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Abstract. Logit dynamics are a family of randomized best response
dynamics based on the logit choice function [21] that is used to model
players with limited rationality and knowledge. In this paper we study
the all-logit dynamics, where at each time step all players concurrently
update their strategies according to the logit choice function. In the well
studied one-logit dynamics [7] instead at each step only one randomly
chosen player is allowed to update.
We study properties of the all-logit dynamics in the context of local in-
teraction games, a class of games that has been used to model complex
social phenomena [7, 23, 26] and physical systems [19]. In a local inter-
action game, players are the vertices of a social graph whose edges are
two-player potential games. Each player picks one strategy to be played
for all the games she is involved in and the payoff of the player is the
(weighted) sum of the payoffs from each of the games.
We prove that local interaction games characterize the class of games
for which the all-logit dynamics are reversible. We then compare the
stationary behavior of one-logit and all-logit dynamics. Specifically, we
look at the expected value of a notable class of observables, that we call
decomposable observables.

1 Introduction

In the last decade, we have observed an increasing interest in understanding
phenomena occurring in complex systems consisting of a large number of simple
networked components that operate autonomously guided by their own objec-
tives and influenced by the behavior of the neighbors. Even though (online)
social networks are a primary example of such systems, other remarkable typical
instances can be found in Economics (e.g., markets), Physics (e.g., Ising model
and spin systems) and Biology (e.g., evolution of life). A common feature of
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these systems is that the behavior of each component depends only on the in-
teractions with a limited number of other components (its neighbors) and these
interactions are usually very simple.

Game Theory is the main tool used to model the behavior of agents that are
guided by their own objective in contexts where their gains depend also on the
choices made by neighbors. Game theoretic approaches have been often proposed
for modeling phenomena in a complex social network, such as the formation of
the social network itself [16, 5, 3, 8], the formation of opinions [6, 11] and the
spread of innovation [26, 23] in the social network. Many of these models are
based on local interaction games, where agents are represented as vertices on a
social graph and the relationship between two agents is represented by a simple
two-player game played on the edge joining the corresponding vertices.

We are interested in the dynamics that govern such phenomena and several
dynamics have been studied in the literature like, for example, the best response
dynamics [13], the logit dynamics [7], fictitious play [12] and no-regret dynamics
[15]. Any such dynamics can be seen as made of two components: (i) Selection
rule: by which the set of players that update their state (strategy) is determined;
(ii) Update rule: by which the selected players update their strategy. For example,
the classical best response dynamics compose the best response update rule with
a selection rule that selects one player at the time. In the best response update
rule, the selected player picks the strategy that, given the current strategies of the
other players, guarantees the highest utility. The Cournot dynamics [9] instead
combine the best response update rule with the selection rule that selects all
players. Other dynamics in which all players concurrently update their strategy
are fictitious play [12] and the no-regret dynamics [15].

In this paper, we study a specific class of randomized update rules called the
logit choice function [21, 7] which is a type of noisy best response that models
in a clean and tractable way the limited knowledge (or bounded rationality) of
the players in terms of a parameter β called inverse noise. In similar models
studied in Physics, β is the inverse of the temperature. Intuitively, a low value
of β (that is, high temperature) models a noisy scenario in which players choose
their strategies “nearly at random”; a high value of β (that is, low temperature)
models a scenario with little noise in which players pick the strategies yielding
higher payoffs with higher probability.

The logit choice function can be coupled with different selection rules so to
give different dynamics. For example, in the logit dynamics [7] at every time step
a single player is selected uniformly at random and the selected player updates
her strategy according to the logit choice function. The remaining players are
not allowed to revise their strategies in this time step.

While the logit choice function is a very natural behavioral model for approx-
imately rational agents, the specific selection rule that selects one single player
per time step avoids any form of concurrency. Therefore a natural question arises:

What happens if concurrent updates are allowed?

For example, it is easy to construct games for which the best response converges
to a Nash equilibrium when only one player is selected at each step and does



not converge to any state when more players are chosen to concurrently update
their strategies.

In this paper we study how the logit choice function behaves in an extremal
case of concurrency. Specifically, we couple this update rule with a selection
rule by which all players update their strategies at every time step. We call such
dynamics all-logit, as opposed to the classical (one-)logit dynamics in which only
one player at a time is allowed to move. Roughly speaking, the all-logit are to
the one-logit what the Cournot dynamics are to the best response dynamics.

Our Contribution. We study the all-logit dynamics for local interaction games
[10, 23]. Here players are vertices of a graph, called the social graph, and each
edge is a two-player (exact) potential game. We remark that games played on
different edges by a player may be different but, nonetheless, they have the same
strategy set for the player. Each player picks one strategy that is used for all
of her edges and the payoff is a (weighted) sum of the payoffs obtained from
each game. This class of games includes coordination games on a network [10]
used to model the spread of innovation in social networks [26], and the Ising
model [20] for magnetism. In particular, we study the all-logit dynamics for
local interaction games at every possible value of the inverse noise β and we are
interested in properties of the original one-logit dynamics that are preserved by
the all-logit.

We first consider reversibility, an important property of stochastic processes
that is useful also to obtain explicit formulas for the stationary distribution. We
characterize the class of games for which the all-logit dynamics (specifically, the
Markov chains resulting from the all-logit dynamics) are reversible and it turns
out that this class coincides with the class of local interaction games. This is
to be compared with the well-known result saying that the one-logit dynamics
are reversible for every potential game [7]. We find remarkable that a non-trivial
property, as reversibility is, of Markov chains modeling the one-logit for potential
games holds even for Markov chains modeling all-logit for a large and widely-used
subclass of potential games.

Then, we focus on the observables of local interaction games. An observable
is a function of the strategy profile (that is, the set of strategies adopted by the
players) and we are interested in its expected values at stationarity for both the
one-logit and the all-logit dynamics. A prominent example of observable is the
difference Diff between the number of players adopting two given strategies in a
game. In a local interaction game modeling the spread of innovation on a social
network this observable counts the difference between the number of adopters
of the new and old technology whereas in the Ising model it corresponds to the
magnetic field of a magnet.

We show that there exists a class of observables whose expectation at sta-
tionarity of the all-logit is the same as the expectation at stationarity of the
one-logit as long as the social network underlying the local interaction game is
bipartite. Note that in many of these cases the stationary distributions of one-
and all-logit dynamics are completely different. We highlight that the class of
observables for which our result holds includes the Diff observable. It is inter-



esting to note that the Ising game has been mainly studied for bipartite graphs
(e.g., the two-dimensional and the three-dimensional lattice). This implies that,
for the Ising model, the all-logit are dynamics that are compatible with the ob-
servations and it are arguably more natural than the one-logit dynamics (that
postulate that at any given time step only one particle updates its status and
then the updated strategy is instantaneously propagated). We extend this result
by showing that for general graphs, the extent at which the expectations of these
observables differ can be upper and lower bounded by a function of β and of the
distance of the social graph from a bipartite graph.

In the full version of the paper [4] we also give preliminary bounds on the
convergence time of the all-logit dynamics to their stationary distribution.

Related Works. There is a substantial body of work on the logit dynamics:
the interested reader can refer to [24] and references therein.

Specifically, the all-logit dynamics for strategic games have been studied in
[1], where the authors consider the logit-choice function combined with general
selection rules (including the selection rule of the all-logit) and investigate con-
ditions for which a state is stochastically stable. A stochastically stable state is
a state that has non-zero probability as β goes to infinity. We focus instead on
a specific selection rule that is used by several remarkable dynamics (Cournot,
fictitious play, and no-regret) and consider the whole range of values of β.

The one-logit dynamics have been actively studied starting from the work
of Blume [7] that showed that for 2 × 2 coordination games, the risk dominant
equilibria (see [14]) are stochastically stable. The one-logit for local interaction
games have been analyzed in several papers with the aim of modeling and un-
derstanding the spread of innovations in a social network, see e.g. [10, 26].

Remark. For readability sake, in Sections 3 and 4 most of the lemmas and
theorems have “proof ideas” instead of full proofs. For full proofs and more
detailed descriptions we refer the reader to the full version of the paper [4].

2 Definitions

In this section we formally define the local interaction games and the Markov
chain induced by the all-logit dynamics.

Strategic Games. Let G = ([n], S1, . . . , Sn, u1, . . . , un) be a finite normal-
form strategic game. The set [n] = {1, . . . , n} is the player set, Si is the set of
strategies for player i ∈ [n], S = S1 × S2 × · · · × Sn is the set of strategy profiles
and ui : S → R is the utility function of player i ∈ [n]. We adopt the standard
game-theoretic notation and for x = (x1, . . . , xn) ∈ S and s ∈ Si, we denote by
(x−i, s) the strategy profile (x1, . . . , xi−1, s, xi+1, . . . , xn) ∈ S.

Potential games [22] are an important class of games. We say that function
Φ : S → R is an exact potential (or simply a potential) for game G if for every
i ∈ [n] and every x ∈ S it holds that ui(x−i, s)−ui(x−i, z) = Φ(x−i, z)−Φ(x−i, s)
for all s, z ∈ Si. A game G that admits a potential is called a potential game.

Local Interaction Games. In a local interaction game G, each player i, with
strategy set Si, is represented by a vertex of a graph G = (V,E) (called social



graph). For every edge e = (i, j) ∈ E there is a two-player game Ge with potential
function Φe in which the set of strategies of endpoints are exactly Si and Sj .
We denote with ue

i the utility function of player i in the game Ge. Given a
strategy profile x, the utility function of player i in the local interaction game G
is ui(x) =

∑

e=(i,j) u
e
i (xi, xj). It is easy to check that the function Φ =

∑

e Φe is
a potential function for the local interaction game G.

Logit Choice Function. We study the interaction of n players of a strategic
game G that update their strategy according to the logit choice function [21, 7]
described as follows: from profile x ∈ S player i ∈ [n] updates her strategy to

s ∈ Si with probability σi(s | x) = e
βui(x−i,s)

∑
z∈Si

e
βui(x−i,z)

. In other words, the logit

choice function leans towards strategies promising higher utility. The parameter
β > 0 is a measure of how much the utility influences the choice of the player.

All-Logit. In this paper we consider the all-logit dynamics, where all players
concurrently update their strategy using the logit choice function. Most of the
previous works have focused on dynamics where at each step one player is chosen
uniformly at random and she updates her strategy by following the logit choice
function. We call these dynamics one-logit, to distinguish them from the all-logit.

The all-logit dynamics induce a Markov chain over the set of strategy profiles
whose transition probability P (x,y) from profile x = (x1, . . . , xn) to profile
y = (y1, . . . , yn) is

P (x,y) =
n
∏

i=1

σi(yi |x) =
eβ

∑
n
i=1 ui(x−i,yi)

∏n
i=1

∑

z∈Si
eβui(x−i,z)

. (1)

Sometimes it is useful to write the transition probability from x to y in terms of
the cumulative utility of x with respect to y defined as U(x,y) =

∑

i ui(x−i, yi)
[1]. Indeed, by observing that

∏n
i=1

∑

z∈Si
eβui(x−i,z) =

∑

z∈S

∏n
i=1 e

βui(x−i,zi),
we can rewrite (1) as

P (x,y) =
eβU(x,y)

D(x)
, (2)

where D(x) =
∑

z∈S eβU(x,z). For a potential game G with potential Φ, we can
define the cumulative potential of x with respect to y as Ψ(x,y) =

∑

i Φ(x−i, yi).
Simple algebraic manipulations show that, for a potential game, we can rewrite

the transition probabilities in (2) as P (x,y) = e−βΨ(x,y)

T (x) , where T (x) is a short-

hand for
∑

z∈S e−βΨ(x,z).
It is easy to see that a Markov chain with transition matrix (1) is ergodic.

Indeed, for example, ergodicity follows from the fact that all entries of the tran-
sition matrix are strictly positive.

Reversibility & Observables. In this work we focus on two features of the
all-logit dynamics, that we formally define here.

Let M be a Markov chain with transition matrix P and state set S. M is
reversible with respect to a distribution π if, for every pair of states x, y ∈ S,
the following detailed balance condition holds π(x)P (x, y) = π(y)P (y, x).



An observable O is a function O : S → R, i.e. it is a function that assigns a
value to each strategy profile of the game.

3 Reversibility and Stationary Distribution

It is easy to see that the one-logit dynamics for a game G are reversible if and
only if G is a potential game. This does not hold for the all-logit dynamics.
However, we will prove that the class of games for which the all-logit dynamics
are reversible is exactly the class of local interaction games.

Reversibility Criteria. As previously stated, a Markov chain M is reversible
if there exists a distribution π such that the detailed balance condition is satis-
fied. The following Kolmogorov reversibility criterion allows us to establish the
reversibility of a process directly from the transition probabilities. Before stating
the criterion, we introduce the following notation. A directed path Γ from state
x ∈ S to state y ∈ S is a sequence of states 〈x0, x1, . . . , xℓ〉 such that x0 = x and

xℓ = y. The probability P (Γ ) of path Γ is defined as P (Γ ) =
∏ℓ

j=1 P (xj−1, xj).

The inverse of path Γ = 〈x0, x1, . . . , xℓ〉 is the path Γ−1 = 〈xℓ, xℓ−1, . . . , x0〉.
Finally, a cycle C is simply a path from a state x to itself. We are now ready to
state the Kolmogorov reversibility criterion (see, for example, [17]).

Theorem 1. An irreducible Markov chain M with state space S and transition
matrix P is reversible if and only if for every cycle C it holds that P (C) =
P
(

C−1
)

.

The following lemma will be useful for proving reversibility conditions for the all-
logit dynamics and for stating a closed expression for its stationary distribution.

Lemma 1. Let M be an irreducible Markov chain with transition probability P
and state space S. M is reversible if and only if for every pair of states x, y ∈ S,
there exists a constant cx,y such that for all paths Γ from x to y, it holds that
P(Γ )

P(Γ−1) = cx,y.

Proof (idea). One direction follows directly from the Kolmogorov reversibility
criterion, since each cycle can be seen as a concatenation of two paths from x to
y (actually, a path and the inverse of another path). As for the other direction,
fix z and check that the distribution π̃(x) = cz,x/Z, where Z is the normalizing
constant, satisfies the detailed balance equation. ⊓⊔

All-Logit Reversibility Implies Potential Games. Now we prove that if
the all-logit dynamics for a game G are reversible then G is a potential game.

The following lemma shows a condition on the cumulative utility of a game
G that is necessary and sufficient for the reversibility of the all-logit for G.

Lemma 2. The all-logit dynamics for game G are reversible if and only if the

following property holds for every x,y, z ∈ S: U(x,y) − U(y,x) =
(

U(x, z) +

U(z,y)
)

−
(

U(y, z) + U(z,x)
)

.



Proof (idea). One direction follows from Lemma 1. As for the other direction,

the hypothesis implies that, for any fixed z, π̃(x) = P (z,x)
Z·P (x,z) satisfies the detailed

balance equation, where Z is the normalizing constant. ⊓⊔

We are now ready to prove that the all-logit dynamics are reversible only for
potential games.

Proposition 1. If the all-logit dynamics for game G are reversible then G is a
potential game.

Proof (idea). We show that if the all-logit dynamics are reversible then the utility
improvement over any cycle of length 4 is 0. The thesis then follows by a known
characterization of potential games (Theorem 2.8 of [22]). ⊓⊔

A Necessary and Sufficient Condition for All-Logit Reversibility. Pre-
viously we established that the all-logit dynamics are reversible only for potential
games and therefore, from now on, we only consider potential games G with po-
tential function Φ. Now we present in Proposition 2 a necessary and sufficient
condition for reversibility that involves the potential and the cumulative poten-
tial. The condition will then be used to prove that local interaction games are
exactly the games whose all-logit dynamics are reversible.

Proposition 2. The all-logit dynamics for a game G with potential Φ and cu-
mulative potential Ψ are reversible if and only if, for all strategy profiles x,y ∈ S,

Ψ(x,y) − Ψ(y,x) = (n− 2) (Φ(x) − Φ(y)) . (3)

Proof (idea). We rewrite Lemma 2 in terms of cumulative potential as Ψ(x,y)−

Ψ(y,x) =
(

Ψ(x, z) + Ψ(z,y)
)

−
(

Ψ(y, z) + Ψ(z,x)
)

. Simple algebraic manipu-

lations shows that (3) implies the above equation. As for the other direction, we
proceed by induction on the Hamming distance between x and y. ⊓⊔

Reversibility and Local Interaction Games. Here we prove that the games
for which all-logit dynamics are reversible are exactly the local interaction games.

A potential Φ : S1 × · · · × Sn → R is a two-player potential if there exist
u, v ∈ [n] such that, for any x,y ∈ S with xu = yu and xv = yv we have
Φ(x) = Φ(y). In other words, Φ is a function of only its u-th and v-th argument.
It is easy to see that any two-player potential satisfies (3).

We say that a potential Φ is the sum of two-player potentials if there exist
N two-player potentials Φ1, . . . , ΦN such that Φ = Φ1 + · · · + ΦN . It is easy
to see that generality is not lost by further requiring that 1 6 l 6= l′ 6 N
implies (ul, vl) 6= (ul′ , vl′), where ul and vl are the two players defining potential
Φl. At every game G whose potential is the sum of two-player potentials, i.e.,
Φ = Φ1 + · · ·+ΦN , we can associate a social graph G that has a vertex for each
player of G and has edge (u, v) iff there exists l such that potential Φl depends
on players u and v. In other words, each game whose potential is the sum of
two-player potentials is a local interaction game.

Observe that if two potentials satisfy (3), then such is also their sum. Hence
we have the following proposition.



Proposition 3. The all-logit dynamics for local interaction games are reversible.

Next we prove that also the reverse implication holds.

Proposition 4. If an n-player potential Φ satisfies (3) then it can be written
as the sum of at most N =

(

n
2

)

two-player potentials, Φ1, . . . , ΦN and thus it
represents a local interaction game.

Proof (idea). Let z⋆i denote the first strategy in each player’s strategy set and
let z⋆ be the strategy profile (z⋆1 , . . . , z

⋆
n). Moreover, we fix an arbitrary ordering

(u1, v1), . . . , (uN , vN ) of the N unordered pairs of players. For a potential Φ
we define the sequence ϑ0, . . . , ϑN of potentials as follows: ϑ0 = Φ and, for
i = 1, . . . , N , set ϑi = ϑi−1 − Φi where, for x ∈ S, Φi(x) is defined as Φi(x) =
ϑi−1(xui

, xvi , z
⋆
−uivi

). Observe that, for i = 1, . . . , N , Φi is a two-player potential

and its players are ui and vi. Moreover,
∑N

i=1 ϑi =
∑N−1

i=0 ϑi −
∑N

i=1 Φi. Thus

Φ− ϑN =
∑N

i=1 Φi. We show that, if Φ satisfies (3), then ϑN is identically zero.
This implies that Φ is the sum of at most N non-zero two-player potentials and
thus a local interaction game. ⊓⊔

We can thus conclude that if the all-logit dynamics for a potential game G are
reversible then G is a local interaction game. By combining this result with
Proposition 1 and Proposition 3, we obtain

Theorem 2. The all-logit dynamics for game G are reversible if and only if G
is a local interaction game.

Stationary Distribution of the All-Logit for Local Interaction Games.

Theorem 3 (Stationary Distribution). Let G be a local interaction game
with potential function Φ. Then the stationary distribution of the all-logit for G
is π(x) ∝ e(n−2)βΦ(x) · T (x), where T (x) =

∑

z∈S e−βΨ(x,z).

Proof (idea). Fix any profile y. The detailed balance equation and Proposition 2

give π(x) = e(n−2)βΦ(x) · T (x)
(

π(y)

e(n−2)βΦ(y) ·T (y)

)

, for every x ∈ S. Since the term

in parenthesis does not depend on x the theorem follows. ⊓⊔

For a local interaction game G with potential function Φ we write π1(x),
the stationary distribution of the one-logit for G, as π1(x) = γ1(x)/Z1 where
γ1(x) = e−βΦ(x) (also termed Boltzmann factor) and Z1 =

∑

x γ1(x) is the
partition function. From Theorem 3, we derive that πA(x), the stationary distri-

bution of the all-logit for G, can be written in similar way, i.e., πA(x) =
γA(x)
ZA

,

where γA(x) =
∑

y∈S e−β[Ψ(x,y)−(n−2)Φ(x)] and ZA =
∑

x∈S γA(x) is the par-
tition function of the all-logit. Simple algebraic manipulations show that, by
setting K(x,y) = 2 ·Φ(x)+

∑

i∈[n] dx,y(i) · (Φ(x−i, yi)− Φ(x)) where dx,y is the

characteristic vector of positions i in which x and y differ (i.e., dx,y(i) = 1 if
xi 6= yi and 0 otherwise), we can write γA(x) and ZA as

γA(x) =
∑

y∈S

e−βK(x,y) and ZA =
∑

x,y

e−βK(x,y). (4)



4 Observables of Local Information Games

In this section we study observables of local interaction games and we focus
on the relation between the expected value 〈O, π1〉 of an observable O at the
stationarity of the one-logit and its expected value 〈O, πA〉 at the stationarity
of the all-logit dynamics. In Theorem 5, we give a sufficient condition for an
observable to be invariant, that is for having the two expected values to coincide.
The sufficient condition is related to the existence of a decomposition of the
set S × S that decomposes the quantity K appearing in the expression for the
stationary distribution of the all-logit for the local interaction game G (see Eq. 4)
into a sum of two potentials. In Theorem 5 we show that if G admits such a
decomposition µ and in addition observable O is also decomposed by µ (see
Definition 2) then O has the same expected value at the stationarity of the one-
logit and of the all-logit dynamics. We then show that all local interaction games
on bipartite social graphs admit a decomposition permutation (see Theorem 4)
and give an example of invariant observable.

The above finding follows from a relation between the partition functions of
the one-logit and of the all-logit dynamics that might be of independent interest.
More precisely, in Theorem 4 we show that if the game G admits a decomposition
then the partition function of the all-logit is the square of the partition function
of the one-logit dynamics. The partition function of the one-logit is easily seen
to be equal to the partition function of the canonical ensemble used in Statistical
Mechanics (see for example [18]). It is well known that a partition function of
a canonical ensemble that is the union of two independent canonical ensembles
is the product of the two partition functions. Thus Theorem 4 can be seen as
a further evidence that the all-logit can be decomposed into two independent
one-logit dynamics.

Throughout this section we assume, for the sake of ease of presentation, that
each player has just two strategies available. Extending our results to any number
of strategies is straightforward.

We start by introducing the concept of a decomposition and then we define
the concept of a decomposable observable.

Definition 1. A permutation µ : (x,y) 7→ (µ1(x,y), µ2(x,y)) of S × S is a de-
composition for a local interaction game G with potential Φ if, for all (x,y),
we have that K(x,y) = Φ(µ1(x,y)) + Φ(µ2(x,y)), µ1(x,y) = µ2(y,x) and
µ2(x,y) = µ1(y,x).

Theorem 4. If a decomposition µ for a local interaction game G exists, then
ZA = Z2

1 .

Proof. From (4) we have ZA =
∑

x,y e
−βK(x,y) =

∑

x,y e
−β[Φ(µ1(x,y))+Φ(µ2(x,y))].

Since µ is a permutation of S × S, we have ZA =
∑

x,y e
−β[Φ(x)+Φ(y)] = Z2

1 . ⊓⊔

Definition 2. An observable O is decomposable if there exists a decomposition
µ such that, for all (x,y), it holds that O(x)+O(y) = O(µ1(x,y))+O(µ2(x,y)).



We next prove that a decomposable observable has the same expectation at
stationarity of the one-logit and the all-logit dynamics.

Theorem 5. If observable O is decomposable then 〈O, π1〉 = 〈O, πA〉.

Proof (idea). Suppose that O is decomposed by µ. Then we have that, for all
x ∈ S, γA(x) =

∑

y γ1(µ1(x,y)) · γ1(µ2(x,y)) and thus

〈O, πA〉 =
1

2

1

ZA

∑

x,y

[O(x) +O(y)] γ1(µ1(x,y))γ1(µ2(x,y)),

where we used the property that µ1(x,y) = µ2(y,x) and µ2(x,y) = µ1(y,x).
The theorem follows since O is decomposable. ⊓⊔

We next prove that for all local interaction games on a bipartite social graph
there exists a decomposition. We start with the following sufficient condition for
a permutation to be a decomposition.

Lemma 3. Let G be a social interaction game on social graph G with potential
Φ and let µ be a permutation of S × S such that, for all x,y ∈ S, we have
µ1(x,y) = µ2(y,x), µ2(x,y) = µ1(y,x) and for all edges e = (u, v) of G and
for all x,y ∈ S either (x̃u, x̃v, ỹu, ỹv) = (xu, yv, yu, xv) or (x̃u, x̃v, ỹu, ỹv) =
(yu, xv, xu, yv), where x̃ = µ1(x,y) and ỹ = µ2(x,y). Then µ is a decomposition
of G.

Proof (idea). We prove by simple case analysis that the contribution of each edge
e = (u, v) to K(x,y) is Φe(x̃u, x̃v) + Φe(ỹu, ỹv). The lemma is then obtained by
summing over all edges e. ⊓⊔

Theorem 6. Let G be a social interaction game on a bipartite graph G. Then
G admits a decomposition.

Proof (idea). Let (L,R) be the set of vertices in which G is bipartite. For each
(x,y) ∈ S × S we define x̃ = µ1(x,y) and ỹ = µ2(x,y) as follows: for every
vertex u of G, (i) if u ∈ L then we set x̃u = xu and ỹu = yu; (ii) if u ∈ R then
we set x̃u = yu and ỹu = xu.

First of all, observe that the mapping is an involution and thus it is also a
permutation and that µ1(x,y) = µ2(y,x) and µ2(x,y) = µ1(y,x). From the
bipartiteness of G it follows that for each edge one of the conditions of Lemma 3
is satisfied. Then we can conclude that the mapping is a decomposition. ⊓⊔

We now give an example of decomposable observable. Consider the observable
Diff that returns the (signed) difference between the number of vertices adopting
strategy 0 and the number of vertices adopting strategy 1. That is, Diff(x) =
n−2

∑

u xu. In local interaction games used to model the diffusion of innovations
in social networks and the spread of new technology (see, for example, [26]), this
observable is a measure of how wide is the adoption of the innovation. The Diff

observable is also meaningful in the Ising model for ferromagnetism (see, for
example, [20]) as it is the measured magnetism.



To prove that Diff is decomposable we consider the mapping used in the proof
of Theorem 6 and observe that, for every vertex u and for every (x,y) ∈ S × S,
we have xu+yu = x̃u+ỹu. Whence we conclude that O(x)+O(y) = O(x̃)+O(ỹ).

Decomposable Observables for General Graphs. We can show that for
local interaction games G on general social graphs G the expected values of a
decomposable observable O with respect to the stationary distributions of the
one-logit and of the all-logit dynamics differ by a quantity that depends on β
and on how far away the social graph G is from being bipartite (which in turn
is related to the smallest eigenvalue of G [25]). Due to lack of space we omit the
details of that result and refer the interested reader to the full version of this
paper [4].

5 Future Directions

In this paper we considered the selection rule where all players play concurrently.
A natural extension of this selection rule assigns a different probability to each
subset of players. What is the impact of such a probabilistic selection rule on
reversibility and on observables? Some interesting results along that direction
have been obtained in [1, 2]. Notice that if we consider the selection rule that
selects player i with probability pi > 0 (the one-logit dynamics set pi = 1/n for
all i) then the stationary distribution is the same as the stationary distribution
of the one-logit. Therefore, all observables have the same expected value and all
potential games are reversible.

It is a classical result that the Gibbs distribution, that is the stationary dis-
tribution of the one-logit dynamics (the micro-canonical ensemble, in Statistical
Mechanics parlance), is the distribution that maximizes the entropy among all
the distributions with a fixed average potential. Can we say something similar
for the stationary distribution of the all-logit? A promising direction along this
line of research is suggested by the results in Section 4: at least in some cases the
stationary distribution of the all-logit dynamics can be seen as a composition of
simpler distributions.
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network design with selfish agents. Theory of Computing, 4(1):77–109, 2008.

4. Vincenzo Auletta, Diodato Ferraioli, Francesco Pasquale, Paolo Penna, and
Giuseppe Persiano. Logit dynamics with concurrent updates for local-interaction
games. http://arxiv.org/abs/1207.2908, 2012.

5. Venkatesh Bala and Sanjeev Goyal. A noncooperative model of network formation.
Econometrica, 68(5):1181–1229, 2000.



6. David Bindel, Jon M. Kleinberg, and Sigal Oren. How bad is forming your own
opinion? In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual
Symposium on, pages 57–66, 2011.

7. Lawrence E. Blume. The statistical mechanics of strategic interaction. Games and
Economic Behavior, 5(3):387–424, 1993.

8. Christian Borgs, Jennifer T. Chayes, Jian Ding, and Brendan Lucier. The hitch-
hiker’s guide to affiliation networks: A game-theoretic approach. In ICS, pages
389–400. Tsinghua University Press, 2011.

9. Antoine A. Cournot. Recherches sur le Principes mathematiques de la Theorie des
Richesses. L. Hachette, 1838.

10. Glenn Ellison. Learning, local interaction, and coordination. Econometrica,
61(5):1047–1071, 1993.

11. Diodato Ferraioli, Paul Goldberg, and Carmine Ventre. Decentralized dynamics
for finite opinion games. In Algorithmic Game Theory (SAGT ’12), pages 144–155.
Springer Berlin Heidelberg, 2012.

12. Drew Fudenberg and David K. Levine. The Theory of Learning in Games. MIT
Press, 1998.

13. Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, 1992.
14. John C. Harsanyi and Reinhard Selten. A General Theory of Equilibrium Selection

in Games. MIT Press, 1988.
15. Sergiu Hart and Andreu Mas-Colell. A general class of adaptive procedures. Jour-

nal of Economic Theory, 98(1):26 – 54, 2001.
16. Matthew O. Jackson and Asher Wolinsky. A strategic model of social and economic

networks. Journal of Economic Theory, 71(1):44–74, 1996.
17. Frank Kelly. Reversibility and Stochastic Networks. Cambridge University Press,

2011.
18. Lev D. Landau and Evgenij M. Lifshitz. Statistical Physics, volume 5. Elsevier

Science, 1996.
19. David A. Levin, Malwina Luczak, and Yuval Peres. Glauber dynamics for the

mean-field Ising model: cut-off, critical power law, and metastability. Probability
Theory and Related Fields, 146(1-2):223–265, 2010.

20. Fabio Martinelli. Lectures on Glauber dynamics for discrete spin models. In
Lectures on Probability Theory and Statistics, volume 1717 of Lecture Notes in
Mathematics, pages 93–191. Springer Berlin Heidelberg, 1999.

21. Daniel L. McFadden. Conditional logit analysis of qualitative choice behavior. In
Frontiers in Econometrics, pages 105–142. Academic Press, 1974.

22. Dov Monderer and Lloyd S. Shapley. Potential games. Games and Economic
Behavior, 14:124–143, 1996.

23. Andrea Montanari and Amin Saberi. Convergence to equilibrium in local interac-
tion games. In Foundations of Computer Science, 2009. FOCS ’09. 50th Annual
IEEE Symposium on, pages 303–312, 2009.

24. William H. Sandholm. Population Games and Evolutionary Dynamics. MIT Press,
2011.

25. Luca Trevisan. Max cut and the smallest eigenvalue. In Proceedings of the 41st
annual ACM symposium on Theory of computing, STOC ’09, pages 263–272. ACM,
2009.

26. Peyton H. Young. The diffusion of innovations in social networks. Technical report,
2002.


