
Convergence to Equilibrium of Logit Dynamics for

Strategic Games

Vincenzo Auletta, Diodato Ferraioli, Francesco Pasquale,
Paolo Penna and Giuseppe Persiano

Dipartimento di Informatica ed Applicazioni “Renato M. Capocelli”
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Abstract

We present the first general bounds on the mixing time of logit dynamics for wide classes
of strategic games. The logit dynamics describes the behaviour of a complex system whose
individual components act selfishly and keep responding according to some partial (“noisy”)
knowledge of the system. In particular, we prove nearly tight bounds for potential games
and games with dominant strategies. Our results show that, for potential games, the mixing
time is upper and lower bounded by an exponential in the inverse of the noise and in the
maximum potential difference. Instead, for games with dominant strategies, the mixing time
cannot grow arbitrarily with the inverse of the noise. Finally, we refine our analysis for a
subclass of potential games called graphical coordination games and we give evidence that
the mixing time strongly depends on the structure of the underlying graph. Games in this
class have been previously studied in Physics and, more recently, in Computer Science in
the context of diffusion of new technologies.



1 Introduction

Complex systems are often studied by looking at their dynamics and the equilibria induced by
these dynamics. In this paper we concentrate on specific complex systems arising from strategic
games. Here we have a set of selfish agents or players, each with a set of possible actions
or strategies. An agent continuously evaluates her utility or payoff, that depends on her own
strategy and on the strategies played by the other agents. A dynamics specifies the rule used by
the players to update their strategies. In its most general form an equilibrium is a distribution
over the set of states that has the property of being invariant with respect to the dynamics. For
example, a very well studied dynamics for strategic games is the best response dynamics whose
associated equilibria are the Nash equilibria.

Several are the characteristics of a dynamics and of the associated equilibrium concept that
concur to make the dynamics descriptive of a system. First of all, it is desirable that the
dynamics gives for each system only one equilibrium state or, in case a system admits more
than one equilibrium for a given dynamics, that the equilibria look similar. For example, this
is not the case for Nash equilibria as a game can admit more than one Nash equilibrium and
sometimes the equilibria have strikingly different characteristics. In addition, the dynamics must
be descriptive of the way individual agents behave. For example, the best response dynamics
is well tailored for modeling players that have a complete knowledge of the global state of the
system and of their payoffs. Finally, if a dynamics takes very long time to reach an equilibrium
then the system spends most of its life outside of the equilibrium and thus knowledge gained
from the study of the equilibrium is not very relevant.

In this work we study a specific noisy best-response dynamics, the logit dynamics (defined in
[3]) in which, at each time step, a player is randomly selected for strategy update and the update
is performed with respect to a “noisy” knowledge of the game and of the state of the system,
that is, the strategies currently played by the players. Intuitively, “high noise” represents the
situation where players choose their strategies “nearly at random” because they have a limited
knowledge of the system; instead, “low noise” represents the situation where players “almost
surely” play the best response; that is, they pick the strategies yielding high payoff with “much
higher” probability. The logit dynamics has the property that, after a sufficiently large number
of steps, the probability that the system is found in a specific profile remains unchanged and
is independent from the starting state. We can thus say that the logit dynamics of a strategic
game converges to a stationary distribution and that the stationary distribution is unique and
independent of the starting state. We believe that this makes the logit dynamics the elective
choice of a dynamics for large and complex systems in which agents have limited knowledge.
However, one more step is needed to complete the picture. How long does the logit dynamics
take to converge to the stationary distribution? This is the main technical focus of this paper.
Specifically, we study the mixing time of the logit dynamics, that is, the amount of time needed
to reach the stationary distribution. This depends on the underlying game and on the noise
of the system (roughly speaking, the payoffs and how much players care about them). Since
previous work has shown that the mixing time can vary a lot (from linear to exponential [2]) it is
natural to ask the following questions: (1) How do the noise level and the structure of the game
affect the mixing time? (2) Can the mixing time grow arbitrarily? We give general bounds on
the mixing time for wide classes of games, including potential games and games with dominant
strategies, and coordination games played between neighboring nodes of a given network.

We prove that, for all potential games, the mixing time of the logit dynamics is upper-
bounded by a polynomial in the number of players and by an exponential in the inverse of the
noise and in the maximum potential difference, an important structural property of the game.
We complement the upper bound by providing a lower bound showing that there exist potential
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games having mixing time that is exponential in the inverse of the noise and in the maximum
potential difference. Thus the mixing time can grow indefinitely in potential games as noise
decreases. We also study a special class of potential games, the graphical coordination games, in
which players are connected by a network and adjacent players play a two-player coordination
game. By looking at two extreme cases, we give evidence that the mixing time depends on
the connectedness of the underlying network. Specifically, we prove that, as a function of the
number of players, the mixing time is exponential for the clique and polynomial for the ring,
for a class of coordination games.

Going to the second question, we show that for games with dominant strategies (not neces-
sarily potential games) the mixing time cannot exceed some absolute bound T which depends
uniquely on the number of players n and on the number of strategies m. Though T = T (n,m)
is of the form O(mn) it is independent of the noise and a lower bound shows that, in general,
such exponential growth is the best possible.

Our results suggest that the structural properties of the game are important for the mixing
time. For small noise, players tend to play best response and for those games that have more
than one pure Nash equilibrium (PNE) with similar potential the system is likely to remain
in a PNE for a long time, whereas the stationary distribution gives each PNE approximately
the same weight. This happens for (certain) potential games, whence the exponential growth of
mixing time with respect to the noise. On the contrary, for games with dominant profile there is
one PNE (the dominant strategy) with high stationary probability and players are guaranteed
to play that strategy with non-negligible probability (regardless of the noise).

Related works. The logit dynamics has been first studied by Blume [3] who showed that,
for 2× 2 coordination games, the long-term behavior of the system is concentrated in the risk
dominant equilibrium (see [5]). The study of the mixing time of the logit dynamics for strategic
games has been initiated in [2], where, among others, bounds were given for the class of 2 × 2
coordination games studied in [3]. Before the work reported in [2], the rate of convergence was
studied only for the hitting time of specific profiles; see for example the work by Asadpour and
Saberi [1] who studied the hitting time of the Nash equilibrium for a class of congestion games.

Graphical coordination games are often used to model the spread of a new technology in
a social network [13] with the strategy of maximum potential corresponding to adopting the
new technology; players prefer to choose the same technology as their neighbors and the new
technology is at least as preferable as the old one. Ellison [4] studied the logit dynamics
for graphical coordination games on rings and showed that some large fraction of the players
will eventually choose the strategy with maximum potential. Similar results were obtained by
Peyton Young [13] for the logit dynamics and for more general families of graphs. Montanari and
Saberi [10] gave bounds on the hitting time of the highest potential equilibrium for the logit
dynamics in terms of some graph theoretic properties of the underlying interaction network.
We notice that none of [3, 4, 13] gave bounds on the convergence rate of the dynamics, while
Montanari and Saberi [10] studied the convergence time of a specific configuration, namely the
hitting time of the highest potential equilibrium.

Our work is also strictly related to the well studied Glauber dynamics on the Ising model
(see, for example, [8] and Chapter 15 of [6]). Indeed, the Ising model can be seen as a special
graphical coordination game with no risk dominant equilibrium, and the Glauber dynamics on
the Ising model is equivalent to the logit dynamics.

Even if the logit dynamics has attracted a lot of attention in different scientific communities,
many other promising dynamics that deal with partial or noise corrupted knowledge of the game
are proposed (see, for example, the recent work of Marden et al. [7] and of Mertikopoulos and
Moustakas [9] and references in [12]).
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Paper organization. We give formal definitions of logit dynamics and some of the used
techniques in Section 2. The upper bounds for potential games, for games with dominant
strategies, and for graphical coordination games are given in Section 3, Section 4, and Section 5,
respectively. The omitted proofs have been moved to Appendix D. For the sake of completeness,
in Appendix A we present some known facts about Markov chains and, for this, we also refer
to [6].

2 Preliminaries

In this section we review the background on strategic games, introduce the logit dynamics and
describe the proof techniques for deriving our bounds. The needed background on Markov
chains can be found in Appendix A.

In a strategic game we are given a finite set of players {1, . . . , n}, with each player i having a
finite set of strategies Si and a utility function ui : S1×· · ·×Sn → R. Each player can choose a
strategy xi ∈ Si and the resulting strategy profile is the vector x = (x1, . . . , xn). Given a profile
x, the utility (or payoff) for player i is ui(x). Throughout the paper we adopt the standard
game theoretic notation and write (a,x−i) to denote the vector (x1, . . . , xi−1, a, xi+1, . . . , xn).
We also let S := S1 × · · · × Sn denote the set of all strategy profiles.

In this paper we consider the logit dynamics (see [3]). In the logit dynamics with inverse
noise β for an n-player strategic game G = (S1, . . . , Sn, u1, . . . , un) and β > 0, at every time
step a player i is selected uniformly at random and her strategy is updated to strategy y ∈ Si
with probability σi(y | x) defined as

σi(y | x) :=
1

Ti(x)
eβui(y,x−i) (1)

where x ∈ S is the current strategy profile and Ti(x) =
∑

z∈Si e
βui(z,x−i) is the normalizing

factor.
The logit dynamics for G naturally defines a Markov chain MGβ = {Xt : t ∈ N} with state

space Ω = S and transition probabilities

P (x,y) =


1
n · σi(yi | x), if x 6= y and x−i = y−i;
1
n ·
∑n

i=1 σi(yi | x), if x = y;
0, otherwise.

(2)

We will find convenient to identify the logit dynamics for G with the Markov chain MGβ . It
is not difficult to see that MGβ is irreducible and aperiodic. Therefore, there exists a unique
stationary distribution π, such that, for every initial profile x, the distribution P t(x, ·) of the
position of the chain after t steps converges to π as t tends to infinity. We are interested in
the mixing time of the chain; i.e., the time needed for P t(x, ·) to be close to π for every initial
configuration x:

tmix(ε) = min
{
t ∈ N : ‖P t(x, ·)− π‖TV 6 ε for all x ∈ Ω

}
where ‖P t(x, ·)− π‖TV = 1

2

∑
y∈Ω |P t(x,y)− π(y)| is the total variation distance. We will use

the shorthand tmix for tmix(1/4).
For an irreducible and aperiodic Markov chain over finite state space Ω with transition

matrix P and stationary distribution π, we will call edge stationary distribution the probability
distribution Q over the set Ω× Ω given by Q(x,y) = π(x)P (x,y).
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A strategic game is a potential game if there exists a function Φ : S → R such that for every
player i, every profile x ∈ S, and every pair of strategies a, b ∈ Si, it holds that

ui(a,x−i)− ui(b,x−i) = Φ(a,x−i)− Φ(b,x−i).

For every potential game G with potential function Φ, let π be the so-called Gibbs measure

π(x) =
1
Z
eβΦ(x) (3)

where Z =
∑

y∈S e
βΦ(y) is the normalizing constant, sometimes called partition function. We

sometimes write Zβ and πβ to stress the dependence on the inverse noise β.
It is easy to see thatMGβ is reversible (i.e. Q(x,y) = Q(y,x) for all states x,y) with respect

to the stationary distribution π.
We use bold symbols for vectors. We write |x|a for the number of occurrences of a in x, i.e.,

|x|a = |{i ∈ [n] : xi = a}|. We write x ∼ y to denote the fact that x differs from y is exactly
one coordinate.
Proof Techniques. For deriving our upper bounds, we employ two techniques: Markov chain
coupling and Markov chain comparison. Coupling is a well established technique for bounding
the mixing time and it is summarized in Theorems 17 and 18 in Appendix A.

As for Markov chain comparison, we note that the relaxation time trel is strictly related to the
mixing time of a Markov chain (see Theorem 20 in Appendix A). The following Theorem allows
us to compare the relaxation times of two chains by comparing stationary and edge-stationary
distributions.

Theorem 1 (Comparison Theorem) Let P and P̂ be the transition matrices of two re-
versible, irreducible, and aperiodic Markov chains with the same state space Ω, stationary dis-
tributions π and π̂ respectively, and edge stationary distributions Q and Q̂ respectively. Suppose
that two constants α, γ exist such that, for all x, y ∈ Ω,

Q̂(x, y) 6 α ·Q(x, y) (4)
π(x) 6 γ · π̂(x). (5)

Then the relaxation time trel of P and the relaxation time t̂rel of P̂ satisfy trel 6 α · γ · t̂rel.

For the case of lazy Markov chains, Theorem 1 can be derived from Lemma 13.22 in [6]. For
completeness sake, we give a full proof for the general case in Appendix C.

For deriving our lower bounds we will use the the Bottleneck Ratio Theorem (see Theorem 19
in Appendix A) and a refinement of it for the logit dynamics of potential games (see Theorem 2
below).

Let x ∈ S be a profile of a potential game and let M ⊆ S \ {x} be a set of profiles different
from x. We define Rx,M as the set of profiles in the connected component of the Hamming
graph 1 with vertex set S \M that contains x and define

∂Rx,M := {y ∈ Rx,M : ∃ z ∈M such that y ∼ z} .

In other words, ∂Rx,M consists exactly of those profiles in Rx,M that have a neighbor in M .
We have the following theorem.

1In the Hamming graph with vertex set S′ ⊆ S, two profiles x and y are adjacent x ∼ y if and only if they
differ in exactly one component.
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Theorem 2 For any potential game G in which each player has exactly 2 strategies, for any
profile x ∈ S and for any M ⊂ S \ {x}, if R = Rx,M satisfies π(R) 6 1/2 then the mixing time
of the logit dynamics with inverse noise β for G satisfies

tmix = Ω

(
eβ(ΦR−ΦM )

|∂R|

)
,

where ΦR and ΦM are the maximum potential among profiles in R and M , respectively.

Proof. Observe that for every pair y, z of adjacent profiles it holds that

π(y)P (y, z) =
eβΦ(y)

Z
· 1
n
· eβΦ(z)

eβΦ(y) + eβΦ(z)
6
eβΦ(z)

nZ
.

Note that for every y ∈ ∂R there are at most n neighbors outside R and all of them belong to
M by definition, thus

Q
(
R,R

)
:=

∑
y∈R, z∈R

π(y)P (y, z) =
∑

y∈∂R, z∈M
π(y)P (y, z) 6

∑
y∈∂R, z∈M

eβΦ(z)

nZ
6 |∂R| e

βΦM

Z
.

Let x+ ∈ R be a profile with the highest potential in R; that is, Φ(x+) = ΦR. Obviously

π(R) > π(x+) =
eβΦR

Z
.

These two inequalities yield
Q
(
R,R

)
π(R)

6
|∂R|

eβ(ΦR−ΦM )

and since π(R) 6 1/2 the thesis follows from the Bottleneck Ratio Theorem (Theorem 19). �
The above theorem gives good lower bounds when we choose x and M such that all profiles

in M have low potential, the resulting set R = Rx,M contains at least one profile of high
potential (and thus ΦR − ΦM is large) and the boundary of ∂R is small.

3 Potential Games

For a function Φ : S → R over a finite set S, let us name ∆Φ the difference between the
maximum and minimum values of Φ and L its Lipschitz constant, i.e.

∆Φ = Φmax − Φmin = max{Φ(x)− Φ(y) : x,y ∈ S}
L = max{Φ(x)− Φ(y) : x,y ∈ S, x ∼ y}.

In this section we shall see that it is possible to give upper bounds on the mixing time of the
logit dynamics for potential games depending only on those two quantities. Moreover we will
show that such bounds are nearly tight by providing examples of games whose logit dynamics
mixing time is close to the given upper bound.
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Upper bound. In order to give the upper bound on the mixing time, we first give an upper
bound on the relaxation time and then use Theorem 20.

In the proof of Theorem 4 we obtain the upper bound on the relaxation time by comparing
the logit dynamics with inverse noise β for a potential game G and the logit dynamics with
inverse noise 0 for the same game. When the inverse noise is zero, the logit dynamics is a biased
random walk on a “generalized” hypercube. Next lemma evaluates the relaxation time of such
a chain. The proof is a simple generalization of the proof for the relaxation time of the lazy
random walk on the hypercube. For completeness sake we give it in the appendix.

Lemma 3 For every n-player game the relaxation time of the logit dynamics with inverse noise
β = 0 is trel = n.

The following theorem is the main result of this section.

Theorem 4 Let G be a n-player potential game with potential function Φ. The relaxation time
of the logit dynamics for G with inverse noise β is trel = O

(
n · eβ(∆Φ+L)

)
.

Proof. Remember that the stationary distribution is

πβ(x) =
eβΦ(x)

Zβ
6
eβΦmax

Zβ
for all profiles x ∈ S

where Zβ =
∑

y∈S e
βΦ(y) is the partition function. As for the edge-stationary distribution, for

two adjacent profiles x ∼ y that differ at player i ∈ [n] we have

Qβ(x,y) =
eβΦ(x)

Zβ

1
n

eβΦ(y)

Ti(x)
>
eβΦmin

Zβ

1
n

1
|Si| · eβL

, (6)

where we used that

eβΦ(y)

Ti(x)
=

eβΦ(y)∑
z∈Si e

βΦ(x−i,z)
=

1∑
z∈Si e

β[Φ(x−i,z)−Φ(y)]
>

1
|Si| · eβL

.

Moreover, for any profile x we have

Qβ(x,x) =
eβΦ(x)

Zβ

1
n

n∑
i=1

eβΦ(x)

Ti(x)
>
eβΦmin

Zβ

1
n

1
eβL

n∑
i=1

1
|Si|

.

Hence, for all x,y ∈ S it holds that

πβ(x) 6
Z0

Zβ
eβΦmaxπ0(x) and Qβ(x,y) >

Z0

Zβ

eβΦmin

eβL
Q0(x,y) .

Since from Lemma 3 it holds that for β = 0 the relaxation time is O(n), the thesis follows by
applying the comparison theorem (Theorem 1) with

α =
Zβ
Z0

eβL

eβΦmin
and γ =

Z0

Zβ
eβΦmax .

�

A slightly better upper bound that holds when the players have two strategies. The proof is in
Appendix D.2.
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Corollary 5 If every player has only two strategies then the relaxation time is trel = O
(
n · eβ∆Φ

)
.

Finally, we can obtain the bounds on the mixing time by using Theorem 20 and the fact that
πmin > 1/

(
eβ∆Φ|S|

)
.

Corollary 6 For every potential game the mixing time of the logit dynamics is

tmix = O
(
n · eβ(∆Φ+L) (β∆Φ + log |S|)

)
,

where S is the set of strategy profiles.
For potential games with two strategies per player the mixing time is O

(
n · eβ∆Φ(β∆Φ + log |S|)

)
.

Lower bound. It is easy to find potential games whose logit dynamics mixing time is Ω(eβ∆Φ)
when ∆Φ = L, e.g. games where the potential function Φ has only two values and at least two
non-adjacent maxima. One naturally wonders whether a similar lower bound can be achieved
for games where the Lipschitz constant L is small compared to ∆Φ. The following theorem
shows that the term eβ∆Φ in the upper bound in Corollary 6 cannot be essentially improved for
L smaller than ∆Φ. The proof is found in Appendix D.3.

Theorem 7 For every 0 < δ < 1 and for every L = ω(log n) a family of potential games with
two strategies per player exists such that the potential function Φ has Lipschitz constant L, it
satisfies ∆Φ/L > nδ and the mixing time of the logit dynamics is Ω

(
e(β−o(1))∆Φ

)
.

4 Games with Dominant Strategies

In the previous section, we have analyzed potential games and derived upper and lower bounds
on the mixing time for the logit dynamics that are exponential in β. In this section we prove
that, for the class of games with dominant strategies, it is possible to give upper bounds that
are independent of β. In other words, the mixing time of the logit dynamics for games with
dominant strategies does not grow arbitrarily as β tends to infinity.

A strategy z ∈ Si is dominant for player i if it yields the maximum payoff regardless of
the strategies of the other players; that is, ui(z,x−i) > ui(z′,x−i) for every z′ ∈ Si and every
x−i ∈ S−i. In a game with dominant strategies every player has a dominant strategy. Let us
name 0 a dominant strategy for all players and consider the profile 0 = (0, . . . , 0). The following
observation holds for the logit dynamics of a game with dominant strategies.

Observation 8 In every profile and for every β, if player i is selected then her strategy is
updated to the dominant strategy with probability at least 1/|Si|. That is, for all x, β and i,
σi(0 |x) > 1/|Si|.

We have the following lemma whose proof is found in Appendix D.4.

Lemma 9 Let {Xt}t be the logit dynamics of a n-player dominant strategy game and let τ be
the random variable indicating the first time step all the players have been selected at least once.
Then, for all starting profiles x and for all t > n, it holds that Px (Xt = 0 | τ 6 t) > m−n, where
m = maxi |Si|.

We are now ready to derive an upper bound on the mixing time of the logit dynamics for
dominant strategy games. The proof is found in Appendix D.5.
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Theorem 10 For n-player games with dominant strategies where each player has at most m
strategies, the mixing time is tmix = O (mnn log n).

In [2] a n-player game with two strategies per player is shown whose logit dynamics mixing
time is Ω(2n) for large values of β. We next prove that, for every m > 2, there are n-player
games with m strategies per player whose logit dynamics mixing time is Ω

(
mn−1

)
. Thus the

mn factor in upper bound given by Theorem 10 cannot be essentially improved. The proof is
found in Appendix D.6.

Theorem 11 For every m > 2 and n > 2, there exists a n-player potential game with dominant
strategies where each player has m strategies and such that, for sufficiently large β, tmix =
Ω
(
mn−1

)
.

Extensions. Observe that, by using the same techniques exploited in this section, it is possible
to prove an upper bound independent of β for max-solvable games [11], a class which contains
games with dominant strategies as a special case, albeit with an upper bound that is much
larger than O(mnn log n).

5 Graphical Coordination Games

Consider the following basic two-player coordination game

0 1
0 a, a c, d
1 d, c b, b

(7)

We assume that a > d and b > c which implies that players have an advantage in selecting the
same strategy and that (0, 0) and (1, 1) are Nash equilibria. If a − d > b − c then equilibrium
(0, 0) is said to be risk dominant and, analogously, if a − d < b − c then equilibrium (1, 1) is
said to be risk dominant [5]. Tight bounds for the mixing time of the basic coordination games
have been given in [2].

In this section we consider graphical coordination games in which n players are connected
by a network G (encoding, for example, social relationships) and every player plays the basic
coordination game (7) with each of the adjacent players. Specifically, when a player selects her
strategy, such a strategy is played against each one of her adjacent players. The payoff of a
player is given by the sum of the payoffs gained from each instance of the basic coordination
game. We focus on two network topologies: the clique (Section 5.1), where the mixing time
dependence on eβ∆Φ showed in Corollary 6 cannot be improved, and the ring (Section 5.2),
where a more local interaction implies a faster convergence to the stationary distribution.

In the rest of this section we will assume w.l.o.g. that a− d > b− c.

5.1 Graphical Coordination Games on the Clique

In this section we study the mixing time of graphical coordination games on the clique; that is,
every player plays the basic coordination game (7) with every other player. We give upper and
lower bounds on the mixing time. As we shall see, both such bounds turn out to be exponential
in n, even for β = Θ(1).

We first observe that the game is a potential game. This will allow us to use Corollary 6 to
derive an upper bound on the mixing time and to use Theorem 2 to get a lower bound.
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It is not difficult to see that Φ(x) = φ(|x|0) is a potential function for the graphical coordi-
nation game on the clique, where

φ(k) := (k? − k)
(

2n− k? − k − 1
2

(b− c)− k? + k − 1
2

(a− d)
)

and k? =
⌈
(n− 1) b−c

(a−d)+(b−c)

⌉
. Notice that the minimum of the potential is attained when k?

players are playing 0 and, since φ(k?) = 0, we have that ∆Φ = maxk φ(k). Moreover, it is
easy to check that φ(k) monotonically decreases as k goes from 0 to k? and then monotonically
increases as k goes from k? to n. Therefore, ∆Φ = max{φ(0), φ(n)}.

Notice that, since a−d > b−c, then φ(k) 6 φ(n−k) for k < k?, and ∆Φ = φ(n). Moreover,
it holds that

k?∑
k=0

Φ(k) 6
n∑

k=n−k?
Φ(k) . (8)

Since ∆Φ = φ(n), by applying our general result on the mixing time of the logit dynamic of
potential games (see Corollary 6) we get tmix = O

(
n · eβφ(n) · (βφ(n) + n)

)
. We next state a

lower bound on the mixing time for coordination games on a clique. The proof is found in
Appendix D.7.

Lemma 12 For coordination games on a clique the mixing time is tmix = Ω
(
e(β−o(1))φ(0)

)
.

We stress that when the basic coordination game has no risk dominant strategy (that is the
case a− d = b− c), φ(0) = φ(n) and thus the exponents of the upper and lower bound coincide
up to a o(1) term. In general, by observing that φ(0), φ(n) = Θ(n2), we can say that the mixing
time is exponential in n2 and β. More precisely, we obtain the following theorem.

Theorem 13 For every graphical coordination game on a clique there exist two constants C
and D such that Cβn

2
6 tmix 6 Dβn2

.

5.2 Graphical Coordination Games on the Ring

In this section we give upper and lower bounds on the mixing time for graphical coordination
games on the ring when there is no risk dominant strategy. Unlike the clique, the ring encodes
a very local type of interaction between the players which is more likely to occur in a social
context. Our results show that the mixing time is polynomial in the number of players n and
eβ.

Let us name δ := a−d = b−c. It is not difficult to see that Φ(x) =
∑n

i=1 Φi(x) is a potential
for the coordination game on the ring, where

Φi(x) =


δ, if xi−1 = xi = xi+1;
δ
2 , if xi−1 6= xi+1;
0, if xi 6= xi−1 = xi+1.

Observe that Φ(1) = Φ(0) = nδ. Moreover, if n is even, the configuration x where every player
selects a strategy different from the one selected by her neighbors has potential Φ(x) = 0: thus,
there are graphical coordination games on the ring where ∆Φ = nδ. If we used Corollary 6, we
would get an exponential in n upper bound for the mixing time. Instead we here show a upper
bound that is polynomial in n.

The proof of the upper bound, that can be found in Appendix D.8, uses the path coupling
technique (see Theorem 18) and can be seen as a generalization of the upper bound of the
mixing time of the Ising model on the ring (see Chapter 15 of [6]).
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Theorem 14 For graphical coordination games with no risk-dominant strategy (a−d = b−c =
δ) on a ring with n players the mixing time is tmix = O

(
n log n · e2βδ

)
.

The upper bound in Theorem 14 is nearly tight (up to the n log n factor). Indeed, a lower bound
can be obtained by applying the Bottleneck Ratio technique (see Theorem 19 in Appendix A)
to the set R = {1}. Notice that π(R) 6 1

2 since profile 0 has the same potential as 1. Thus set
R satisfies the hypothesis of Theorem 19. Simple computations show that

B(R) =
∑
y 6=1

P (1,y) =
1

1 + e2βδ
.

Thus, by applying Theorem 19, we obtain the following bound.

Theorem 15 For graphical coordination games with no risk-dominant strategy on a ring with
n players the mixing time is tmix = Ω

(
e2βδ

)
.

6 Conclusions and open problems

In this work we give bounds on the mixing time of the logit dynamics for wide classes of games,
highlighting how the noise level of the logit dynamics and the structural properties of the game
affect the convergence rate to stationarity. In fact, we show that the mixing time for potential
games depends polynomially on the number of players and exponentially on the inverse noise
and the maximum potential difference ∆Φ: this dependence shows both in the upper and the
lower bound, even if they are not completely matching; thus, it is natural to ask if it is possible
to close the gap.

On the other hand, we show that there exists a class of games, namely dominant strategy
games, such that the mixing time of the logit dynamics does not grow indefinitely with the
inverse noise.

Finally, we consider coordination games on the clique and the ring, a subset of potential
games, where we give evidence that the mixing time is affected also by other structural property
as the connectedness of the network: it might be interesting to investigate other graph structures
to highlight other properties influencing the mixing time (e.g., degree of the graph, expansion,
etc.)

The main goal of this line of research is to give general bounds on the logit dynamics mixing
time for any game, highlighting the features of the game that distinguish between polynomial
and exponential mixing time. We stress that, when the game is not a potential game, in general
there is not a simple closed form for the stationary distribution like Equation (3).

At every step of the logit dynamics one single player is selected to update her strategy. It
would be interesting to consider variations of such dynamics where players are allowed to update
their strategies simultaneously. The special case of parallel best response (that is β = ∞) has
been studied in [11]. Another interesting variant of the logit dynamics is the one in which the
value of β is not fixed, but varies according to some learning process by which players acquire
more information on the game as time progresses.

When the mixing time of the logit dynamics is polynomial, we know that the stationary
distribution gives good predictions of the state of the system after a polynomial number of time
steps. When the mixing time is exponential, it would be interesting to analyze the transient
phase of the logit dynamics, in order to investigate what kind of predictions can be made about
the state of the system in such a phase.
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Appendix

A Markov Chains’ Summary

We summarize the main tools we use to bound the mixing time of Markov chains (for a complete
description of such tools see, for example, Chapters 4.2, 5.2, 7.2 and 14.2 of [6]).

Definition 16 A coupling of two probability distributions µ and ν is a pair of random variables
(X,Y ) defined on a single probability space such that the marginal distribution of X is µ and
the marginal distribution of Y is ν. That is, a coupling (X,Y ) satisfies P{X = x} = µ(x) and
P{Y = y} = ν(y).

Theorem 17 (Coupling) Let {(Xt, Yt)} be a coupling satisfying the following condition

if Xs = Ys, then Xt = Yt for t > s

for which X0 = x and Y0 = y. Let τcouple be the first time the chains meet:

τcouple := min{t : Xt = Yt}

Then

tmix(ε) 6 min
{
t ∈ N : max

x,y∈Ω
Px,y (τcouple > t) 6 ε

}
Theorem 18 (Path coupling) LetM = {Xt : t ∈ N} be an irreducible and aperiodic Markov
chain with finite state space Ω and transition matrix P . Let G = (Ω, E) be a connected graph,
let ` : E → R be a function assign weights to edges such that `(e) > 1 for every edge e ∈ E, and
let ρ : Ω×Ω→ R be the corresponding path distance, i.e. ρ(x, y) is the length of the (weighted)
shortest path in G between x and y.
Suppose that for every edge {x, y} ∈ E a coupling (X,Y ) of distributions P (x, ·) and P (y, ·)
exists such that Ex,y [ρ(X,Y )] 6 `({x, y})e−α for some α > 0, then the mixing time of M is

tmix(ε) 6
log(diam(G)) + log(1/ε)

α

where diam(G) is the (weighted) diameter of G.

Theorem 19 (Bottleneck ratio) Let M = {Xt : t ∈ N} be an irreducible and aperiodic
Markov chain with finite state space Ω, transition matrix P and stationary distribution π. Let
R ⊆ Ω be any set with π(R) 6 1/2. Then the mixing time is

tmix(ε) >
1− 2ε
2B(R)

where

B(R) =
Q(R,R)
π(R)

and Q(R,R) =
∑

x∈R, y∈R

π(x)P (x, y).

Let P be the transition matrix of a Markov chain with finite state space Ω and let us label
the eigenvalues of P in decreasing order

λ1 > λ2 > · · · > λ|Ω|

12



It is well known (see, for example, Lemma 12.1 in [6]) that, if P is irreducible and aperiodic,
then λ2 < 1 and λ|Ω| > −1 . For irreducible and aperiodic chains the relaxation time trel is
defined as

trel = max
{

1
1− λ2

,
1

1 + λ|Ω|

}
.

and for reversible Markov chains (and thus also for the logit dynamics of potential games) it is
related to the mixing time by the following theorem (see, for example, Theorem 12.3 in [6]).

Theorem 20 Let P the transition matrix of a reversible, irreducible, and aperiodic Markov
chain with state space Ω with stationary distribution π. Then it holds that

tmix 6 log
(

1
πmin

)
trel

where πmin = minx∈Ω π(x).

B The Coupling for the Proof of Theorem 10

In this section, we describe, for each x,y ∈ S, a coupling of P (x, ·) and P (y, ·) for the Markov
chain MGβ whose the transition matrix P is given by Equation (2). We will then show that the
coupling described has the properties required by the proof of Theorem 10.

For each player i, we partition two copies of the interval [0, 1], called IX,i and IY,i, in sub-
intervals each labeled with a strategy from the set Si = {z1, . . . , z|Si|} of strategies of player i.
The sub-intervals are constructed as follows. For k = 1, . . . , |Si|, we take the leftmost not yet
labeled interval of length lk = min{σi(zk | x), σi(zk | y)} of both IX,i and IY,i and label it with
strategy zk. In addition, we take the rightmost non yet labeled interval of length σi(zk | x)−lk of
IX and the rightmost non yet labeled interval of length σi(zk | y)− lk of IY and label both with
zk. Notice that at least one of these two intervals has length 0. Define functions hX,i : IX,i → Si
and hY,i : IY,i → Si that for s ∈ [0, 1] return the labels hX,i(s) and hY,i(s) of the sub-intervals
containing s.

Given the above partitions of IX,i and IY,i for each i, the coupling can be described as follows:
pick i ∈ [n] and U ∈ [0, 1] uniformly at random and update X and Y by setting Xi = hX,i(U)
and Yi = hY,i(U)). By construction we have that (X,Y ) is a coupling of P (x, ·) and P (y, ·).

We finish by observing that, if player i is selected, the probability that both chains choose
strategy z for player i is exactly min{σi(z | x), σi(z | y)}. If z is dominant for player i, we have
that σi(z | x), σi(z | y) > 1/|Si| and thus the probability that the coupling updates to z is at
least 1/|Si|.

C Proof of Comparison Theorem

Let P be the transition matrix of an irreducible, aperiodic, and reversible Markov chain with
finite state space Ω and stationary distribution π.

For a function f : Ω→ R let Eπ(f) be its Dirichlet form, i.e. Eπ(f) = 〈(I −P )f, f〉π, where
I is the identity matrix of size |Ω| and 〈·, ·〉π is the inner product defined by

〈f, g〉π =
∑
x∈Ω

π(x)f(x)g(x) for f, g : Ω→ R

The Dirichlet form of a function f can be written as (see Lemma 13.11 in [6])

Eπ(f) =
1
2

∑
x,y∈Ω

Q(x, y) (f(x)− f(y))2 (9)
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The following lemma states that by comparing the Dirichlet forms and the stationary distribu-
tions of two chains over the same state space it is possible to compare their spectral gaps.

Lemma 21 (See Lemma 13.22 in [6]) Let P and P̂ be irreducible and reversible transition
matrices over the same state space Ω and stationary distributions π and π̂, respectively. If
Eπ̂(f) 6 αEπ(f) for any function f , then

1− λ̂2 6

[
max
x∈Ω

π(x)
π̂(x)

]
α(1− λ2)

In order to compare the relaxation times of two chains, we still need to compare their last
eigenvalues. To this aim, consider the form E+

π (f) = 〈(I + P )f, f〉π.

Observation 22
E+
π (f) =

1
2

∑
x,y∈Ω

Q(x, y) (f(x) + f(y))2 (10)

Proof. ∑
x,y∈Ω

Q(x, y)(f(x) + f(y))2 = 2
∑
x∈Ω

π(x)f(x)2 + 2
∑
x∈Ω

π(x)f(x)(Pf)(x)

= 2〈f, f〉π + 2〈Pf, f〉π = 2〈(I + P )f, f〉π

�
The next observation shows that, just like the Dirichlet form is related to the spectral gap,

E+ is related to the the smallest eigenvalue of the transition matrix.

Observation 23

1 + λ|Ω| = min
f 6=0

E+
π (f)
〈f, f〉π

Proof. Since P is irreducible, aperiodic, and reversible there is a basis of RΩ formed by eigen-
vectors of P that are orthonormal w.r.t. the inner product 〈·, ·〉π (see e.g. Lemma 12.2 in [6]).
Let f1, . . . , f|Ω| be such a basis where fi is the eigenvector with eigenvalue λi. Let f be any

function, then it can be written as a linear combination of eigenvectors f =
∑|Ω|

i=1 αifi. Hence
Pf =

∑|Ω|
i=1 αiPfi =

∑|Ω|
i=1 αiλifi. Since f1, . . . , f|Ω| are orthonormal w.r.t. 〈·, ·〉π it holds that

〈f, f〉π =
∑
i

α2
i and 〈Pf, f〉π =

|Ω|∑
i=1

|Ω|∑
j=1

λiαiαj〈fi, fj〉π =
|Ω|∑
i=1

λiα
2
i > λ|Ω|〈f, f〉π

Thus, for every function f 6= 0 we have that

E+
π (f)
〈f, f〉π

=
〈f, f〉π + 〈Pf, f〉π

〈f, f〉π
> 1 + λ|Ω|

And by taking the eigenvector f|Ω| we have E+
π

(
f|Ω|
)
/〈f|Ω|, f|Ω|〉π = 1 + λ|Ω|. �

By using the form E+ an analogous of Lemma 21 can be shown for the last eigenvalue.

Lemma 24 Let P and P̂ be irreducible and reversible transition matrices over the same state
space Ω and stationary distributions π and π̂, respectively. If E+

π̂ (f) 6 αE+
π (f), then

1 + λ̂|Ω| 6

[
max
x∈Ω

π(x)
π̂(x)

]
α(1 + λ|Ω|)
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Proof. Let c(π, π̂) = max{π(x)/π̂(x) : x ∈ Ω} be the maximum ratio between π and π̂, then
for every function f , the π-norm squared is at most c(π, π̂) times the π̂-norm squared, i.e.

〈f, f〉π =
∑
x∈Ω

f(x)2π(x) =
∑
x∈Ω

f(x)2π(x)
π̂(x)

π̂(x) 6 c(π, π̂)〈f, f〉π̂

Hence, by using the hypothesis E+
π̂ (f) 6 αE+

π (f), for every function f 6= 0 we have that

E+
π̂ (f)
〈f, f〉π̂

6 αc(π, π̂)
E+
π (f)
〈f, f〉π

(11)

And the thesis follows from Observation 23 by taking the minimum over all f 6= 0 on both sides
of (11). �

Finally, we can prove the Comparison Theorem as stated in Section 2.
Proof of Theorem 1. Since Q̂(x, y) 6 αQ(x, y) for all x, y ∈ Ω, from (9) and (10) it follows
that Eπ̂(f) 6 αEπ(f) and E+

π̂ (f) 6 αE+
π (f) for every function f . Since π(x) 6 γπ̂(x), from

Lemmas 21 and 24 it follows that

1− λ̂2 6 αγ(1− λ2) and 1 + λ̂|Ω| 6 αγ(1 + λ|Ω|)

And the thesis follows from the definition of relaxation time. �

D Postponed Proofs

D.1 Proof of Lemma 3

Lemma 3 For every n-player game the relaxation time of the logit dynamics with inverse noise
β = 0 is trel = n.
Proof. When β = 0 every player, at her turn, plays one her strategies uniformly at random. In
particular the choice of the strategy is independent of the current strategies played by the other
players. The logit dynamics for β = 0 is thus a product chain (see e.g. Chapter 12.4 in [6])
whose transition matrix P can be written as

P (x,y) =
1
n

n∑
i=1

Pi(xi, yi)I{xj=yj for all j 6=i}

where Pi is the |Si| × |Si| transition matrix with Pi(x, y) = 1/|Si| for every x, y ∈ Si. The
eigenvalues of Pi are 1 (with multiplicity 1) and 0 (with multiplicity |Si|−1). Thus the spectral
gap of Pi is γi = 1 for every i and the spectral gap of P is 1/n (see Corollary 12.12 in [6]). �

D.2 Proof of Corollary 5

Corollary 5 If every player has only two strategies then the relaxation time is trel = O
(
n · eβ∆Φ

)
.

Proof. Observe that, when every player has two strategies, in Equation (6) we have that

eβΦ(x)eβΦ(y)

Ti(x)
=

eβΦ(x)eβΦ(y)

eβΦ(x) + eβΦ(y)
>
eβmin{Φ(x),Φ(y)}

2
>
eβΦmin

2
.

Hence, we obtain

Qβ(x,y) >
eβΦmin

Zβ

1
2n

and Qβ(x,x) >
eβΦmin

Zβ

1
2

15



and we can apply the comparison theorem with

α =
Zβ
Z0

1
eβΦmin

and γ =
Z0

Zβ
eβΦmax .

�

D.3 Proof of Theorem 7

Theorem 7 For every 0 < δ < 1 and for every L = ω(log n) a family of potential games with
two strategies per player exists such that the potential function Φ has Lipschitz constant L, it
satisfies ∆Φ/L > nδ and the mixing time of the logit dynamics is Ω

(
e(β−o(1))∆Φ

)
.

Proof. Consider the game with n players in which every player has strategies 0 and 1, and
whose potential function is

Φ(x) = Φ(|x|1) = min {c; |c− |x|1|} · L

where c = dnδe. Note that the maximum of the potential is Φ(0) = ∆Φ = cL, while the
minimum is zero and is attained at all states in the set M = {x ∈ S : |x|1 = c}.
Consider the set R0,M (see Section 2) and observe that

R0,M = {x ∈ S : |x|1 < c} and ∂R0,M = {x ∈ S : |x|1 = c− 1} .

By the symmetry of the potential function, the stationary probability of R0,M is π(R0,M ) 6 1
2

and the size of its boundary is

|∂R0,M | 6
(
n

c

)
6 ec logn = e(∆Φ/L) logn.

Thus, from Theorem 2 we have that the mixing time of the logit dynamics is

tmix = Ω
(
eβ∆Φ−(∆Φ/L) logn

)
and since L = ω(log n) the thesis follows. �

D.4 Proof of Lemma 9

Lemma 9 Let {Xt}t be the logit dynamics of a n-player dominant strategy game and let τ be
the random variable indicating the first time step all the players have been selected at least once.
Then, for all starting profiles x and for all t > n, it holds that Px (Xt = 0 | τ 6 t) > m−n, where
m = maxi |Si|.
Proof. Condition τ 6 t implies that each player has been selected at least once within time t.

Hence strategy sti of player i at time t is the strategy resulting from her last update. By the
observation above, sti = 0 with probability at least 1/|Si| > 1/m, regardless of the state of the
logit dynamics at the time of the update. �

D.5 Proof of Theorem 10

Theorem 10 For n-player games with dominant strategies where each player has at most m
strategies, the mixing time is tmix = O (mnn log n).
Proof. We apply the coupling technique (see Theorem 17 in Appendix A). Let {Xt} and {Yt}

be two instances of the logit dynamics starting at x and y respectively, and consider a coupling
with the following properties: at every step the same player in both chains is chosen for the
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update, the probability that the strategy of the chosen player is updated to 0 in both chains is
at least 1/|Si| > 1/m, and once the two chains couple they stay coupled for all the following
time steps. An example of such a coupling can be found in Appendix B.

Let τ be the first time such that all the players have been selected at least once and let
t? = 2n log n. For all starting profiles z and w, we have that

Pz,w (Xt? = Yt?) > Pz,w (Xt? = 0 and Yt? = 0)
> Pz,w (Xt? = 0 and Yt? = 0 | τ 6 t?) Pz,w (τ 6 t?)

>
1
mn
· 1

2
(12)

where in the last inequality we used Lemma 9 and the Coupon Collector’s argument.
Therefore, by repeating k phases each one lasting t? time steps, since the bound in (12)

holds for every starting states of the Markov chain, we have that the probability that the two
chains have not yet coupled after kt? time steps is

Px,y (Xkt? 6= Ykt?) 6
(

1− 1
2mn

)k
6 e−

k
2mn

which is less than 1/4, for k = O(mn). By applying the Coupling Theorem (see Theorem 18 in
the Appendix) we have that tmix = O (mnn log n). �

D.6 Proof of Theorem 11

Theorem 11 For every m > 2 and n > 2, there exists a n-player potential game with dominant
strategies where each player has m strategies and such that, for sufficiently large β, tmix =
Ω
(
mn−1

)
.

Proof. Consider the game with n players, each of them having strategies {0, . . . ,m − 1}, such
that for every player i:

ui(x) =
{

0, if x = 0;
−1, otherwise.

Note that 0 is a dominant strategy. This is a potential game with potential Φ(x) = ui(x) and
thus the stationary distribution is given by the Gibbs measure. We apply the bottleneck ratio
(see Theorem 19 in Appendix A) with R = {0, . . . ,m− 1}n \ {0}, for which we have

π(R) =
e−β

Z
(mn − 1)

with Z = 1 + e−β(mn − 1). It is easy to see that π(R) < 1/2 for β > log(mn − 1) and
furthermore

Q(R,R) =
∑
x∈R

π(x)P (x,0) =
e−β

Z

∑
x∈R

P (x,0) =
e−β

Z

∑
x∈R1

P (x,0) ,

where R1 is the subset of R containing all states with exactly one non-zero entries. Notice that,
for every x ∈ R1, we have

P (x,0) =
1
n
· 1

1 + (m− 1)e−β
.

As |R1| = n(m− 1), we have

Q(R,R) =
e−β

Z
|R1|

1
n
· 1

1 + (m− 1)e−β
=
e−β

Z
· m− 1

1 + (m− 1)e−β
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whence

tmix >
1
4
· π(R)
Q(R,R)

>
1
4
· (mn − 1) · 1 + (m− 1)e−β

m− 1
>

1
4
· m

n − 1
m− 1

.

�

D.7 Proof of Lemma 12

Lemma 12 For coordination games on a clique the mixing time is tmix = Ω
(
e(β−o(1))φ(0)

)
.

Proof. We obtain our lower bound by applying Theorem 2 with configuration x? = (1, . . . , 1)
and set M = {x ∈ S : |x|0 = k?}.

The connected component R of S \M that contains x? is

R = {x ∈ S : |x|0 < k?}

From (8) it follows that π(R) 6 1
2 . Finally, notice that

|∂R| 6 |{x ∈ Ω: |x|0 = k? − 1}| =
(

n

k? − 1

)
6 nk

?
6 n

2
b−c

φ(0)
n−1 .

The lemma follows by applying Theorem 2 and by observing that the maximum potential among
profiles in R and M are ΦR = φ(0) and ΦM = 0, respectively. �

D.8 Proof of Theorem 14

Theorem 14 For graphical coordination games with no risk-dominant strategy (a−d = b−c = δ)
on a ring with n players the mixing time is tmix = O

(
n log n · e2βδ

)
.

Proof. We identify the n players with the integers in {0, . . . , n−1} and assume that every player i
plays the basic coordination game with her two adjacent players, (i−1) mod n and (i+1) mod n.
Let S = {0, 1}n be the set of profiles for n players playing the graphical coordination game on
the ring and consider the Hamming graph G over S where profiles x and y are adjacent if and
only if they differ in exactly one position.

Let us consider two adjacent configurations x and y. Denote by j the position in which
they differ and assume, without loss of generality, that xj = 1 and yj = 0. We consider the
following coupling for two chains X and Y starting respectively from X0 = x and Y0 = y: Pick
i ∈ {0, . . . , n− 1} and U ∈ [0, 1] independently and uniformly at random and update position i
of x and y by setting

xi =

{
0, if U 6 σi(0 |x);
1, if U > σi(0 |x);

yi =

{
0, if U 6 σi(0 |y);
1, if U > σi(0 |y).

We next compute the expected distance betweenX1 and Y1 after one step of the coupling. Notice
that σi(0 |x) only depends on xi−1 and xi+1 and σi(0 |y) only on yi−1 and yi+1. Therefore,
since x and y only differ at position j, σi(0 |x) = σi(0 |y) for i 6= j − 1, j + 1.

We start by observing that if position j is chosen for update (this happens with probability
1/n) then, by the observation above, both chains perform the same update. Since x and y differ
only for player j, we have that the two chains are coupled (and thus at distance 0). Similarly,
if i 6= j − 1, j, j + 1 (which happens with probability (n − 3)/n) we have that both chains
perform the same update and thus remain at distance 1. Finally, let us consider the case in
which i ∈ {j − 1, j + 1}. In this case, since xj = 1 and yj = 0, we have that σi(0|x) 6 σi(0|y).
Therefore, with probability σi(0 |x) both chains update position i to 0 and thus remain at
distance 1; with probability 1− σi(0 |y) both chains update position i to 1 and thus remain at
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distance 1; and with probability σi(0 |y) − σi(0 |x) chain X updates position i to 1 and chain
Y updates position i to 0 and thus the two chains go to distance 2. By summing up, we have
that the expected distance E[ρ(X1, Y1)] after one step of coupling of the two chains is

E[ρ(X1, Y1)] =
n− 3
n
· 1 +

1
n

∑
i∈{j−1,j+1}

[1 · (σi(0 |x) + 1− σi(0 |y)) + 2 · (σi(0 |y)− σi(0 |x))]

=
n− 3
n

+
1
n
·

∑
i∈{j−1,j+1}

(1 + σi(0 |y)− σi(0 |x))

=
n− 1
n

+
1
n
·

∑
i∈{j−1,j+1}

(σi(0 |y)− σi(0 |x))

Let us now evaluate the difference σi(0 |y)−σi(0 |x) for i = j− 1 (the same computation holds
for i = j + 1). We distinguish two cases depending on the strategies of player j − 2 and start
with the case xj−2 = yj−2 = 1. In this case we have that

σj−1(0 |x) =
1

1 + e2βδ
and σj−1(0 |y) =

1
2
.

Thus,

σj−1(0 |y)− σj−1(0 |x) =
1
2
− 1

1 + e2βδ
.

If instead xj−2 = yj−2 = 0, we have

σj−1(0 |x) =
1
2

and σj−1(0 |y) =
1

1 + e−2βδ
.

Thus

σj−1(0 |y)− σj−1(0|x) =
1

1 + e−2βδ
− 1

2
= 1− 1

1 + e2βδ
− 1

2

=
1
2
− 1

1 + e2βδ
.

We can conclude that the expected distance after one step of the chain is

E[ρ(X1, Y1)] =
n− 1
n

+
1
n

(
1− 2

1 + e2βδ

)
= 1− 2

n(1 + e2βδ)
6 e
− 2

n(1+e2βδ) .

Since the diameter of G is diam(G) = n, by applying Theorem 18 with α = 2
n(1+e2βδ)

, we obtain
the theorem. �
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