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Abstract. Network connectivity is crucial for the operation of any communication network and in
this paper we consider the connectivity of wireless networks. More precisely, when given a set of radio
transmitters distributed in some area, we would like to build a directed connected communication graph
and computing an edge coloring of this graph such that the transmitter-receiver pairs in each color class
can communicate simultaneously.
Depending on the interference model, more or less colors, corresponding to the number of frequencies
or time slots, are necessary. Graph-based interference model such as the Unit Disk Graph (UDG) model
are not realistic enough, since they model interference as a binary property and ignore the accumulated
interference of a large number of distant nodes. More realistic is the physical Signal to Interference plus
Noise Ratio (SINR) model that compares the received power of a signal at a receiver to the sum of the
strength of other signals. The strength of a signal is assumed to fade exponentially with the distance
from the sender, depending on the so-called path-loss exponent α. This is the standard interference
model used in the engineering community.
In this paper, we study the case where all transmitters use the same power. We show that the number of
colors needed is constant in one-dimensional grids if α > 1 as well as in two-dimensional grids if α > 2.
For a smaller path-loss exponents on the two-dimensional grid we prove upper and lower bounds in the
order of O(log n) and Ω(log n/ log log n) for α = 2 and Θ(n1−α/2) for α < 2 respectively. If nodes are
distributed on the interval [0, 1] uniformly at random, a regular coloring of Θ(log n) colors guarantees
connectivity.

1 Introduction

The performance of wireless networks depends on the coordination of the timing and frequency bands of
broadcasting nodes. This is due to the fact that if two nodes close to each other transmit concurrently, the
chances are that neither of their signals can be received correctly because of interference. Thus, choosing
an appropriate interference model is critical. The most popular models can be divided into two classes:
graph-based models (protocol models) and fading channel models. Graph-based models, such as the unit
disk graph (UDG) model [2], describe interference as a binary property by a set of interference edges. The
existence of an edge between two communication pairs, usually based on the distance between nodes, implies
that the two pairs cannot transmit successfully at the same time (or on the same frequency). Such models,
which serve as a simple abstraction of wireless networks, have been very useful for the design of efficient
distributed algorithms. Nevertheless, graph-based models bear the limitation of representing interference as
a local property. In reality, the interference of several concurrent senders accumulates and can interrupt the
reception at a far-away receiver. Therefore, the focus of the algorithmic networking community has recently
shifted from graph-based models to the more realistic fading channel models, such as the physical Signal
to Noise plus Interference (SINR) model [7] that we use in this paper. In this model, a message is received
successfully if the ratio between the strength of the sender signal at the receiving location and the sum
of interferences created by all other simultaneous senders plus ambient noise is larger than some hardware-
defined threshold. Interference is modeled as continuous property, decreasing exponentially with the distance
from the sender, according to the value of the so-called path-loss exponent α. More formally, a receiver ri

receives a sender si’s transmission if and only if
P (si)

d(si,ri)α

N +
∑

j 6=i
P (sj)

d(sj ,ri)α

≥ β,
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Fig. 1. Reception diagrams for scenario with two links, l1 = (s1, r1) and l2 = (s2, r2). The shaded areas denote where
the signal of a sender can be decoded (the area in the lighter gray belongs to sender s2), white indicates that the
received signal power is too weak for reception. a) SINR model: only node r2 receives a message from its sender, the
interference is to high at r1. b) Unit Disk Graph model: neither r1 nor r2 receive a message from their corresponding
senders.

where P (sk) denotes the transmission power of sender sk, d(sk, ri) is the distance between sender sk and
receiver ri, N denotes the ambient noise power level and β is the minimum SINR required for a successful
message reception.

In this paper we focus on the uniform power assignment, where every node transmits with the same power.
This strategy has several important advantages due to its simplicity. While the benefits of power control are
obvious, wireless devices that always transmit at the same power are less expensive and less complicated
to build. Therefore, the uniform power assignment has been widely adopted in practical systems [18]. From
the algorithmic perspective, the lack of freedom in choosing power levels makes reaching a decision much
simpler. Moreover, recently a study of SINR diagrams1 [1] showed that the reception zones of all senders are
convex for a uniform scheme but not necessarily for non-uniform power assignments. This finding suggests
that designing algorithms may be much simpler for uniform networks than for non-uniform networks. Figure
1 illustrates a setting with uniform power levels in the SINR and in the UDG model.

In any network, it is typically required that any pair of nodes can exchange message via relay nodes.
In other words, the nodes have to be connected by a communication backbone, e.g., a spanning tree or
a connected dominating set. In this paper, we investigate how many colors (time slots /frequencies) are
necessary to guarantee that the resulting links (node pairs that can communicate) form a connected graph.
[13] was the first to explore this question in the physical interference model. The authors suggest an algorithm
that constructs a spanning tree, and assigns power levels and time slots to each link of the tree. This algorithm
guarantees that at most O(log4 n) colors suffice for all transmissions to be received correctly, i.e., even in
worse-case networks, the scheduling complexity of a strongly-connected topology is polylogarithmic in n
and such topologies can thus be scheduled efficiently. The algorithm assigns many different power levels
to the links and does not lend itself to a distributed implementation. As we discussed earlier, the study
of the uniform case is still worthwhile, due to its simplicity and the way cheap commercial hardware is
built. Therefore we aim at shedding light on the connectivity problem for uniform power assignments in this
paper. More precisely, given a coloring we can construct a SINR graph, that represents which nodes can
communicate concurrently. We examine the number of colors are necessary such that a strongly connected
SINR graph can be built. We show that the number of colors needed is constant in one-dimensional grids if
α > 1 as well as in two-dimensional grids if α > 2. For smaller path-loss exponents, more colors are necessary.
If α = 2 (i.e., the signal propagation in the vacuum), the upper and lower bounds for the number of colors

1 The SINR diagram of a set of transmitters divides the plane into n + 1 regions or reception zones, one region for
each transmitter that indicates the set of locations in which it can be heard successfully, and one more region that
indicates the set of locations in which no sender can be heard. This concept is perhaps analogous to the role played
by Voronoi diagrams in computational geometry.
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are in the order of O(log n) and Ω(log n/ log log n) respectively. Even smaller values of α have been measured
for indoor propagation [16]. For α < 2 we provide a tight bound of Θ(n1−α/2). For the special case of α = 2
we examined the connectivity of nodes distributed uniformly at random on the interval [0,1]. In this setting,
a regular coloring of Θ(log n) colors guarantees connectivity.

2 Related Work

The seminal work of Gupta and Kumar [7] initiated the study of the capacity of wireless networks. The
authors bounded the throughput capacity in the best-case (i.e., optimal configurations) for the protocol and
the physical models for α > 2.

For both model classes, many scheduling algorithms have been suggested. E.g., [8, 10, 17] analyze algo-
rithms in graph-based models. Typically, these algorithms employ a coloring strategy, which neglects the
aggregated interference of nodes located further away. The resulting inefficiency of graph-based scheduling
protocols in practice is well documented, both theoretically and by simulation [6, 14] as well as experimen-
tally [15]. Recently, Lebhar et al. [11] consider the case of α > 2 and senders that are deployed uniformly
at random in the area. They showed how a UDG protocol can be emulated when the network operates
under the SINR model. Their emulation cost factor is O(log3 n). The fact that interference is continuous and
accumulative as well as the geometric constraints lead to an increased difficulty of the scheduling task in the
SINR model, even if the transmission power of the nodes is fixed. Two scheduling problems are shown to be
NP-complete in the physical SINR model in [5]. Goussevskaia et al. propose in [4] a scheduling algorithm
with an approximation guarantee independent of the network’s topology. Their algorithm gives a constant
approximation for the problem of maximizing the number of simultaneously feasible links and leads to a
O(log n) approximation for the problem of minimizing the number of time slots to schedule a given set of
requests. Furthermore, in [9], the problem is shown to be in APX, thus precluding a PTAS. In the very re-
cent work of Fanghänel et al. [3], a first non-trivial lower bound for the power-controlled oblivious scheduling
problem is obtained. Moreover, for the bidirectional version of the problem, a polylogarithmic approximation
algorithm is presented. Yet another line of research investigates static properties under the SINR model, e.g.,
the maximum achievable signal-to-interference-plus-noise ratio [19] or the shape of reception zones of nodes
in a network [1].

Non-uniform power assignment can clearly outperform a uniform assignment [15, 14] and increase the
capacity of the network, therefore the majority of the work on capacity and scheduling addressed non-
uniform power. As mentioned in the introduction, Moscibroda et al. [13] were the first to raise the question
of the complexity of connectivity in the SINR model. While their work applies for networks with devices
that can adjust their transmission power, we address networks composed of devices that transmit with the
same power.

3 Model

Let (M,d) be a metric space and V ⊆ M a finite set of n = |V | nodes. A node vj successfully receives a
message from node vi depending on the set of concurrently transmitting nodes and the applied interference
model. A standard interference model that captures some of the key characteristics of wireless communication
and is sufficiently concise for rigorous reasoning is the physical SINR model [7]. In this model, the successful
reception of a transmission depends on the strength of the received signal, the interference caused by nodes
transmitting simultaneously, and the ambient noise level. The received power Pr(si) of a signal transmitted
by a sender si at an intended receiver ri is Pri(si) = P (si) · g(si, ri), where P (si) is the transmission
power of si and g(si, ri) is the propagation attenuation (link gain) modeled as g(si, ri) = d(si, ri)−α. The
path-loss exponent α ≥ 1 is a constant typically between 1.6 and 6. The exact value of α depends on external
conditions of the medium (humidity, obstacles, etc.) and on the exact sender-receiver distance. Measurements
for indoor and outdoor path-loss exponents can be found in [16].

Given a sender and a receiver pair li = (si, ri), we use the notation Iri(sj) = Pri(sj) for any other
sender sj concurrent to si in order to emphasize that the signal power transmitted by sj is perceived at
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ri as interference. The total interference Iri(L) experienced by a receiver ri is the sum of the interference
power values created by the set L of nodes transmitting simultaneously (except the intending sender si),
i.e., , Iri(L) :=

∑
lj∈L\{li} Iri(sj). Finally, let N denote the ambient noise power level. Then, ri receives si’s

transmission if and only if

SINR(li) =
Pri(si)

N + Iri(L)
=

P (si)g(si, ri)
N +

∑
j 6=i P (sj)g(sj , ri)

=
P (si)

d(si,ri)α

N +
∑

j 6=i
P (sj)

d(sj ,ri)α

≥ β,

where β ≥ 1 is the minimum SINR required for a successful message reception. For the sake of simplicity, we
set N = 0 and ignore the influence of noise in the calculation of the SINR. However, this has no significant
effect on the results: by scaling the power of all senders, the influence of ambience noise can be made
arbitrarily small. Observe that for real scenarios with upper bounds on the maximum transmission power
this is not possible, for our asymptotic calculations we can neglect this term.

The scheduling complexity, introduced in [13], describes the number of time slots or frequencies necessary
to successfully transmit messages over a given set of communication links. More formally, we are given a
network with a set of directed links representing communication requests. For each such link we assign a
color (time slot/frequency) and a power level such that all simultaneous transmissions are successful, i.e.,
not violating the signal-to-interference plus noise ratio at any receiver.

The connectivity problem of a given set V of nodes located in the Euclidean plane is the scheduling
complexity of a connected communication graph of V , i.e., an assignment of power levels and colors to each
link of the directed strongly connected graph such all transmissions are received correctly.

In this paper, we investigate the uniform connectivity problem, i.e., the connectivity problem for a set V
when only uniform power assignments are allowed. We give a formal definition of the graph we examine the
connectivity of:

Definition 1 ((Uniform) SINR graph). Let (M,d) be a metric space, V ⊆ M be a finite set of nodes,
c : V → [k] be a coloring of the nodes, and E ⊆ V 2 be the set defined as follows

E =

{
(u, v) ∈ V 2 :

1/d(u, v)α∑
w∈V \{u} : c(w)=c(u) 1/d(w, v)α

> β

}
(1)

We will refer to the directed graph G = (V,E) as the (uniform) SINR graph.

In words, the definition of the graph says that a node v can decode a message coming from node u (i.e.
there is an edge from u to v) if and only if the ratio between the power (i.e. 1/d(u, v)α) at which v receives
the message from u and the sum of the powers from the other interfering nodes (nodes w that use the same
frequency of node u, i.e. c(w) = c(u)) is at least some fixed constant β.

The question we want to answer is the following: Given the metric space (M,d) and the set of nodes
V ⊆ M , how many colors k do we need in order to be sure that a coloring c : V → [k] exists such that the
resulting graph G is strongly connected?

In this paper, the set of nodes V will be located in R or in R2 and d will always denote the Euclidean
distance.

4 Connectivity in Grids

4.1 One-dimensional grid

Let V = {p1, . . . , pn} ⊆ R be a set of n nodes with p1 < p2 < · · · < pn . We say that V is a one-dimensional
grid if the nodes are equally spaced, i.e. d(pi, pi+1) is the same for every i = 1, . . . , n (without loss of
generality, we will assume pi = i for every i).

We say that a coloring c : V → [k] is a regular k-coloring if the points are colored in a Round Robin
way, i.e. if c(pi) = (i mod k) + 1 for i = 1, . . . , n.
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Theorem 1. Let V = {p1, . . . , pn} be a one-dimensional grid with pi = i for every i = 1, . . . , n. For any
α > 1 a constant k and a coloring c : V → [k] exist such that the corresponding SINR graph is strongly
connected.

Proof. Consider a regular k-coloring, where k is a sufficiently large constant that we will choose later. Now
we show that, for every i = 1, . . . , n − 1, in the SINR graph there is a directed edge from node pi to node
pi+1. According to the definition of the SINR graph, we must show that

1/d(pi, pi+1)α∑
j∈[n]\{i} : c(pj)=c(pi)

1/d(pj , pi+1)α
> β (2)

For the numerator, we have 1/d(pi, pi+1)α = 1 for any α. For the denominator, observe that the nodes with
the same color of pi are {. . . pi−2k, pi−k, pi+k, pi+2k, . . . }. Thus, for any j = 1, . . . , n, we have at most 2
nodes ad distance at least j(k − 1) from node pi, hence

∑
j∈[n]\{i} : c(pj)=c(pi)

1
d(pj , pi+1)α

6
n∑

j=1

2
(j(k − 1))α

=
2

(k − 1)α

n∑
j=1

1
jα

<
2

(k − 1)α
g(α)

where we named g(α) =
∑∞

j=1 j−α. Observe that g(α) = O(1) for any constant α > 1. In order to satisfy
(2) it is sufficient to choose k > 1 + (2βg(α))1/α.

In exactly the same way we can show that for every i = 2, . . . , n, there is a directed edge from node pi

to node pi−1, hence the the SINR graph is strongly connected. ut

4.2 Two-dimensional grid

Consider the following two dimensional grid topology of n nodes. An array of
√

n arrays containing
√

n nodes
each, where the left most corner node is denoted by (0,0).

A regular k2-coloring partitions the nodes into k2 sets such that the closest distance between any two nodes
of the same color is k. In other words, each set forms another grid with distance k. If α exceeds two, the
number of colors required for connectivity is constant.

Theorem 2 (Bound 2D grids, α > 2). Let V = {p1, . . . , pn} ⊆ [0,
√

n]2 be a two-dimensional grid. For
any α > 2 a constant k and a coloring c : V → [k] exist such that the corresponding SINR graph is strongly
connected.

Proof. Consider a regular k2-coloring for a grid consisting of n nodes. Let the node v at (0,0) belong to color
j. Without loss of generality we can assume that v is connected to the node at (0,1) in the corresponding
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interference graph. We now explore the interference accrued at node (0,1) if all nodes of color j transmit
simultaneously. In this case the total interference at (0,1) is

√
n∑

i=1

2i + 1
(ki− 1)α

<
3

(k/2)α

√
n∑

i=1

1
iα−1

<
3 · 2α(α− 1)
2kα(α− 2)

,

for α > 2 due to a standard bound for Rieman’s zeta-function. Note that the node in the center of the
grid faces less than four times the amount of interference that the node at (0,1) is exposed to. This level of
interference needs to be below 1/α, hence the distance k has to satisfy the following inequality:

k > (3 · 2αβ(α− 1)/(α− 2))1/α
.

This procedure can be repeated to bound the interference at any node in the grid. In other words, a regular
(3 · 2αβ(α− 1)/(α− 2))2/α-coloring ensures connectivity in a constant number of rounds. ut

Observe that this result holds for infinite grids as well. In addition, it coincides with the UDG interference
model, where a constant number of colors suffices as well. The situation changes dramatically if α is less
than or equal to two. If α = 2, the number of necessary colors increases logarithmically in the number of
nodes.

Theorem 3 (Upper bound 2D grids, α = 2). Let V = {p1, . . . , pn} ⊆ [0,
√

n]2 be a two-dimensional
grid. For α = 2 a regular O(log n)-coloring ensures that the corresponding SINR graph is strongly connected.

Proof. We start similarly to the proof for α > 2 and sum up the interference accumulated at node (0,1)
under a regular k2-coloring In this case the total interference at (0,1) is less than

√
n∑

i=1

2i + 1
(ki− 1)α

<
3

(k/2)α

√
n∑

i=1

1
iα−1

=
6 log n

k2
.

Moreover, the total interference at (0,1) exceeds
√

n∑
i=1

2i + 1
(
√

2ki)α
>

√
2

α

dα

√
n∑

i=1

1
iα−1

=
2 log n

k2
.

Note that the node in the center of the grid faces less than four times the amount of interference that the
node at (0,1) is exposed to.

β being a constant entails that k2 has to be in the order of Ω(log n) if we want that a message from the
node at (0,0) can be decoded at (0,1). There are O(k2) nodes at a radius of k around (0,1), consequently,
we need Ω(log n) frequencies if α = 2 and we want all nodes to be able to send concurrently and form a
connected structure. We achieve this goal by partitioning the existing grid into log n grids that send with
distinct frequencies. ut

Theorem 4 (Lower bound 2D grids, α = 2). Let V = {p1, . . . , pn} ⊆ [0,
√

n]2 be a two-dimensional grid
and α = 2. Let c : V → [k] be a coloring. If the corresponding SINR graph is strongly connected, then the
number of colors is k = Ω

(
log n

log log n

)
.

Proof. For the lower bound, we show that no matter how we distribute the colors on the grid, we need
Ω( log n

log log n ) frequencies to ensure connectivity. More precisely, we show that in whatever way we position the
nodes, we can always find a node where the interference experienced is at least as high as at (0,0) in the grid
situation.

Let us start by demonstrating the minimum interference accumulated at any node if we use three colors.
Without loss of generality, there is at least one color j that is assigned to at least n

3 nodes. In the following,
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we will only consider this color j. Let us divide the grid into 4 parts (a1, a
′
1, a

′′
1 , a′′′1 ) of equal size. Among

these, there is at least one square with at least n/12 nodes with color j, because there would not be n
3

nodes of color j together with the other squares otherwise. Without loss of generality we can assume that
this is the square a1 anchored in (0,0) and we denote the number of nodes in a1 by |a1|. We now want
to compute the minimal interference that one of the nodes in a1 experiences. To this end we assume that
there are exactly n

3 nodes with color j and exactly n
12 nodes in a1 (otherwise the interference for nodes in a1

increases. By positioning all n
3 − |a1| = n

4 nodes that are not in a1 into the corner (
√

n,
√

n), i.e. the corner
with the largest distance from (0,0), the minimal interference any node in a1 experiences exceeds n

4 ·
1
2n = 1

8

because the largest distance between a point in a1 and (
√

n,
√

n) is
√

2n. Let us now consider the interference
the nodes in a1 cause among themselves. We proceed as before by dividing the square a1 into four squares
(a2, a

′
2, a

′′
2 , a′′′2 ) of side length

√
n

4 each. Using the same arguments we know that one of them, let us say, a2

contains at least n
48 nodes of color j and to minimize the interference within a2 we look at the case where

|a2| is n
48 and anchored at (0,0). We can now compute the minimal amount of interference caused by the

n
12 −

n
48 = n

16 nodes in a1 at (0,0) to be at least n
16 ·

2
n = 1/8 because the maximal distance within a1 is

√
n√
2
.

If we repeat these steps, it holds that in step i we have n
4i nodes in distance

√
2n

2i−1 responsible for a sum of
interference of n

4i · 4i−1

2n = 1/8. After blog4 nc steps there is only one node left in ai and we stop. The total
interference is thus in Ω(log n).

We can generalize this approach to more than three colors. If we use k colors and partition the square
with most nodes into k + 1 squares and proceed recursively, the number of nodes in ai−1 outside ai is in the
order of n

(k+1)i , where ai is the square with most nodes in the ith step. These nodes are at most in distance
√

2n
(k+1)(i−1)/2 from the nodes in ai and thus cause interference of n

(k+1)i · (k+1)i−1

2n = 1
2(k+1) . The maximal

number of recursions is b log n
log k c. Consequently, all the nodes are responsible for Ω( log n

k log k ) interference at
(0,0).

Typically the SINR threshold β that guarantees the reception of a message is a small constant. In order
to allow a neighbor on the grid (at distance 1) to receive our message, we thus have to ensure that the total
interference is at most a constant, i.e., for any number of colors k where

log n

k log k
∈ ω(1) (3)

a simultaneous transmission is not possible. Consider k′ := c log n
log log n for some constant c. Depending on the

value of c, this k′ satisfies (3), thus the smallest suitable k is in Ω( log n
log log n ). ut
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Corollary 1 (Upper and lower bound 2D grids, α < 2). Let V = {p1, . . . , pn} ⊆ [0,
√

n]2 be a two-
dimensional grid and α < 2. Let c : V → [k] be a coloring. If the corresponding SINR graph is strongly
connected, then the number of colors is k = Θ

(
n1−α/2

)
.

Proof. Given a regular k2-coloring, the total interference at any point in [0,
√

n] is less than
√

n∑
i=1

2i + 1
(ki− 1)α

<
3

(k/2)α

√
n∑

i=1

1
iα−1

<
6n1−α/2

(2− α)k2
.

Due to the same arguments as in the proof of Theorem 3, this implies that a regular coloring using O(n1−α/2)
colors suffices for connectivity.

For the matching lower bound we adopt the same recursive strategy as in the proof of Theorem 4. In
step i we have n

(k+1)i nodes in distance
√

2n
(k+1)(i−1)/2 responsible for a sum of interference of

n

(k + 1)i
· (k + 1)α(i−1)/2

(2n)α/2
=

n1−α/2

2α/2(k + 1)α/2
(k + 1)i(α/2−1).

After blogk+1 nc steps there is only one node left in ai and we stop. The total interference is thus

I =
n1−α/2

(2(k + 1))α/2

logk+1 n∑
i=1

(k + 1)i(α/2−1)

=
n1−α/2

(2(k + 1))α/2
· c,

for some constant c, since (k + 1)α/2−1) < 1. Hence, in order to make sure that a message in distance one
from a sender can be received, i.e. 1/I > β, the smallest possible k has to be in the order of Ω(n1−α/2). ut

5 Connectivity for random instances: the one-dimensional case

In this section, we consider a set V of n nodes thrown independently and uniformly at random in [0, 1], the
unit interval.2 We assume the path-loss exponent to be α = 2.

Our first result shows that O(log n) colors are enough to guarantee the strong connectivity of the corre-
sponding SINR graph.

Theorem 5 (Upper bound). Let V = {p1, . . . , pn} ⊆ [0, 1] where p1, . . . pn are independent random
variables uniformly distributed in [0, 1]. Then a coloring c : V → [k] exists, with number of colors k in the
order of O(log n), such that the corresponding SINR graph is strongly connected.

Idea of the proof. Consider a regular coloring of c log n colors, with a constant c sufficiently large
so that we can partition the interval [0, 1] in subintervals of length Θ(log n/n), each one of them
containing (i) Θ(log n) nodes w.h.p. and (ii) no more than one node for each color w.h.p.
For any node p, we can take an interval of length Θ(log n/n) containing Θ(log n) nodes and such
that every node in that interval is an out-neighbor of node p. Indeed, for any node q in that interval,
the power at which q receives the signal from p is Ω(n2/ log2 n). For the nodes interfering with p,
we have that for any h there are O(1) interfering nodes at distance Ω(h log n/n) from q, hence the
total interfering power at node q is O(n2/ log2 n). By choosing the constant c sufficiently large, we
can make the ratio between the power at which q receives the signal from p and the interfering power
an arbitrary large constant. ut

2 In contrast to the grid, where we set the minimal distance between two nodes to be one, we consider the unit
interval for the random case because of its direct correspondence to probability.
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Proof. Let I ⊆ [0, 1] be an interval of length c log n/n, where c is a sufficiently large constant that we will
choose later, and let X be the r.v. counting the number of nodes in I. The expectation of X is E [X] = c log n
and, since X can be written as sum of independent Bernoulli r.v., from Chernoff bound (6) with δ = 1/2
and µ = c log n we have that

P
(

X >
3c

2
log n

)
< n−c/12 (4)

Set the number of colors to be k = 3c
2 log n, and consider a regular coloring, i.e. the color of node pi is (i

mod k) + 1 for i = 1, . . . , n.
For a node pi let Ii be an interval of length 32 log n/n centered in pi, possibly shorter if pi is close to the

boundary

Ii =
[
pi − 16

log n

n
, pi + 16

log n

n

]
∩ [0, 1]

Let Yi be the number of nodes in Ii and observe that E [Yi] > 16 log n, and by using Chernoff bound (5)
with δ = 1/2 and µ = 16 log n, we have that

P (Yi < 8 log n) < n−2

Now we show that every node in interval Ii is w.h.p. an out-neighbor of node pi in the SINR graph. This
will prove that the SINR graph is strongly connected w.h.p. Consider the interval

Ji =
[
pi −

c

2
log n

n
, pi +

c

2
log n

n

]
∩ [0, 1]

and partition all the rest of [0, 1] with intervals of length c log n/n (possibly shorter for the two intervals
on the boundary). Now observe that, from (4) and from the fact that we are using a k-regular coloring,
it follows that the probability that a single interval contains more than one node with the same color is
less than n−c/12. By using union bound over all the intervals, the probability that one interval exists that
contains more than one color is less than n−c/12+1. Now, conditioning on the event that all such intervals
contain no more than one node with the same color, we can show that every node in Ii is an out-neighbor
of node pi.
Let q ∈ Ii be a node, as for the numerator in (2) we have that

1
d(q, pi)2

>
n2

162 log2 n
.

For the denominator, observe that, for any h = 1, . . . , n, we have at most 2 nodes with the same color of pi,
at distance at least h(c/2 − 16) log n/n > h(c/4) log n/n, where in the inequality we are assuming c > 64.
Hence, ∑

j∈[n]\{i} : c(pj)=c(pi)

1
d(pj , q)2

6
n∑

h=1

2(
h c

4
log n

n

)2 =
32
c2

n2

log2 n

n∑
h=1

1
h2

6
16π2

3c2

n2

log2 n
.

In order to satisfy (2), it is sufficient to choose c > 64π
√

β/3, and it follows that

1/d(pi, q)2∑
j∈[n]\{i} : c(pj)=c(pi)

1/d(pj , q)2
>

n2

162 log2 n

16π2

3c2
n2

log2 n

=
3

163π2
c2 > β.

Hence, the probability that node pi is not connected to all nodes in Ii, or Ii does not contain c/8 log n nodes
is less than n−2 + n−c/12. And by using union bound on all nodes we have that the probability that a node
exists that is not connected to at least Ω(log n) nodes in an interval of length O(log n/n) is O(1/n). The
SINR graph is thus connected w.h.p. ut
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The previous theorem shows that, with a regular O(log n)-coloring, the resulting SINR graph is strongly
connected w.h.p. The rest of this section is devoted to prove that this is the best we can achieve with regular
colorings.

The next lemma provides a condition implying that the SINR graph is not strongly connected. We will
use it in the proof of Theorem 6.

Lemma 1. Let V = {p1, . . . , pn} ⊆ [0, 1] be an arbitrary set of nodes and let c : V → [k] be a regular
coloring. Suppose that a length 0 < ` < 1/3 and a point x ∈ [0, 1 − 3`] exist such that the following
conditions hold:

1. In the subinterval [x, x + `], there are at least (4/β)k nodes;
2. In the subinterval [x + `, x + 2`], there are no nodes;
3. In the subinterval [x + 2`, x + 3`] there is at least one node.

Then, the SINR graph is not strongly connected.

Proof. Let p be a node in [0, x+`] and let q be a node in [x+2`, 1]. From hypothesis (1) and the fact that the
coloring is regular, there are at least (4/β) nodes in the interval [x, x + `] interfering with the transmission
from p to q, that are at distance less than ` + d(p, q) from q. Hence, the interference ratio at node q is less
than

1
d(p,q)2

4/β

(d(p,q)+`)2

=
1

d(p,q)2

4/β

d(p,q)2(1+ `
d(p,q) )

2

=
β

(
1 + `

d(p,q)

)2

4
< β

In the last inequality we used d(p, q) > `. Thus, there are no edges from nodes in [0, x + `] to nodes in
[x + 2`, 1] and by hypothesis (2) the graph is not strongly connected. ut

Theorem 6 (Lower Bound for regular colorings). Let V = {p1, . . . , pn} ⊆ [0, 1] where p1, . . . pn are
independent random variables uniformly distributed in [0, 1], and let c : V → [k] be a regular coloring. If the
corresponding SINR graph is strongly connected w.h.p., then the number of colors is k = Ω(log n).

Proof. Let ` = (4/β)(k/n) and let I ⊆ [0, 1] be an interval of length 3`. Consider the the event

EI = “Interval I satisfies conditions (1), (2), and (3) of Lemma 1”

In what follows we prove that, if k < (β/2) log n, then an interval I of length 3` exists such that EI holds
w.h.p. We will use the Poisson approximation (for a detailed description of such tool see, for example, Chapter
5.4 in [12]).

For i = 1, . . . , n let Xi be the random variable counting the number of nodes in the interval [(i−1)/n, i/n]
and observe that E [Xi] = 1. Consider the set {I0, . . . , Ih} of disjoint intervals of length 3`, where Ij =
[3`j, 3`(j + 1)] for j = 0, 1, . . . , h and observe that, since ` = O(log n/n), then the number of such intervals
is h = Ω(n/ log n). For interval Ij we can write the event EIj

as

EIj =

 3n`j+n`∑
i=3n`j+1

Xi > n`

 ∩

 3n`j+2n`∑
i=3n`j+n`+1

Xi = 0

 ∩

 3n`j+3n`∑
i=3n`j+2n`+1

Xi > 1


Now let Y1, . . . , Yn be i.i.d. Poisson random variables with E [Yi] = 1 and let FIj , for j = 0, 1, . . . , h, be the
events in the Poisson setting corresponding to the events EIj , i.e.

FIj
=

 3`j+n`∑
i=3n`j+1

Yi > n`

 ∩

 3n`j+2n`∑
i=3n`j+n`+1

Yi = 0

 ∩

 3n`j+3n`∑
i=3n`j+2n`+1

Yi > 1


10



Since the Yis are independent, it holds that

P
(
FIj

)
= P

 3n`j+n`∑
i=3n`j+1

Yi > n`

 ∩

 3n`j+2n`∑
i=3n`j+n`+1

Yi = 0

 ∩

 3n`j+3n`∑
i=3n`j+2n`+1

Yi > 1


= P

 3n`j+n`∑
i=3n`j+1

Yi > n`

 ·P

 3n`j+2n`∑
i=3n`j+n`+1

Yi = 0

 ·P

 3n`j+3n`∑
i=3n`j+2n`+1

Yi > 1


>

1
e
· e−n` ·

(
1− e−n`

)
>

1
2e

e−n` =
1
2e

e−(4/β)k

Thus, if k < (β/2) log n then P
(
FIj

)
> 1

2e
√

n
and, since the intervals Ij are disjoint, the probability that no

one of the events FIj holds is

P

 h⋂
j=0

FIj

 =
h∏

j=0

P
(
FIj

)
6

(
1− 1

2e
√

n

)h

6 e
− h

2e
√

n

By using the Poisson approximation, the probability that no one of the events EIj
holds is

P

 h⋂
j=0

EIj

 6 e
√

n ·P

 h⋂
j=0

FIj

 6 e
√

ne
− h

2e
√

n

Since h = Ω(n/ log n) this probability is exponentially small. Hence, at least one of the intervals Ij satisfies
conditions (1), (2), and (3) of Lemma 1 w.h.p. ut

6 Conclusions and open problems

In this paper we initiate the study of connectivity in the uniform power SINR model. Clearly we can not
achieve connectivity in the SINR model if we use only one frequency, since the SINR diagram is a partition of
the plane. To overcome this problem we can either use a sophisticated scheduling algorithm or we can increase
the number of frequencies. However those two actions are equivalent i.e., any schedule can be translated into
a choice of frequencies and any frequency assignment can be translated into a schedule. Therefore we can
defined the connectivity problem in the SINR model as the minimal number of frequency the network needs
to use to maintain connectivity (the scheduling complexity of connectivity).

We provided upper and lower bounds for the number of time slots or frequencies to build a strongly
connected graph of communication edges. We focused on nodes arranged in a regular grid or uniformly
at random on the unit interval. We proved that if the nodes are located on a regular grid the number of
frequencies needed to maintain connectivity is a function of the dimension of the grid and the path-loss
exponent α. Apart from the special case α = 2 these bounds are asymptotically tight. In contrast, there is
a big gap between the lower and upper bounds, when transmitters are located uniformly at random on the
interval [0, 1]. A natural open question is to close this gap. Other intriguing problems include determining
upper and lower bounds for general colorings in the random two-dimensional case, or algorithms computing
the uniform power complexity of connectivity of arbitrarily positioned nodes.
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A Appendix

Lemma 2 (Chernoff bounds). Let X1, . . . , Xn be independent Bernoulli random variables, and let X =∑n
i=1 Xi. Then for any 0 < δ < 1 it holds that

1. For any µ 6 E [X],

P (X > (1− δ)µ) < e−
δ2
2 µ. (5)

2. For any µ > E [X],

P (X > (1 + δ)µ) < e−
δ2
3 µ. (6)

3. For µ = E [X],

P (X /∈ [(1− δ)µ, (1 + δ)µ]) < 2e−
δ2
3 µ. (7)


