.h.p.
Moreover, starting from any configuration, the system reaches
a legitimate configuration within Opnq rounds, w.h.p.

Our result above strongly improves over the best previous
bounds [5, 7, 17] and it is almost tight (since we know that
maximum load is Ωplogn{ log lognq at least during the first
rounds [29]). Moreover, the progress of any ball (by adopting
the FIFO strategy) over a sequence of t “ polypnq rounds
is Ωpt{ lognq w.h.p. and, thus, the parallel cover time is
Opn log2 nq which is only a log n factor away from the lower
bound arising from the single-ball process.

Besides having per-se interest, balls-into-bins processes
are used to model and analyze several important random-
ized protocols in parallel and distributed computing [4,6,31].
In particular, the process we study models a natural ran-
domized solution to the problem of (parallel) resource (or
task) assignment in distributed systems (this problem is also
known as traversal) [26,30]. In the basic case, the goal is to
assign one resource in mutual exclusion to all processors (i.e.
nodes) of a distributed system. This is typically described as
a traversal process performed by a token (representing the
resource or task) over the network. The process terminates
when the token has visited all nodes of the system. Random-
ized protocols for this problem [11] are efficient approaches
when, for instance, the network is prone to faults/changes
and/or when there is no global labeling of the nodes.

A simple randomized protocol is the one based on random
walks [11,20,21]: starting from any node, the token performs
a random walk over the network until all nodes are visited,

w.h.p. The first round in which all nodes have been visited
by the token is called the cover time of the random walk
[11,25]. The expected cover time for general graphs is Op|V |¨
|E|q (see for example [28]).

In distributed systems, we often are in the presence of
several resources or tasks that must be processed by every
node in parallel. This naturally leads to consider the paral-
lel version of the basic problem in which n different tokens
(resources) are initially distributed over the set of nodes and
every token must visit all nodes of the network. Similarly
to the basic case, an efficient randomized solution is the
one based on (parallel) random walks. In order to visit the
nodes, every token performs a random walk under the con-
straint that every node can process and release at most one
token per round. Again, maximum load is a critical com-
plexity measure: for instance, it can determine the required
buffer size at every node, bounds on the token progress and,
thus, on the parallel cover time.

It is easy to see that, when the graph is complete, the
above protocol - based on parallel random walks - is in fact
equivalent to the repeated balls-into-bins process analyzed in
this paper. For this case, Theorem 1 implies that, every to-
ken visits all nodes of the system with at most a logarithmic
delay w.r.t. the case of a single token: so, we can derive an
upper bound Opn log2 nq for the parallel cover time, starting
from any initial configuration.

We can also consider the adversarial model in which, in
some faulty rounds, an adversary can re-assign the tokens
to the nodes in an arbitrary way. The self-stabilization and
the linear convergence time shown in Theorem 1 imply that
the Opn log2 nq bound on the cover time still holds provided
the faulty rounds happen with a frequency not higher than
cn, for a sufficiently large constant c.

Related Work.

- Random Walks on Graphs. As mentioned earlier, the re-
peated balls-into-bins process was first considered in [5,7,17],
since it describes the process of performing parallel random
walks in the (uniform) gossip model (also known as random
phone-call model [12, 22]) when every message can contain
at most one token. Maximum load (i.e. node congestion),
token delays, mixing and cover times are here the most cru-
cial aspects. We remark that the flavor of these studies is
different from ours: indeed, their main goal is to keep max-
imum load and token delays logarithmic over some polylog-
arithmic period. Their aim is to achieve a fast mixing time
for every random walk in the case of good expander graphs.
In particular, in [7], a logarithmic bound is shown for the
complete graph when m “ Opn{ lognq token random walks
are performed over a logarithmic time interval. A similar
bound is also given for some families of almost-regular ran-
dom graphs in [17]. Finally, a new analysis is given in [5] for
regular graphs yielding the bound Op

?
tq.

- Parallel Computing. Balls-into-bins processes have been
extensively studied in the area of parallel and distributed
computing, mainly to address balanced-allocation problems
[6,27,29], PRAM simulation [23] and hashing [13]. The most
studied performance measure is the maximum load. In order
to optimize the total number of random bin choices used for
the allocation, further allocation strategies have been pro-
posed and analyzed (see for instance [9, 27, 31]). As previ-
ously mentioned, our concept of stability is inspired by those
studied in [1, 8]. In such works, load balancing algorithms
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are analyzed in scenarios where new tasks arrive during the
run of the system, and existing jobs are executed by the pro-
cessors and leave the system. Another adversarial model for
a sequential balls-into-bins process has been studied in [3].
We remark that, in the above previous works, the goal is dif-
ferent from ours: each ball/task must be allocated to one,
arbitrary bin/processor. This crucial difference makes such
previous analyses of little use to the purpose of our study.

- Queuing Theory. To the best of our knowledge, the clos-
est model to our setting in classical queuing theory is the
closed Jackson network [2]. In this model, time is contin-
uous and each node processes a single token among those
in its queue; processing each token takes an exponentially
distributed interval of time. As soon as its processing is
completed, each token leaves the current node and enters
the queue of a neighbor chosen uniformly at random. No-
tice that, since time is continuous, the process’ events are
sequential, so that the associated Markov chain is much sim-
pler than the one describing our parallel process. In partic-
ular, the stationary distribution of a closed Jackson network
can be expressed as a product-form distribution. It is noted
in [19] that “[. . . ] virtually all of the models that have been
successfully analyzed in classical queuing network theory are
models having a so-called product form stationary distribu-
tion”. Because of the above considerations regarding the
difficulty of our process (especially the non-reversibility of
its Markov chain), the stationary distribution is instead very
likely not to exhibit a product-form distribution, thus laying
outside the domain where the techniques of classical queuing
theory seem effective. We finally cite the seminal work [10]
on adversarial queing systems: here, new tokens (having
specified source and destination nodes) are inserted in the
nodes according to some adversarial strategy and a notion
of edge-congestion stability is investigated.

2. SELF-STABILIZATION

Overview of the analysis
In the repeated balls-into-bins process, every bin can release
at most one ball per round. As a consequence, the random
walks performed by the balls delay each other and are thus
correlated in a way that can make the bin queues larger
than in the independent case. Indeed, intuitively speaking,
a large load observed in a bin in some round makes “any”
ball more likely to spend several future rounds in that bin,
because if the ball ends up in that bin in one of the next few
rounds, it will undergo a large delay. This is essentially the
major technical issue to cope with.

The previous approach in [5] relies on the fact that, in
every round, the expected balance between the number of
incoming and outgoing balls is always non-positive for every
non-empty bin (notice that the expected number of incoming
balls is always at most one). This may suggest viewing the
process as a sort of parallel birth-death process [25]. Using
this approach and with some further arguments, one can
(only) get the “standard-deviation” bound Op

?
tq in [5]. Our

new analysis proving Theorem 1 proceeds along three main
steps.
i) We first show that, after the first round, the aforemen-
tioned expected balance is always negative, namely, not larger
than ´1{4. Indeed, the number of empty bins remains at
least n{4 with (very) high probability, which is extremely

useful since a bin can receive tokens only from non-empty
bins. This fact is shown to hold starting from any configu-
ration and over any period of polynomial length.

ii) In order to exploit the above negative balance to bound
the load of the bins, we need some strong concentration
bound on the number of balls entering a specific bin u along
any period of polynomial size. However, it is easy to see that,

for any fixed u, the random variables tZ
ptq
u utě0 counting the

number of balls entering bin u are not mutually independent,
neither are they negatively associated, so that we cannot
apply standard tools to prove concentration. To address this
issue, we consider a simpler repeated balls-into-bins process
defined as follows.

The Tetris process. Starting from any configuration with
at least n{4 empty bins, in each round
- from every non-empty bin we pick one ball and we throw
it away, and
- we pick exactly p3{4qn new balls and we put each of them
independently and u.a.r. in one of the n bins.

Using a coupling argument and our previous upper bound
on the number of empty bins, we prove that the maximum
number of balls accumulating in a bin in the original process
is not larger than the maximum number of balls accumulat-
ing in a bin in the Tetris process, w.h.p.

iii) The Tetris process is simpler than the original one
since, at every round, the number of balls assigned to the
bins does not depend on the system’s state in the previ-

ous round. Hence, random variables tẐ
ptq
u utě0 counting the

number of balls arriving at bin u in the Tetris process are
mutually independent. We can thus apply standard con-
centration bounds. On the other hand, differently from the
approximating process considered in [5], in the Tetris pro-
cess, the negative balance of incoming and outgoing balls
proved in Step i) still holds, thus yielding a much smaller
bound on the maximum load than that in [5].

In the remainder of this section, we formally describe the
above three steps.

Preliminaries and notations
We always use capital letters for random variables, lower
case for quantities, and bold for vectors. For each bin u P

rns let Qptqu be the r.v. indicating the number of balls, i.e.
the load, in u at round t. We write Qptq for the vector of

these random variables, i.e., Qptq “
´

Qptqu : u P rns
¯

. We

write q “ pq1, . . . , qnq for a (load) configuration, i.e., qu P
t0, 1, . . . , nu for every u P rns and

řn
u“1 qu “ n. In order to

enhance readability, in what follows we omit the indication
of the round, when it is clear from context, e.g., we write

E rQu |qs for E
”

Qpt`1q
u | Qptq “ q

ı

.

On the number of empty bins
We next show that the number of empty bins is a constant
fraction of n for a very large time-window, w.h.p.

Lemma 2. Let q “ pq1, . . . , qnq be a configuration in a
given round and let X be the random variable indicating
the number of empty bins in the next round. For any large
enough n, it holds that

P
´

X ď
n

4

¯

ď e´αn,

where α is a suitable positive constant.
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Proof. Observe that the lemma could be proved by stan-
dard concentration arguments if, at every round, all balls
were thrown independently and uniformly at random. A
little care is instead required in our process to consider, at
any round, those “congested” bins having load larger than
1. These bins will be surely non-empty at the next round
too. So, the number of empty bins at a given round also de-
pends on the number of such congested bins in the previous
round. In what follows, we show how two solve this issue by
observing a simple but crucial fact.

Let us name a “ apqq the number of empty bins and
b “ bpqq the number of bins with exactly one token in con-
figuration q. For each bin u of the a ` b bins with at most
one token, let Yu be the random variable indicating whether
or not bin u is empty in the next round, so that

X “

a`b
ÿ

u“1

Yu and PpYu “ 1q “

ˆ

1´
1

n

˙n´a

ě e´
n´a
n´1 ,

where in the last inequality we used the fact that 1 ´ x ě

e´
x

1´x . Hence we have that

E rXs ě pa` bq e´
n´a
n´1 (1)

The crucial fact is that the number of bins with two or more
tokens can be at most as large as the number of empty bins,
i.e. n ´ pa ` bq ď a. Thus, we can bound the number of
empty bins from below2, a ě pn ´ bq{2, and by using that
bound in (1) we get

E rXs ě
n` b

2
e
´

n`b
2pn´1q

Now observe that, for large enough n a positive constant ε
exists such that

n` b

2
e
´

n`b
2pn´1q ě p1` εq

n

4

for every 0 ď b ď n.
It is not difficult to prove that random variables Y1, . . . , Ya`b

are negatively associated (e.g., see Theorem 13 in [16]).
Thus we can apply (see Lemma 7 in [16]) the Chernoff
bound (8) with δ “ ε{p1` εq to r.v. X to obtain

P
´

X ď
n

4

¯

ď exp

ˆ

´
ε2

4p1` εq
n

˙

From the above lemma it easily follows that, if we look at
our process over a time-window T “ T pnq of polynomial
size, after the first round we always see at least n{4 empty
bins, w.h.p. More formally, for every t P t1, . . . , T u, let Et
be the event “The number of empty bins at round t is at
least n{4”. From Lemma 5 and the union bound we get the
following lemma (for full-detailed proof see the Appendix).

Lemma 3. Let q0 denote the initial configuration, let T “
T pnq “ nc for an arbitrarily large constant c. For any large
enough n it holds that

P

˜

T
č

t“1

Et | Qp0q “ q0

¸

ě 1´ e´γn

where γ is a suitable positive constant.

2Observe that this argument only works to get a lower
bound on the number of empty bins and not for an upper
bound.

Coupling with Tetris

Using a coupling argument and Lemma 3 we now prove that
the maximum load in the original process is stochastically
not larger than the maximum load in the Tetris process
w.h.p.

In what follows we denote by W ptq the set of non-empty
bins at round t in the original process. Recall that, in the
latter, at every round a ball is selected from every non-empty
bin u and it is moved to a bin chosen u.a.r. Accordingly we
define, for every round t, the random variables

!

Xpt`1q
u : u PW ptq

)

, (2)

where X
pt`1q
u indicates the new position reached in round t`

1 by the ball selected in round t from bin u. Notice that for

every non-empty bin u PW ptq we have that P
´

X
pt`1q
u “ v

¯

“

1{n for every bin v P rns. The random process
!

Qptq : t P N
)

is completely defined by random variables Xt
u’s, indeed we

can write

Qpt`1q
v “ Qptqv ´ 1`

ˇ

ˇ

ˇ

!

u PW ptq : Xpt`1q
u “ v

)ˇ

ˇ

ˇ
and

W pt`1q
“

!

u P rns : Qpt`1q
u ě 1

)

,

where we used notation a´ b “ maxta´ b, 0u. For each bin

u P rns, let Q̂ptqu be the random variable indicating the num-
ber of balls in bin u in round t. We next prove that, over any
polynomially-large time window, the maximum load of any
bin in our process is stochastically smaller than the maxi-
mum number of balls in a bin of the Tetris process w.h.p.
More formally, we prove the following lemma.

Lemma 4. Assume we start our process and the Tetris
process from the same initial configuration q “ pq1, . . . , qnq
such that

řn
u“1 qu “ n and containing at least n{4 empty

bins. Let T “ T pnq be an arbitrary round and let MT and

M̂T be respectively the random variables indicating the maxi-
mum load in our original process and in the Tetris process,
up to round T . Formally

MT “ maxtQptqu : u P rns, t “ 1, 2, . . . , T u

M̂T “ maxtQ̂ptqu : u P rns, t “ 1, 2, . . . , T u

For every k ě 0 it holds that

PpMT ě kq ď P
´

M̂T ě k
¯

` T ¨ e´γn

for a suitable positive constant γ.

Idea of Proof. We proceed by coupling the Tetris pro-
cess with the original one round by round. Intuitively speak-
ing the coupling proceeds as follows:
- Case (i): the number of non-empty bins in the original pro-
cess is k ď 3

4
n. For each non-empty bin u, let iu be the ball

picked from u. We throw one of the 3
4
n new balls of the

Tetris process in the same bin in which iu ends up. Then,
we throw all the remaining 3

4
n´k balls independently u.a.r.

- Case (ii): the number of non-empty bins is k ą 3
4
n. We

run one round of the Tetris process independently from the
original one.

By construction, if the number of non-empty bins in the
original process is not larger than 3

4
n at any round, then the
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Tetris process “dominates” the original one, meaning that
every bin in the Tetris process contains at least as many
balls as the corresponding bin in the original one. Since
from Lemma 3 we know that the number of non-empty bins
in the original process is not larger than 3

4
n for any time-

window of polynomial size w.h.p., we thus have that the
Tetris process dominates the original process for the whole
time window w.h.p.

Proof. We proceed by coupling the Tetris process with
the original one as follows. For t P t1, . . . , T u, denote by Bptq

the set of new balls in the Tetris process at round t (recall

that the size of Bptq is p3{4qn for every t P t1, . . . , T u). For

any round t and any ball i P Bptq, let X̂
ptq
i be the random

variable indicating the bin where the ball ends up. Finally,

let
!

U
ptq
i : t “ 1, . . . , T, i P Bptq

)

be a family of i.i.d. ran-

dom variables uniform over rns.

At any round t P t1, . . . , T u:

If |W pt´1q
| ď p3{4qn: Let B

ptq
W be an arbitrary subset of Bptq

with size exactly |W pt´1q
|, let f ptq : B

ptq
W Ñ W pt´1q be an

arbitrary bijection and set

X̂
ptq
i “

#

X
ptq
i if i P B

ptq
W

U
ptq
i if i P BptqzB

ptq
W

(3)

If |W pt´1q
| ą p3{4qn: Set X̂

ptq
i “ U

ptq
i for all i P Bptq.

By construction we have that random variables
!

X̂
ptq
i : t P t1, 2, . . . , T u, i P Bptq

)

are mutually independent and uniformly distributed over
rns. Moreover, in the joint probability space for any k we
have that

PpMT ě kq “

“ P
´

MT ě k, M̂T ěMt

¯

`P
´

MT ě k, M̂T ăMT

¯

ď

ď P
´

M̂t ě k
¯

`P
´

M̂T ăMT

¯

Finally, let ET be the event “There are at least n{4 empty
bins at all rounds t P t1, . . . , T u” and observe that, from
the coupling we have defined, the event ET implies event

“M̂T ěMT ”. Hence P
´

M̂T ăMT

¯

ď P
`

ET
˘

and the thesis

follows from Lemma 3.

In the Tetris process, the random variables indicating the
number of balls ending up in a bin in different rounds are
i.i.d. binomial. This fact is extremely useful to give upper
bounds on the load of the bins, as we do in the next simple
lemma, that will be used to prove self-stabilization of the
original process.

Lemma 5. From any initial configuration, in the Tetris
process every bin will be empty at least once within 5n rounds
w.h.p.

Proof. Let u P rns be a bin with k ď n balls in the initial
configuration. For t P t1, . . . , 5nu let Yt be the random vari-
able indicating the number of new balls ending up in bin u at
round t. Notice that in the Tetris process Y1, . . . , Y5n are

i.i.d. Bin pp3{4qn, 1{nq hence E rY1 ` ¨ ¨ ¨ ` Y5ns “ p15{4qn
and by applying Chernoff bound (9) with δ “ 1{15 we get

PpY1 ` ¨ ¨ ¨ ` Y5n ě 4nq ď e´αn

where α “ 1{p180q.

Now let Eu be the event “Bin u will be non-empty for all the
5n rounds”. Since when a bin is non-empty it looses a ball
at every round, event Eu implies, in particular, that

k ´ 5n` Y1 ` ¨ ¨ ¨ ` Y5n ě 0

That is Y1 ` ¨ ¨ ¨ ` Y5n ě 5n´ k ě 4n. Thus

PpEuq ď PpY1 ` ¨ ¨ ¨ ` Y5n ě 4nq ď e´αn

The thesis follows from the union bound over all bins u P
rns.

On the maximum load in the Tetris process.
We next focus on the maximum load that can be observed

in the Tetris process at any given bin within a finite interval
of time.

Recall the definition of X̂t
i in (3) and let Iti puq “ rX̂

t
i “

us. Consider an interval rτ1, τ2s. We denote by Z
rτ1,τ2s
u

the overall number of balls that enter bin u during rτ1, τ2s,
namely:

Zrτ1,τ2su “

τ2
ÿ

t“τ1

ÿ

iPBptq

Iti puq

By linearity of expectation we get the following lemma (see
Appendix for details).

Lemma 6. For any τ ą 0 and ∆ P t0, . . . , τ ´ 1u, in the
Tetris process it holds that

E
”

Zrτ´∆,τs
u

ı

“
3

4
p∆` 1q (4)

Considered a bin u and a time t, we denote by Tuptq the
last time, prior to t, such that u was empty, namely

Tuptq “ maxtτ | τ ď t, Q̂pτqu “ 0u

We set Tuptq “ 0 when the bin was never empty in the
interval r1, ts. We next use the fact that, if the load at some
bin u is sufficiently high at the end of a given round t, there
exists a contiguous time interval ending at t, during which a
number of balls significantly deviating from the expectation
in (4). This simple fact is formalized in the next lemma.

Lemma 7. Consider a generic bin u that has been empty
at some time τ1. For any α ą 0 and τ2 ą τ1, it holds

P
´

Q̂pτ2qu ą α
¯

ď

τ2´τ1
ÿ

∆“0

P
´

Zrτ2´∆,τ2s
u ą ∆` α

¯

(5)

Proof. From the definition of the Tetris process, it is

easy to see that the event“Q̂pτ2qu ą α and Tupτ2q “ τ2´∆´1”

implies the arrival of Z
rτ2´∆,τ2s
u ą ∆`α balls in the interval

rτ2 ´∆, τ2s, that is

pQ̂pτ2qu ě α
ľ

Tupτ2q “ τ2´∆´ 1q ñ pZrτ2´∆,τ2s
u ě ∆`αq

(6)
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As a consequence, for every t and α ą 0 we have:

P
´

Q̂pτ2qu ą α
¯

“

τ2
ÿ

t“τ1

P
´

Q̂pτ2qu ą α
ľ

T pτ2q “ t
¯

ď

ď

τ2´τ1
ÿ

∆“0

P
´

Zrτ2´∆,τ2s
u ą ∆` α

¯

,

where the first equality follows from the fact that for t ‰ t̂

the events “Q̂pτ2qu ą α
Ź

T pτ2q “ t” and “Q̂pτ2qu ą α
Ź

T pτ2q “
t̂” are disjoint, and the last inequality follows from (6).

Thanks to Lemma 7, we are able to prove the following key
property of the load observed on any bin in the Tetris
process.

Lemma 8. Consider a generic bin u in the Tetris pro-
cess, and let τ1 be a round in which u was empty, namely

Q̂pτ1qu “ 0. Let τ2 be any round such that τ2 ą τ1. For any
constant β ą 0, it holds that

P
´

Dt P rτ1, τ2s : Q̂ptqu ą 36β ¨ logn
¯

ď
pτ2 ´ τ1 ` 1q2

nβ
(7)

Proof. Z
rt´∆,ts
u is a sum of i.i.d. r.v.s (namely the X̂t

i s).

Set µ
p∆q
H “ maxt 3

4
p∆`1q, 3

4
γ¨lognu, for some γ to be defined

later, and note that, from Lemma (6), µ
p∆q
H ě E

”

Z
rτ2´∆,τ2s
u

ı

.

Hence, for any t P rτ1, τ2s and ∆ P r0, t ´ τ1s we can apply
the Chernoff bound (9) with δ “ 1

3
. Thus, from Lemma 7

with α “ γ ¨ logn` 1 we get

P
´

Q̂ptqu ą γ ¨ logn` 1
¯

ď

ď

t´τ1
ÿ

∆“0

P
´

Zrt´∆,ts
u ą ∆` 1` γ ¨ logn

¯

ď

ď

t´τ1
ÿ

∆“0

P
´

Zrt´∆,ts
u ą µ

p∆q
H p1` δq

¯

ď

ď

t´τ1
ÿ

∆“0

exp

ˆ

´
δ2

3
µ
p∆q
H

˙

ď

ď pτ2 ´ τ1 ` 1q exp p´β lognq ,

whenever we set γ “ 36β. Finally, the thesis follows from

the above bound on the events “Q̂ptqu ą 36β ¨ logn” and the
union bound on their union for t P rτ1, τ2s.

Using Lemma 8 and the union bound on all bins, we easily
get the following bound on the maximum load in the Tetris
process.

Theorem 9. Let c be an arbitrarily-large constant, and
let the Tetris process start from any legitimate configura-
tion. The maximum load M̂ ptq is Oplognq for all t “ Opncq,
w.h.p.

Back to the original process: Proof of Theorem 1
From a standard balls-into-bins argument (see [28]), starting
from any legitimate configuration, after one round the pro-
cess still lies in a legitimate configuration w.h.p. and, thanks
to Lemma 2, there are at least n{4 empty bins w.h.p. From
Lemma 4 with T “ O pncq we thus have that the maximum
load of the process is not larger than the maximum load of

the Tetris process in all rounds 1, ..., T w.h.p. Finally, the
upper bound on the maximum load of the Tetris process
in Theorem 9 completes the proof of the first statement in
Theorem 1.

As for self-stabilization, given an arbitrary initial confi-
guration, from Lemma 5 it follows that within Opnq rounds
all bins have been empty at least once w.h.p. When a bin
becomes empty, Lemma 8 implies that its load will stay
Oplognq for a polynomial number of rounds. Hence, within
Opnq rounds, the system will reach a legitimate configura-
tion w.h.p.

3. PARALLEL RESOURCE ASSIGNMENT
As mentioned in the introduction, the repeated balls-into-

bins process can also be seen as running parallel random
walks of n distinct tokens (i.e. balls), each of them starting
from a node (i.e. bins) of the complete graph of size n. This
is a randomized protocol for the parallel allocation problem
where tokens represent different resources/tasks that must
be assigned to all nodes in mutual exclusion [11]. In this
scenario, a critical complexity measure is the (global) cover
time, i.e., the time required by any token to visit all nodes.
It is important to observe that our analysis on self-stabiliza-
tion works for anonymous tokens and nodes and, hence, for
any particular queuing strategy. In order to bound the delay
of any token, we can consider the FIFO strategy to select
tokens from every bin queue. According to this strategy, we
have that every token in every bin never waits more than
a number of rounds larger than the maximum load. Hence,
Theorem 1 implies that, starting from any initial token as-
signment and for a period of polynomial length, every token
will stay in every bin queue for at most a logarithmic num-
ber of rounds, w.h.p. We also known that the cover time
of the single random-walk process is w.h.p. Opn lognq [28].
Combining the above two facts, we easily get the following
result.

Corollary 10. The random-walk protocol for the Par-
allel Resource Assignment problem on the clique has cover
time Opn log2 nq, w.h.p.

Adversarial model.
The self-stabilization property shown in Theorem 1 makes
the random walk protocol robust to some transient faults.
We can consider an adversarial model in which, in some
faulty rounds, an adversary can reassign the tokens to the
nodes in an arbitrary way. Then, the linear convergence time
shown in Theorem 1 implies that the Opn log2 nq bound on
the cover time still holds provided the faulty rounds happen
with a frequency not higher than γn, for any constant γ ě
6. Indeed, thanks to Lemma 5, the action of an adversary
manipulating the system configuration once every γn rounds
can affect only the successive 5n rounds, while our analysis
in the non-adversarial model does hold for the remaining
pγ ´ 5qn rounds. It follows that the overall slowdown on
the cover time produced by such an adversary is at most
a constant factor on the previous Opn log2 nq upper bound,
w.h.p.

4. CONCLUSIONS AND OPEN QUESTIONS
We have shown that repeated balls-into-bin is self-stabilizing

when the number m of balls is equal to the number n of bins.
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This clearly holds when m ă n as well. An interesting open
question is whether this self-stabilization property also holds
for a larger number of balls, i.e., for any m “ Opn lognq.
We believe that an approach based on a lower bound on the
number of empty bins might still work. Computer experi-
ments on increasing system sizes (up to n „ 105) seem to
open a chance for this result: the number of empty bins are
compatible with a linear function, even though the standard
deviation in our experiments turns out to be relatively large.

A more general interesting question is the study of this
process over other classes of graphs. This line of research
is also motivated by several recent applications of parallel
random walks in the (uniform) gossip model [7, 11, 17, 18].
As mentioned in the introduction, the previous analysis of
this process in regular graphs [5] yields a bound on the max-
imum load Op

?
tq after t rounds. As we proved here for the

complete graph, we believe that the previous bound is far
from tight even in regular graphs and it leads to very rough
bounds on the parallel cover time. We conjecture that the
maximum load remains logarithmic for a long period in any
regular graph. A possible reason for this important phe-
nomenon (if true) might be the fact that in regular graphs
the expected difference between (token) arrivals and depar-
tures is always non-positive in every node. As in our analy-
sis on the complete graph, this fact is not enough but, if it
could be combined with a suitable bound on the number of
empty bins, then it could lead to the right way for proving
our conjecture. However, in non-complete graphs, there is a
further technical issue: in order to apply any argument on
the empty bins, we also need to prove that such empty bins
keep well spread over (almost) all neighborhoods of the reg-
ular graph for a long period. We think this technical issue
is far from easy even in simple topologies such as rings.
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APPENDIX
A. USEFUL INEQUALITIES

Lemma 11 (Chernoff bound). Let tXt : t P rnsu be
a family of independent binary random variables. Let X “
řn
t“1 Xt and let µL ď E rXs ď µH . For every δ P p0, 1q it

holds that

PpX ď p1´ δqµLq ď exp

ˆ

´
δ2

2
µL

˙

(8)

PpX ě p1` δqµHq ď exp

ˆ

´
δ2

3
µH

˙

(9)

B. NEGATIVE ASSOCIATION
Definition 12 (Negative association). Random vari-

ables X1, . . . , Xn are negatively associated if, for every pair
of disjoint subsets I, J Ď rns, it holds that

E rf pXi, i P Iq ¨ g pXj , j P Jqs ď

ď E rf pXi, i P Iqs ¨E rg pXj , j P Jqs

for all pairs of functions f : R|I| Ñ R and g : R|J| Ñ R
that are both non-decreasing or both non-increasing.

Now we give a simple counterexample showing that, in our
balls-into-bins process, the random variables counting the
number of balls arriving in a given bin in different rounds
cannot be negatively associated.

Consider our random process with n “ 2 and let X1 and
X2 be the random variables indicating the number of tokens
arriving at the first bin in rounds 1 and 2, respectively. Let
f ” g be the non-increasing function

fpxq “

#

1 if x “ 0

0 if x ą 0

If X1 and X2 were negatively associated, we thus would have
that PpX1 “ 0, X2 “ 0q ď PpX1 “ 0qPpX2 “ 0q. However,
by direct calculation it is easy to compute that

PpX1 “ 0, X2 “ 0q “ 1{8

because, in order for ”X1 “ 0, X2 “ 0” to happen, at the
first round both balls have to end up in the second bin (this
happens with probability 1{4) and at the second round the
ball chosen in the second bin has to stay there (this happens
with probability 1{2). But we have that PpX1 “ 0q “ 1{4
and by conditioning on all the three possible configurations
at round 1 we have PpX2 “ 0q “ 3{8. Thus

1

8
“ PpX1 “ 0, X2 “ 0q ą PpX1 “ 0qPpX2 “ 0q “

1

4
¨

3

8

In general, intuitively speaking it seems that event “Xt “ 0”
makes more likely the event that there are a lot of empty
bins in the system, which in turn makes more likely event
“Xt`1 “ 0” that the bin will receive no tokens at round t`1
as well.

C. OMITTED PROOFS

Proof of Lemma 3
By using the union bound we have that

P

˜

T
č

t“1

Et | Qp0q “ q0

¸

“ 1´P

˜

T
ď

t“1

Et | Qp0q “ q0

¸

ě 1´
T
ÿ

t“1

P
´

Et | Qp0q “ q0

¯

By conditioning on the configuration at round t ´ 1, from
the Markov property and Lemma 2 it then follows that

P
´

Et | Qp0q “ q0

¯

“

“
ÿ

q

P
´

Et | Qpt´1q
“ q

¯

P
´

Qpt´1q
“ q | Qp0q “ q0

¯

ď

ď e´αn

Hence,

P

˜

T
č

t“1

Et | Qp0q “ q0

¸

ě 1´ Te´αn ě 1´ e´γn

for a suitable positive constant γ.

Proof of Lemma 6
Recall that in the Tetris process |Bptq| “ p3{4qn for every

t ą 1. Thus, from the definition of Z
rτ´∆,τs
u we get

E
”

Zrτ´∆,τs
u

ı

“

τ
ÿ

t“τ´∆

ÿ

iPBptq

E
“

Iti puq
‰

“

“

τ
ÿ

t“τ´∆

ÿ

iPBptq

1

n
“

3

4
p∆` 1q
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