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Abstract

Logit Dynamics [Blume, Games and Economic Behavior, 1993] is a randomized best response
dynamics for strategic games: at every time step a player is selected uniformly at random and she
chooses a new strategy according to a probability distribution biased toward strategies promising
higher payoffs. This process defines an ergodic Markov chain, over the set of strategy profiles of
the game, whose unique stationary distribution is the long-term equilibrium concept for the game.
However, when the mixing time of the chain is large (e.g., exponential in the number of players), the
stationary distribution loses its appeal as equilibrium concept, and the transient phase of the Markov
chain becomes important. In several cases it happens that on a time-scale shorter than mixing time
the chain is “quasi-stationary”, meaning that it stays close to some small set of the state space,
while in a time-scale multiple of the mixing time it jumps from one quasi-stationary configuration
to another; this phenomenon is usually called “metastability”.

In this paper we give a quantitative definition of “metastable probability distributions” for a
Markov chain and we study the metastability of the Logit dynamics for some classes of coordination
games. In particular, we study no-risk-dominant coordination games on the clique (which is equiv-
alent to the well-known Glauber dynamics for the Ising model) and coordination games on a ring
(both the risk-dominant and no-risk-dominant case). We also describe a simple “artificial” game
that highlights the distinctive features of our metastability notion based on distributions.
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1 Introduction

Complex systems consist of a large number of components that interact according to simple rules at
small scale and, despite of this, exhibit complex large scale behaviors. Complex systems can be found
in Economics (e.g., the market), Physics (e.g., ideal gases, spin systems), Biology (e.g. evolution of life)
and Computer Science (e.g., Internet and social networks). Analyzing, understanding how such systems
evolve, and predicting their future states is a major research endeavor.

In this paper we focus on selfish systems in which the components (called the players) are selfish
agents, each one with a set of possible actions or strategies trying to maximize her own payoff. The
payoff obtained by each player depends not only on her decision but also on the decisions of the other
players. We study a specific dynamics, the logit dynamics [6], and consider as solution concept its
equilibrium states. Logit dynamics is a type of noisy best response dynamics that models in a clean and
tractable way the limited knowledge (or bounded rationality) of the players in terms of a parameter β
(in similar models studied in Physics, β is the inverse of the temperature). Intuitively, a low value of
β (that is, high temperature and entropy) represents the situation where players choose their strategies
“nearly at random”; a high value of β (that is, low temperature and entropy) represents the situation
where players “almost surely” play their best response; that is, they pick the strategies yielding high
payoff with higher probability. It is well known that this dynamics induces, for every strategic game,
a Markov chain which has a unique stationary distribution (the Markov chain is ergodic). Thus no
equilibrium selection problem arises. The drawback of using the stationary distribution to describe the
system behaviour is that the system may take too long to reach it, unless the chain is rapidly mixing.
Logit dynamics for strategic games can be rapidly mixing or not, depending on the features of the
underlying game, the temperature/noise and the number of players [3, 2]. For this reason, in this work
we focus on the transient phase of the logit dynamics and, in particular, we try to answer the following
questions: when the mixing time is exponential, the transient phase is completely chaotic, or we can
still spot some regularities? Are we able to say something about the behavior of the chain before it
reaches the stationary distribution? Obviously, such a chain is perfectly described by the collections
of probability distributions consisting of one distribution for each time step and each starting profile.
This should be contrasted with the rapidly mixing case (i.e., a Markov chain with polynomial mixing
time) in which one can approximately describe the state of the system (after the mixing time) using one
distribution (that is, the stationary distribution).

Our results show games for which regularities can be observed even in the transient phase. In par-
ticular, we will show that, depending on the starting profile, the dynamics rapidly reaches a distribution
and remains close to this distribution for a sufficiently long time (we call such a distribution metastable).
We can describe our results also in terms of the quantity of information needed to predict the status of
a system that evolves in time according to the logit dynamics. We know that the long-term behavior
of the system can be compactly described in terms of a unique distribution but we have to wait a tran-
sient phase of length equal to the mixing time. Thus, if the system is rapidly mixing this description
is significant after a short transient phase. However, when the mixing time is super-polynomial this
description becomes significant only after a long time. Our results show that for a large class of n-player
games logit dynamics is not rapidly mixing but the profile (the strategies played by the n-players) can
still be described with good approximation and for a super-polynomial number of steps by means of
a small number of probability distributions. This comes at the price of sacrificing a short polynomial
initial transient phase (so far we are on a par with the rapidly mixing case) and requires a few bits of
information about the starting profile (this is not needed in the rapidly mixing case).

Our results. In this work, we obtain results about the metastability of the logit dynamics for different
classes of coordination games.

- We start in Section 3 by introducing the notion of an (ε, T )-metastable distribution µ and of its pseudo-
mixing time. Roughly speaking, µ is (ε, T )-metastable for a Markov chain if, starting from µ, the Markov
chain stays at distance at most ε from µ for at least T steps. The pseudo-mixing time of µ starting from
a state x, txµ(ε), is the number of steps needed by the Markov chain to get ε-close to µ when started from
x.

In a rapidly-mixing Markov chain, after a “short time” and regardless of the starting state the chain
converges rapidly to the stationary distribution and remains there. For the case of non-rapidly-mixing
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Markov chains, we replace the notions of “mixing time” and “stationary distribution” by that of “pseudo-
mixing time” and that of “metastable distribution”. Intuitively speaking, we would like to say that, even
when the mixing time is (prohibitively) high, there are “few” distributions which give us an accurate
description of the chain over a “reasonable amount of time”. Roughly speaking, the state space Ω can be
partitioned into a small number of subsets Ω1,Ω2, . . . of “equivalent” states; that is, if the chain starts in
any of the states in Ωi, then it will rapidly converge to a “metastable” distribution µi, where metastable
denotes the fact that the chain remains there for “sufficiently” long.

- In Section 4, we analyze the metastable distributions of the Ising model on the complete graph, also
known as the Curie-Weiss model, and used by physicists to model the interaction between magnets in a
ferro-magnetic system [26]. The model describes also the process of opinion formation and the spread
of new technologies in fully connected societies (see, for example [29]). It is known [18, 27, 2] that this
model can be seen as a game played by magnets and, in particular, the Glauber dynamics for the Gibbs
measure on the Ising model is equivalent to the logit dynamics for this game where β is exactly the
inverse of the temperature. The mixing time of this dynamics is known to be exponential for every
β > 1/n. For this model, we show that distributions where all magnets have the same magnetization are
(1/n, t)-metastable for any t = poly(n) when β = Ω(logn/n). Moreover we show that the pseudo-mixing
time of these distributions is polynomial when the dynamics starts from a profile where the difference in
the number of positive and negative magnets is large.

- Graphical coordination games are often used to model the spread of a new technology in a social
network [30, 27] with the strategy of maximum potential corresponding to adopting the new technology;
players prefer to choose the same technology as their neighbors and the new technology is at least as
preferable as the old one. In Section 5 we follow [15] and study the case in which social interaction
between the players is described by the ring topology. We show that for every starting profile there is a
metastable distribution and the dynamics approaches it in a polynomial number of steps.

Finally, we consider the OR-game, an artificial game defined in [3], that highlights the distinctive features
of our metastability notion based on distributions.

Other equilibrium notions. Let us compare the solution concept studied in this paper (the stationary
distribution of the logit dynamics) with the notion of Nash equilibrium. Similar comparison can be made
with other solution concepts from Game Theory (correlated equilibria, sink equilibria). The notion of a
Nash equilibrium has been extensively studied as a solution concept for predicting the behavior of selfish
players. Indeed, if the players happen to be in a (Pure) Nash equilibrium any sequence of selfish best
response (i.e., utility improving) moves keeps the players in the same state. Unfortunately, the theory of
Nash equilibria does not explain how a Nash equilibrium is reached if players do not start from one and,
in case multiple equilibria exist, does not say which equilibrium is selected (about this important issue
see [19]). Even tough it is not hard to see that sequences of best response moves may reach a Pure Nash
equilibrium (if it exists), recent hardness results regarding the computation of Nash equilibria [12, 11]
suggest that Best Response, or any other dynamics, might take super-polynomial time in the number of
players to reach an equilibrium. Thus, even in case only one (Pure) Nash equilibrium exists, the players
might take very long to reach it and thus it cannot be taken to describe the state of the players (unless
we are willing to ignore the super-polynomially long transient phase). In contrast, in the setting studied
in this paper these drawbacks disappear: the solution concept is defined in terms of a dynamics and
for each dynamics we have a unique equilibrium. For rapidly mixing chains the equilibrium is quickly
reached. The results in this paper show that, even for the non-rapidly mixing case, the system can be
described if we discount the initial transient phase.

The Nash Equilibrium concept is based on the assumption that each player has complete information
about the game and the strategies of his opponents and it is able to compute his best strategy with respect
to the strategies played by the other players. However, in many complex systems, environmental factors
can influence the way each agent selects her own strategy and limitations to the players’ computational
power can influence their behaviors. Logit dynamics is a clear and crispy way to model these settings.

Related works. Logit dynamics has been first studied by Blume [6] who showed that, for 2 × 2
coordination games, the long-term behavior of the system is concentrated in the risk dominant equilibrium
(see [19]). Ellison [15] studied logit dynamics for graphical coordination games on rings (the class of
games we study in Section 5) and showed that some large fraction of the players will eventually choose

3



the strategy with maximum potential. Similar results were obtained by Peyton Young [30] for more
general families of graphs. Montanari and Saberi [27] gave bounds on the hitting time of the highest
potential equilibrium for the logit dynamics in terms of some graph theoretic properties of the underlying
interaction network. Asadpour and Saberi [1] studied the hitting time of the Nash equilibrium for a class
of congestion games.

The study of the mixing time of logit dynamics for strategic games has been initiated in [3] (see
also [2]), whose results highlight a separation between games where the mixing time can be bounded
independently from the parameter β and games where the mixing time is necessarily exponential in β.
The Ising model is a very well-studied topic and we refer the reader to the survey of Martinelli [26] and
to Chapter 15 of [25].

In Physics, Chemistry or Biology, metastability is a phenomenon related to the evolution of systems
under noisy dynamics. In particular, metastability concerns the transition between different regions
of the state space and the existence of multiple, well-separated time scales: at short time scales the
system appears to be in a quasi-equilibrium, and it explores only a confined region of the available space
state, while, at larger time scales, it undergoes transitions between such different regions. Examples of
metastability can be found in Biology, Climatology, Economics, Materials Science and Physics.

Metastability appears for the first time around 1935 with the work of Eyring [16] and Kramers [22] on
diffusion in potential wells, but the mathematically rigorous analysis of metastability phenomena in the
context of randomly perturbed dynamical systems start in the early 1970’s with the work of Freidlin and
Wentzell [17]. Since then, metastability is a very well studied topic in Physics and several monographs on
this subject are available (see, for example [20, 28, 7, 21]). The goal of metastability is to model processes
showing the following typical behavior: starting from a given profile, the system will rather quickly visit
the nearby maximum of the potential function (a metastable state); the dynamics stays very close to
such a state for a very long time, avoiding visits to other local maxima; at some point, the system leaves
the metastable state (and its neighborhood) and moves to some other local maximum, usually better
than the previous one; the process then is repeated. Research in Physics about metastability aims at
expressing typical features of a metastable state and to evaluate the transition time between metastable
states; the main approaches used to this analysis are based on large deviation theory [17] or on potential
theory [8]. Our approach is closest to the one of Bovier et al. [9]. They define the notion of a metastable
point as a state that is quickly reached and difficult to leave. For every metastable point x they define
the local valley of x as the set of states for which x is the metastable point with the smallest hitting time
and the associated metastable distribution associated with x is the stationary distribution restricted to
the local valley. In [10], Bovier and Manzo apply the approach of [9] in the context of zero temperature
limit of Glauber dynamics of spin systems in finite volume and show that the transition times can be
expressed in terms of properties of the potential function.

Metastability was analysed not only for discrete dynamics, but also for continuous Markov processes.
In [23] Larralde et al. define a metastable state by two components: spectral feature of a state (namely,
isolated eigenstate of the master operator of the Markov Process having an exceptionally low eigenvalue)
and the technical condition meaning that the probability of being in a metastable state at equilibrium is
vanishingly small. These conditions partition the state space in two disjoint set: the metastable states
and the equilibrium states. They show that for any starting profile x, the dynamics quickly reach,
with a probability px, a state which is fully in the metastable region and, with probability 1 − px, the
equilibrium. Further, if the dynamics start from the metastable region, then the probability of leaving it
in short time is very low. Moreover, they consider a restricted dynamics in which the process is reflected
each time it attempts to leave the metastable region, whose equilibrium is described by the restriction
of the stationary distribution to the metastable region: they show that these restricted dynamics well
mimic the process when the starting point is in the metastable region.

Very recently, Beltran and Landim [4] describe for the continuous time Markov process of the Ising
model all metastable behaviors, defining time scales at which they occur, the metastable set associated
to each time scale, and the asymptotic dynamics which specifies at which rate the process jumps from
one metastable state to another.

The work on censored Glauber dynamics [24, 13, 14] is also related to ours: the mixing time in a
censored dynamics resemble the pseudo mixing time for the metastable distribution on a subset of states.
However, we stress that the censored dynamics alters the original evolution of the Markov chain and the
techniques developed do not seem useful to answer questions about the pseudo-mixing time.
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Notations. We write |S| for the size of a set S. We use bold symbols for vectors; when x =
(x1, . . . , xn) ∈ {0, 1}n we write |x|a for the number of occurrence of a in x; i.e., |x|a = |{i ∈ [n] : xi = a}|.
We use the standard game theoretic notation (x−i, y) to mean the vector obtained from x by replacing
the i-th entry with y; i.e., (x−i, y) = (x1, . . . , xi−1, y, xi+1, . . . , xn). We denote by negl (n) a function in
n that is smaller than the inverse of every polynomial in n. For distributions µ and ν on the same space
Ω, the total variation distance between µ and ν is defined as ‖µ− ν‖TV := 1

2

∑

x∈Ω |µ(x)− ν(x)|.

2 Logit dynamics

A strategic game G is a triple G = ([n],S,U), where [n] = {1, . . . , n} is a finite set of players, S =
{S1, . . . , Sn} is a family of non-empty finite sets (Si is the set of strategies for player i), and U =
{u1, . . . , un} is a family of utility functions (or payoffs), where ui : S1 × · · · × Sn → R is the utility
function of player i.

Logit dynamics is a randomized best-response dynamics where at every time step a players i ∈ [n]
is selected uniformly at random, and she updates her strategy according to the following probability
distribution over the set Si. For every y ∈ Si

σi(y |x) =
1

Ti(x)
eβui(x−i,y) (1)

where x ∈ S1 × · · · × Sn is the strategy profile played by the players at the current time step, Ti(x)
=

∑

z∈Si
eβui(x−i,z) is the normalizing factor, and β > 0.

Parameter β is a rationality level for the system. From (1) it is easy to see that, for β = 0 (no
rationality) player i selects her strategy uniformly at random, for β > 0 the probability is biased toward
strategies promising higher payoffs, and for β → ∞ (full rationality) player i chooses her best response
strategy (if more than one best response is available, she chooses uniformly at random one of them).

For every β > 0, the above dynamics defines a Markov chain with the set of strategy profiles as state
space, where the transition probability from profile x = (x1, . . . , xn) to profile y = (y1, . . . , yn) is zero if
the x and y differ at more than one player, and it is 1

nσi(yi |x) if the two profiles differ exactly at player
i. More formally, we can define the logit dynamics as follows.

Definition 2.1 (Logit dynamics [6]) Let G = ([n],S,U) be a strategic game and let β > 0. The logit
dynamics for G is the Markov chain Mβ = {Xt : t ∈ N} with state space Ω = S1×· · ·×Sn and transition
matrix

P (x,y) =
1

n
·















σi(yi |x), if y−i = x−i and yi 6= xi;
∑n

i=1 σi(yi |x), if y = x;

0, otherwise;

(2)

where σi(yi |x) is defined in (1).

It is easy to see that the Markov chain is ergodic as Pn(x,y) > 0 for every pair of profiles x and y.
Hence, a unique stationary distribution π exists and for every starting state x the distribution of the
chain P t(x, ·) at time t approaches π as t tends to infinity.

Potential games. A game G = ([n],S,U) is said a (exact) potential game if a function Φ : S1 ×
· · · × Sn → R exists such that, for every player i and for every pair of profiles x and y that differ
only at position i, it holds that ui(x) − ui(y) = Φ(x) − Φ(y). It is easy to see that, if G = ([n],S,U)
is a potential game with potential function Φ, then the Markov chain given by (2) is reversible (i.e.
π(x)P (x,y) = π(y)P (y,x) for every x and y) and its stationary distribution is the Gibbs measure

π(x) =
1

Z
eβΦ(x) (3)

where Z =
∑

y∈S1×···×Sn
eβΦ(y) is the normalizing constant.

When G is a potential game, the logit dynamics is equivalent to the well-studied Glauber dynamics,
meaning that logit dynamics for G and Glauber dynamics for the Gibbs distribution π in (3) define
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the same Markov chain. Due to the analogies between logit and Glauber dynamics, we will sometimes
adopt the terminology used by physicists to indicate the quantities involved; in particular we will call
parameter β the inverse noise or inverse temperature and we will call partition function the normalizing
constant Z of the Gibbs distribution (3). All games we consider in this paper are potential games.

3 Metastability

In this section we give formal definitions of metastable distributions and pseudo-mixing time. As a simple
example we analyze metastability for the logit dynamics for 2-player coordination games and we also
highlight some connections between metastability and the bottleneck ratio.

Definition 3.1 (Metastable distribution) Let P be a Markov chain with finite state space Ω. A
probability distribution µ over Ω is (ε, T )-metastable if for every 0 6 t 6 T it holds that

∥

∥µP t − µ
∥

∥

TV
6 ε

Here are two obvious property of metastable distributions.

1. Monotonicity: If µ is (ε, T )-metastable then it is (ε′, T ′)-metastable for every ε′ > ε and T ′ 6 T ;

2. Stationarity and Metastability: if µ is (0, 1)-metastable, then it is (0, T )-metastable for every T ; µ
is stationary if and only if it is (0, 1)-metastable

A third property is given by the following easy and useful lemma.

Lemma 3.2 If µ is (ε, 1)-metastable for P then µ is (εT, T )-metastable for P .

Proof. By using the triangle inequality, we have
∥

∥µPT − µ
∥

∥

TV
6

∥

∥µP t − µP
∥

∥

TV
+ ‖µP − µ‖TV 6

∥

∥µP t−1 − µ
∥

∥

TV
+ ε ,

where the last inequality follows from the (ε, 1)-metastability of µ and from the fact that if µ and ν are
two probability distributions and P is a stochastic matrix then ‖µP − νP‖TV 6 ‖µ− ν‖TV. �

The definition of metastable distribution captures the idea of a distribution that behaves approxi-
mately like the stationary distribution, meaning that if we start from such distribution and run the chain
we stay close to it for a long time.

Among all metastable distributions, we are interested in the ones that are quickly reached from a,
possibly large, set of states. This motivates the following definition.

Definition 3.3 (Pseudo-mixing time) Let P be a Markov chain with state space Ω, let S ⊆ Ω be a
set of states and let µ be a probability distribution over Ω. We define the pseudo-mixing time tSµ(ε) as

tSµ(ε) = inf{t ∈ N :
∥

∥P t(x, ·)− µ
∥

∥

TV
6 ε for all x ∈ S}

We observe that the stationary distribution π of an ergodic Markov chain is reached within ε in time
tmix(ε) from every state (see Appendix A). Thus, according to Definition 3.3, we have that tΩπ (ε) =
tmix(ε).
The following simple lemma connects metastability and pseudo-mixing.

Lemma 3.4 Let µ be a (ε, T )-metastable distribution and let S ⊆ Ω be a set of states such that tSµ(ε) <
+∞. Then for every x ∈ S it holds that

∥

∥P t(x, ·) − µ
∥

∥

TV
6 2ε for every tSµ(ε) 6 t 6 tSµ(ε) + T

Proof. Let us name t̄ = t − tSµ(ε) for convenience sake. By using the triangle inequality for the total

variation distance, the fact that P t̄ is a stochastic matrix, and the definitions of metastable distribution
and pseudo-mixing, we have that

∥

∥P t(x, ·) − µ
∥

∥

TV
=

∥

∥

∥P tSµ(ε)(x, ·)P t̄ − µ
∥

∥

∥

TV

6

∥

∥

∥P tSµ(ε)(x, ·)P t̄ − µP t̄
∥

∥

∥

TV
+
∥

∥

∥µP t̄ − µ
∥

∥

∥

TV

6

∥

∥

∥P tSµ(ε)(x, ·)− µ
∥

∥

∥

TV
+
∥

∥

∥µP t̄ − µ
∥

∥

∥

TV
6 2ε

�
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3.1 Example: A simple three-state Markov chain

As a first example, let us consider the simplest Markov chain that may highlight the concepts of metasta-
bility and pseudo-mixing,

P =





ε 1−ε
2

1−ε
2

ε 1− ε 0
ε 0 1− ε





0

ε

1

1− ε

2

1− ε

1−ε
2

ε

1−ε
2

ε

The chain is ergodic with stationary distribution π = (ε, (1− ε)/2, (1− ε)/2), and its mixing time is
tmix = Θ(1/ε). Hence the mixing time increases as ε tends to zero.

Now observe that, for every δ > ε, degenerate1 distributions µ1 = (0, 1, 0) and µ2 = (0, 0, 1) are
(δ,Θ(δ/ε))-metastable according to Definition 3.1. If we start from the first state (i.e. from degenerate
distribution ν = (1, 0, 0)), after one step we are in the stationary distribution.

Hence, even if the mixing time can be arbitrary large, for every starting state x there is a (1/4,Θ(tmix))-
metastable distribution µ that is quickly (in constant time, independent of ε) reached from x.

3.2 Example: Two-player coordination games

Coordination games2 with two players are examples of games where the mixing time is a function
increasing exponentially in β. The transition matrix of the logit dynamics for such games is

P =















(0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) 1− ε ε/2 ε/2 0

(0, 1) (1− ε)/2 (ε+ δ)/2 0 (1− δ)/2

(1, 0) (1− ε)/2 0 (ε+ δ)/2 (1− δ)/2

(1, 1) 0 δ/2 δ/2 1− δ















where

ε =
1

1 + e(a−d)β
; δ =

1

1 + e(b−c)β

and a, b, c, d are the parameters of the coordination game with a > d, b > c, and a − d > b − c (see
Section 4.1 in [3] for further details). The stationary distribution for P is

π =
1

ε+ δ
[δ(1 − ε), εδ, εδ, ε(1− δ)]

In [3] we proved that the mixing time for such games is tmix = Θ(1/δ).

Now consider the special case when ε = δ, hence the stationary distribution is

π = ((1− ε)/2, ε/2, ε/2, (1− ε)/2)

Let µ(0,0) and µ(1,1) be the two distributions concentrated in states (0, 0) and (1, 1) respectively, i.e.

µ(0,0) = [1, 0, 0, 0] and µ(1,1) = [0, 0, 0, 1]

Observe that, if we start from µ(0,0) or µ(1,1), after one step of the chain we are respectively in distributions

µ(0,0)P = [1− ε, ε/2, ε/2, 0] and µ(1,1)P = [0, ε/2, ε/2, 1− ε]

Hence
∥

∥µ(0,0)P − µ(0,0)

∥

∥

TV
=

∥

∥µ(1,1)P − µ(1,1)

∥

∥

TV
= ε

1A probability distribution is degenerate if it is concentrated in one single element
2See Section 5 for the definition of coordination games.
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By using Lemma 3.4, we have that µ(0,0) and µ(1,1) are (1/4,Θ(1/ε))-metastable according to Defini-
tion 3.1. Moreover, if the chain starts from state (0, 1) or from state (1, 0), after 1 step of the chain we
are ε-close to the stationary distribution π, indeed

(0, 1, 0, 0)P =

[

1− ε

2
, ε, 0,

1− ε

2

]

, (0, 0, 1, 0)P =

[

1− ε

2
, 0, ε,

1− ε

2

]

and
‖(0, 1, 0, 0)P − π‖TV = ‖(0, 1, 0, 0)P − π‖TV = ε .

We can summarize what we have just shown in the following theorem.

Theorem 3.5 Let P be the transition matrix of the logit dynamics for a 2-player coordination game. For

every starting profile x ∈ Ω there is a (1/4, Θ(tmix))-metastable distribution µx such that t
{x}
µx

= Θ(1).

3.3 Metastability and the bottleneck ratio

Consider an ergodic Markov chain P with state space Ω and stationary distribution π. For a subset S
of states, the bottleneck ratio B(S) is defined as

B(S) =
Q(S, S̄)

π(S)
where Q(S, S̄) =

∑

x∈S

∑

y∈Ω\S

π(x)P (x, y) .

Let πS be the stationary distribution conditioned on S, i.e.

πS(x) =

{

π(x)/π(S), if x ∈ S;

0, otherwise .
(4)

It is well-known (see e.g. Theorem 7.3 in [25]) that the bottleneck ratio at set S equals the total
variation distance between πS and πSP , i.e., ‖πSP − πS‖ = B(S). Hence, the following lemma about
the metastability of πS holds.

Lemma 3.6 Let P be a Markov chain with finite state space Ω and let S ⊆ Ω be a subset of states.
Then, πS is (B(S), 1)-metastable.

3.4 Pseudo-mixing time tools

In order to upper bound the mixing time of an ergodic chain, it is often used the fact that, for every
starting state x ∈ Ω the total variation distance between the distribution of the chain at time t and the
stationary distribution π is upper bounded by the maximum, over all states y ∈ Ω, of the total variation
between the chain starting at x and the chain starting at y (see Lemma 4.11 in [25]), i.e.

∥

∥P t(x, ·) − π
∥

∥

TV
6 max

y∈Ω

∥

∥P t(x, ·)− P t(y, ·)
∥

∥

TV

In the following lemma we formalize and prove an analogous statement for metastable distributions.

Lemma 3.7 Let P be a Markov chain with finite state space Ω and let µ be an (ε, T )-metastable distri-
bution supported over a subset S ⊆ Ω of the state space. Then for every x ∈ S and every 1 6 t 6 T , it
holds that

∥

∥P t(x, ·) − µ
∥

∥

TV
6 ε+max

y∈S

∥

∥P t(x, ·)− P t(y, ·)
∥

∥

TV
.

Proof. From triangle inequality we have

∥

∥P t(x, ·)− µ
∥

∥

TV
6

∥

∥P t(x, ·) − µP t
∥

∥

TV
+
∥

∥µP t − µ
∥

∥

TV
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Since µ is (ε, t)-metastable for every t 6 T , we have ‖µP t − µ‖TV 6 ε. Observe that, since µ(y) = 0 for
y /∈ S, then for every set of states A ⊆ Ω and for every t it holds that

|P t(x,A) − µP t(A)| =

∣

∣

∣

∣

∣

∣

P t(x,A) −
∑

y∈S

µ(y)P t(y,A)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

y∈S

µ(y)
(

P t(x,A) − P t(y,A)
)

∣

∣

∣

∣

∣

∣

6
∑

y∈S

µ(y)
∣

∣P t(x,A) − P t(y,A)
∣

∣ 6 max
y∈S

∣

∣P t(x,A) − P t(y,A)
∣

∣ .

Thus, the total variation between P t(x, ·) and µP t is

∥

∥P t(x, ·)− µP t
∥

∥

TV
= max

A⊆Ω
|P t(x,A) − µP t(A)|

6 max
A⊆Ω

max
y∈S

∣

∣P t(x,A) − P t(y,A)
∣

∣ = max
y∈S

∥

∥P t(x, ·)− P t(y, ·)
∥

∥

TV
.

�

In some cases metastable distributions are concentrated in one single state. The following lemma shows
that, in those cases, the hitting time of such a state can be used to establish the pseudo-mixing time of
the metastable distribution.

Lemma 3.8 Let P be a Markov chain with finite state space Ω and let µ be an (ε, T )-metastable distri-
bution concentrated on a single state y. Let τy be the hitting time of this state. Then for all x ∈ Ω and
1 6 t 6 T , we have

∥

∥P t(x, ·)− µ
∥

∥

TV
6 ε+ (1− ε)Px (τy > t) .

Proof. Since µ is concentrated in y, we have that

∥

∥P t(x, ·)− µ
∥

∥

TV
= Px (Xt 6= y) = Px (Xt 6= y, τy 6 t) +Px (Xt 6= y, τy > t)

= Px (Xt 6= y | τy 6 t)Px (τy 6 t) +Px (τy > t)

Moreover, observe that

Px (Xt 6= y | τy 6 t) =
∑

k6t

Px (Xt 6= y | τy = k)Px (τy = k | τy 6 t)

=
∑

k6t

Py (Xt−k 6= y)Px (τy = k | τy 6 t)

=
∑

k6t

∥

∥µP t−k − µ
∥

∥

TV
Px (τy = k | τy 6 t)

6 ε
∑

k6t

Px (τy = k | τy 6 t) = ε

where in the inequality we used the metastability of µ. Hence,

∥

∥P t(x, ·) − µ
∥

∥

TV
= Px (Xt 6= y | τy 6 t)Px (τy 6 t) +Px (τy > t)

6 εPx (τy 6 t) +Px (τy > t) = ε+ (1− ε)Px (τy > t)

�

4 Ising model on the complete graph

Consider the following game, that here we call Ising game: each one of n players has two strategies,
−1 and +1, and the utility of player i at profile x = (x1, . . . , xn) ∈ {−1,+1}n is ui(x) = xi

∑

j 6=i xj .
This is the “game-theoretic” formulation of the well-studied Curie-Weiss model (the Ising model on the
complete graph).
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Observe that for every player i it holds that ui(x−i,+1)− ui(x−i,−1) = H(x−i,+1) −H(x−i,−1)
where H(x) =

∑

{j,k}∈([n]
2 )

xjxk, hence the Ising game is a potential game with potential function H

and, as observed in Section 2 the logit dynamics has stationary distribution π(x) = eβH(x)/Z.
The magnetization of x is defined as S(x) =

∑n
i=i xi, and observe that the potential of a profile x

depends only on its magnetization, i.e. if S(x) = k then H(x) = H(k) = 1
2

(

k2 − n
)

. To see this, let us
name p and m the number of +1 and −1 respectively, in profile x, and observe that p−m = S(x) = k
and p + m = n. Each pair of players with the same sign contributes for +1 in H(x) and each pair of
players with opposite signs contributes for −1; since there are

(

p
2

)

pairs where both players play +1,
(

m
2

)

pairs where both play −1 and p ·m pairs where players play opposite strategies, we have that

H(x) =

(

p

2

)

+

(

m

2

)

− p ·m =
1

2
((p−m)2 − (p+m))

In this section we study the metastability properties of the logit dynamics for the Ising game (equiv-
alently the Glauber dynamics for the Curie-Weiss model) from our quantitative point of view. Namely,
we show that, if we start from a profile where the number of +1 (respectively −1) is a sufficiently large
majority, and if β is large enough then, after an initial pseudo-mixing phase, the distribution of the chain
at time t is close, in total variation distance, to the degenerate distribution concentrated in the profile
with all +1’s (respectively all −1’s) for all t = O(poly(n)).

Let π+ and π− be the two degenerate distributions concentrated in the states with all +1 and all
−1, respectively. The next lemma shows that, for β = Ω(log n/n), π+ and π− are metastable for a
polynomially-long time.

Lemma 4.1 If β > c logn/n then π+ and π− are
(

1/n, nc−2
)

-metastable.

Proof. We prove the result for π+, exactly the same proof (by swapping minuses and pluses) works for
π−. Since π+(x) = 0 for all x 6= +1 and

π+P (x) =















0 if S(x) < (n− 2)/n (i.e if x contains more than one “− 1”)

1
n · 1

1+eβ(n−2) if S(x) = (n− 2)/n (i.e. if x contains exactly one “− 1”)

1
1+e−β(n−2) if S(x) = 1 (i.e. if x = +1)

the total variation distance between π+P and π+ is

‖π+P − π+‖ =
1

2

∑

x∈{−1,+1}n

|π+P (x)− π+(x)| =
1

1 + eβ(n−2)
6 e−β(n−2)

6 nc−1 .

In the last inequality we used β > c logn/n. Hence π+ is (n−(c−1), 1)-metastable. The thesis follows
from Lemma 3.2. �

In order to give an upper bound on the pseudo-mixing time we need some preliminary results about
birth-and-death chains, which we show in the next subsection.

4.1 Biased birth-and-death chains

In this section we consider birth-and-death chains with state space Ω = {0, 1, . . . , n} (see Chapter 2.5
in [25] for a detailed description of such chains). For k ∈ {1, . . . , n − 1} let pk = Pk (X1 = k + 1),
qk = Pk (X1 = k − 1), and rk = 1 − pk − qk = Pk (X1 = k). We will be interested in the probability
that the chain starting at some state h ∈ Ω hits state 0 before state n, namely Pk

(

Xτ0,n = n
)

where
τ0,n = min{t ∈ N : Xt ∈ {0, n}}.

We start by giving an exact formula for such probability for the case when pk and qk do not depend
on k.

Lemma 4.2 Suppose for all k ∈ {1, . . . , n− 1} it holds that pk = ε and qk = δ, for some ε and δ with
ε+ δ 6 1. Then the probability the chain hits state n before state 0 starting from state h ∈ Ω is

Ph

(

Xτ0,n = n
)

=
1− (δ/ε)

h

1− (δ/ε)
n .
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Proof. Let αk be the probability to reach state n before state 0 starting from state k, i.e.

αk = Pk

(

Xτ0,n = n
)

.

Observe that for k = 1, . . . , n− 1 we have

αk = δ · αk−1 + ε · αk+1 + (1− (δ + ε))αk . (5)

Hence
ε · αk − δ · αk−1 = ε · αk+1 − δ · αk

with boundary conditions α0 = 0 and αn = 1. If we name ∆k = ε ·αk − δ ·αk−1 we have ∆k = ∆k+1 for
all k. By simple calculation and using that α0 = 0 it follows that

αk =
∆

ε

k−1
∑

i=0

(

δ

ε

)i

=
∆

ε− δ

(

1− (δ/ε)k
)

.

From αn = 1 we get

∆ =
ε− δ

(1− (δ/ε)k)
.

Hence

αk =
1− (δ/ε)k

1− (δ/ε)n
. (6)

�

Lemma 4.3 Suppose for all k ∈ {1, . . . , n− 1} it holds that pk > ε and qk 6 δ, for some ε and δ with
ε+ δ 6 1. Then the probability to hit state n before state 0 starting from state h ∈ Ω is

Ph

(

Xτ0,n = n
)

>
1− (δ/ε)

h

1− (δ/ε)
n .

Proof. Let {Yt} be a birth-and-death chain with the same state space as {Xt} but different transition
rates

Pk (Y1 = k − 1) = δ Pk (Y1 = k + 1) = ε

Consider the following coupling of Xt and Yt: When (Xt, Yt) is at state (k, h), consider the two [0, 1]
intervals, each one partitioned in three subintervals as in Fig. 4.1. Let U be a uniform r.v. over the
interval [0, 1] and chose the update for the two chains according to position of U in the two intervals.

pkqk

εδ

Figure 1: Coupling

Observe that, since pk > ε and qk 6 δ, if the two chains start at the same state h ∈ Ω, i.e.
(X0, Y0) = (h, h), then at every time t it holds that Xt > Yt. Hence if chain Yt hits state n before state
0, then chain Xt hits state n before state 0 as well. More formally, let τ0,n and τ̂0,n be the random
variables indicating the first time chains Xt and Yt respectively hit state 0 or n, hence

{

Yτ̂0,n = n
}

⇒
{

Xτ0,n = n
}

Thus

Ph

(

Xτ0,n = n
)

> Ph

(

Yτ̂0,n = n
)

>
1− (δ/ε)

h

1− (δ/ε)
n .

In the last inequality we used Lemma 4.2. �
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Lemma 4.4 Suppose for all k ∈ {1, . . . , n − 1} it holds that qk/pk 6 α, for some α < 1. Then the
probability to hit state 0 before state n starting from state h ∈ Ω is

Ph

(

Xτ0,n = 0
)

6 αh .

Idea of the proof. Let p̂k = pk

pk+qk
and q̂k = qk

pk+qk
and let {Yt} be the birth-and-death chain

with transition rates p̂k and q̂k. Observe that Pk

(

XτX
0,n

= 0
)

= Pk

(

YτY
0,n

= 0
)

, indeed it is

easy to define a coupling of the two chains where chain Xt follows the path traced by chain Yt:
Let {Ut} be i.i.d. random variables uniformly distributed over [0, 1] and use such variables to
run chain Yt. As for chain Xt, when at state h toss a coin that gives head with probability
ph+ qh; if it gives tail than don’t move, if it gives head than move to one of the two adjacent
states by using the first r.v. Ui that has not been previously used in process Xt. In this way
it is easy to see that, if they start at the same place, the sequence of states visited by the two
chains is the same and in the same order. Hence chain Xt hits state 0 before state n if and
only if chain Yt hits state 0 before state n.

Finally observe that q̂k/p̂k = qk/pk 6 α, and since p̂k + q̂k = 1 it implies that p̂k > 1/(1+α)
and q̂k 6 α/(1 + α). The thesis then follows from Lemma 4.3. �

4.2 Convergence time at low temperature

If Xt is the logit dynamics for the Ising game, the magnetization process St := S(Xt) is itself a Markov
chain, with state space Ω = {−n,−n+ 2, · · · , n− 4, n− 2, n}. When at state k ∈ Ω, the probability to
go right (to state k + 2) or left (to state k − 2) is respectively

Pk (S1 = k + 2) = pk =
n− k

2n

1

1 + e−2(k+1)β
; Pk (S1 = k − 2) = qk =

n+ k

2n

1

1 + e2(k−1)β
. (7)

Indeed, let us evaluate the probability to jump from a profile x with magnetization k to a profile with
magnetization k + 2. If S(x) = k then there are (n + k)/2 players playing +1 and (n − k)/2 players
playing −1. The chain moves to a profile with magnetization k+2 if a player playing −1 is selected, this
happens with probability (n− k)/2n, and she updates her strategy to +1, this happens with probability

eβui(x−i,+1)

eβui(x−i,+1) + eβui(x−i,−1)
=

1

1 + eβ[ui(x−i,−1)−ui(x−i,+1)]

Finally observe that ui(x−i,−1)− ui(x−i,+1) = −2
∑

j 6=i xj = −2 (S(x)− xi) = −2(k + 1).

For a, b ∈ [−n, n], with a < b, let τa,b be the random variable indicating the first time the chain
reaches a state x with x 6 a or x > b,

τa,b = inf{t ∈ N : Yt 6 a or Yt > b}

At time τa,b, chain Yτa,b
can be in one out of two states, namely the larger state smaller than a or the

smallest state larger than b. We need to give an upper bound on the probability that when the chain
exits from interval (a, b), it happens on the left side of the interval.

In the next lemma we show that, if the chain starts from a sufficiently large positive state k, and if
βk2 > c logn for a suitable constant c, then when chain Yt gets out of interval (0, n/2), it happens on
the n/2 side w.h.p.

Lemma 4.5 Let k ∈ Ω be the starting state with 4 6 k 6 n/2. If β > 6/n and βk2 > 16 logn, then

Pk

(

Yτ0,n/2
6 0

)

6 1/n

Proof. According to (7), the ratio of qh and ph is

qh
ph

=
n+ h

n− h
·
1 + e−2(h+1)β

1 + e2(h−1)β
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Now observe that for all h > 2 it holds that

1 + e−2(h+1)β

1 + e2(h−1)β
6 e−2(h−1)β

6 e−hβ (8)

and for all h 6 n/2 it holds that
n+ h

n− h
=

1 + h/n

1− h/n
6 e3h/n

Hence, for every 2 6 h 6 n/2 we can give the following upper bound

qh
ph

6 e3h/n · e−βh = e−(β−3/n)h 6 e−
1
2βh

where in the last inequality we used β > 6/n.
Thus, for each state h of the chain with k/2 6 h 6 n/2 we have that the ratio qh/ph is less than

e−
1
4βk. If the chain starts at k, by applying Lemma 4.4 it follows that the probability of reaching k/2

before reaching n/2 is less than
(

e−
1
4βk

)ℓ

, where ℓ is the number of states between k/2 and k, that is

ℓ = k/4. Hence, for every 4 6 k 6 n/2, if βk2 > 16 logn, the chain starting at k hits state n/2 before
state k/2 w.h.p.

Pk

(

Yτk/2,n/2
6 k/2

)

6 e
1
16βk

2

6
1

n

The thesis follows by observing that Pk

(

Yτ0,n/2
6 0

)

6 Pk

(

Yτk/2,n/2
6 k/2

)

. �

In the next lemma we show that, if the chain starts from a state k > n/2, and if β > c logn/n for a
suitable constant c, then when chain Yt reaches one of the endpoints of interval (0, n) it is on the n side
with probability exponentially close to 1.

Lemma 4.6 Let k ∈ Ω be the starting state with n/2 6 k 6 n− 1. If β > 8 logn/n, then

Pk

(

Yτ0,n 6 0
)

6 (2/n)n/8

Proof. Observe that for every h 6 n − 1 it holds that n+h
n−h 6 2n, and by using it together with (8) we

have that qh/ph 6 2ne−βh for every 2 6 h 6 n − 1. Thus, for every k/2 6 h 6 n − 1 it holds that

qh/ph 6 2ne−
1
2βk 6 2/n, where in the last inequality we used k > n/2 and β > 8 logn/n. Hence, if the

chain starts at k, by applying Lemma 4.4 it follows that the probability of reaching k/2 before reaching
n is less than (2/n)ℓ, where ℓ = k/4 > n/8 is the number of states between k/2 and k. Hence,

Pk

(

Yτ0,n 6 0
)

6 Pk

(

Yτk/2,n
6 k/2

)

6 (2/n)n/8

�

In the next lemma we show that for every starting state between 0 and n, the expected time the
chain reaches 0 or n is at most O(n3).

Lemma 4.7 For every k ∈ Ω with k > 0 it holds that Ek [τ0,n] 6 n3.

Idea of the proof. For the unbiased birth-and-death chain, i.e. when pk = qk = 1/2 for all
k, it is well-known that the expectation is O(n2). If the chain has a drift toward one of the
end points, e.g. pk = p > 1/2, qk = 1− p for all k, then such expected time cannot be larger.
In the magnetization chain we have qk < pk for all positive k, but since pk + qk < 1 we
have also to consider the time the chain spends not moving. At state k the chain moves with
probability (pk + qk), hence the expected time the chain stays in a state before moving is at
most maxk{1/(pk + qk)}. Since pk + qk > 1/n for all k ∈ {1, . . . , n− 1} it follows that n3 is
a (rough) upper bound on the expected time for our chain. �

Now we can state and prove the main theorem of this section.
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Theorem 4.8 Let x be a profile whose magnetization S(x) has absolute value |S(x)| = k. If β >

c logn/n and k2 > c logn/β then
‖P t(x, ·)− π+‖ = O(1/n)

for every n4 6 t 6 nc−2.

Proof. Consider w.l.o.g. the case of starting state with positive magnetization, S(x) = k. Let τn be the
first time the chain hits state with all +1 and let τ0,n be the first time the magnetization of the chain is
either n or less than or equal to 0,

τ0,n = min{t ∈ N : S(Xt) = n or S(Xt) 6 0}

Since {τn > t, τ0,n 6 t} implies that the magnetization chain reaches 0 before reaching n we have

Px (τn > t) = Px (τn > t, τ0,n > t) +Px (τn > t, τ0,n 6 t)

6 Px (τ0,n > t) +Px

(

S(Xτ0,n) 6 0
)

6
Ex [τ0,n]

t
+Px

(

Yτ0,n 6 0
)

Where Yt is the birth-and-death chain with state space Ω and transition rates as in (7). As for the first
term of the sum, from Lemma 4.7 it follows that Ex [τ0,n] /t 6 1/n for t > n4. As for the second term,
by conditioning on the position of the chain when it gets out of subinterval (0, n/2) we have

Pk

(

Yτ0,n 6 0
)

= Pk

(

Yτ0,n 6 0 |Yτ0,n/2
6 0

)

Pk

(

Yτ0,n/2
6 0

)

+

+Pk

(

Yτ0,n 6 0 |Yτ0,n/2
> n/2

)

Pk

(

Yτ0,n/2
> n/2

)

6 Pk

(

Yτ0,n/2
6 0

)

+Pk

(

Yτ0,n 6 0 |Yτ0,n/2
> n/2

)

From Lemma 4.5 we have that Pk

(

Yτ0,n/2
6 0

)

6 1/n, and observe that

Pk

(

Yτ0,n 6 0 |Yτ0,n/2
> n/2

)

6 Pn/2

(

Yτ0,n 6 0
)

6 (2/nn/8)

where the last inequality follows from Lemma 4.6. Hence for every t > n4 it holds that Px (τn > t) 6 3/n.
Since π+ is (1/n, nc−2)-metastable when β > c logn/n, the thesis follows from Lemma 3.4. �

5 Graphical Coordination games on rings

In this section we study coordination games on a ring [15]. Consider n players identified with the integers
{0, . . . , n− 1}; the two neighbors of player i are (i− 1) mod n (the left neighbor) and (i+1) mod n (the
right neighbor). Every player can pick one of two strategies, 0 and 1, and use it in the two instances of
the following basic coordination game, played with each of her two neighbors:

0 1
0 a, a c, d
1 d, c b, b

We assume that a > d and b > c which implies that players have an advantage in selecting the same
strategy of their neighbors and that profiles (0, 0) and (1, 1) are Nash equilibria of the basic coordination
game. The utility of a player is the sum of the utilities gained in each basic coordination game she plays.

The set of profiles of the game is Ω = {0, 1}n. We define Sd ⊆ Ω as the set of profiles where exactly d
players are playing 0 and R ⊆ Ω as the set of profiles in which at least two adjacent players are playing
0. We also set S̃d =

⋃n
i=d Si. Further, we denote by 0 the profile where all players are playing 0 and by

1 the profile where all players are playing 1.
We define ∆ := a − d and δ := b − c and assume, w.l.o.g., that ∆ > δ. It is easy to see that the

graphical coordination game on a ring is a potential game with potential function Φ(x) =
∑n−1

i=0 Φi(x),
where

Φi(x) =











0, if xi 6= xi+1 ;

δ, if xi = xi+1 = 1 ;

∆, if xi = xi+1 = 0 .
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In [2] it is showed that the mixing time of the logit dynamics for this game is Ω
(

e2δβ
)

. If ∆ > δ,
then 0 is called the risk dominant strategy [19] and, in this case, the techniques of [5] can be generalized
to obtain an upper bound to the mixing time that is polynomial in n and exponential in ∆+ δ and β. If
instead ∆ = δ (and thus no risk dominant strategy exists) an almost matching upper bound is given in
[2]. These results show that the mixing time is polynomial in n for β = O(log n) and greater than any
polynomial in n, for β = ω(logn).

5.1 Games with risk dominant strategies

In this section we study the case ∆ > δ and prove that for β = ω(logn), the logit dynamics reaches in
polynomial time a metastable distribution and remains close to it for super-polynomial time. On the
other hand, we know that for β = O(logn) the logit dynamics is rapidly mixing (and thus reaches in
polynomial time the stationary distribution and stays close to it forever).

Theorem 5.1 For β = ω(logn), for every ε > 0 and for every x ∈ Ω, the dynamics starting from x
approaches in polynomial time a distribution that is (ε, T (n)), for a super-polynomial function T of n.

Throughout this section, we set S⋆
d = R ∪ S̃d.

5.1.1 Metastable distributions

The next theorem identifies three classes of metastable distributions. We remind the reader that πS is
the stationary distribution (that is the Gibbs measure defined in Eq. 3) restricted to the set S of profiles
(see Eq. 4).

Theorem 5.2 For every ε > 0, π1 is (ε, ε ·e2δβ)-metastable and π0 is (ε, ε ·e2∆β)-metastable. Moreover,
for β = ω(logn) and constant d > 0, πS⋆

d
is (ε, eΩ(n log n))-metastable.

Proof. The bottleneck ratio of 1 is

B(1) =

∑

x 6=1 π(1)P (1,x)

π(1)
= e−2δβ .

Thus by Lemma 3.6, we have that π1 is (e−2δβ , 1)-metastable. By applying Lemma 3.2, we obtain that
π1 is (ε, ε · e2δβ)-metastable for every ε > 0.

Similarly, the bottleneck ratio of 0 is

B(0) =

∑

x 6=0 π(0)P (0,x)

π(0)
= e−2∆β

and thus, by applying Lemma 3.6 and Lemma 3.2, we have that π0 is (ε, ε · e2∆β)-metastable for every ε.
Finally, the bottleneck ratio of S⋆

d is

B(S⋆
d) =

∑

x∈∂S⋆
d
π(x)

∑

y∈Ω\S⋆
d
P (x,y)

∑

x∈S⋆
d
π(x)

6

∑

x∈∂S⋆
d
π(x)

∑

x∈S⋆
d
π(x)

(
∑

y∈Ω\S⋆
d
P (x,y) 6 1)

6
nd+1maxx∈∂S⋆

d
π(x)

maxx∈S⋆
d
π(x)

(|∂S⋆
d | 6 nd+1)

6
nd+1e[(n−d−1)δ+(d−1)∆]β

en∆β
(max when d 0’s are adjacent)

6 nd+1e−(n−d−1)(∆−δ)β

6 n−n+2(d+1) (β = ω(logn) and (∆− δ) is a positive constant)

= e−Ω(n logn), (constant d)

where ∂S⋆
d is the set of all profiles in S⋆

d with at least a neighbor in Ω\S⋆
d . Thus, by applying Lemma 3.6

and Lemma 3.2, we have that πS⋆
d
is (ε, eΩ(n logn))-metastable for every ε. �
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5.1.2 Pseudo-mixing time

In this subsection we look at the the pseudo-mixing time of the metastable distributions described in
Theorem 5.2 and we show that, for every starting profile, the dynamics rapidly approaches one of them.
We remind the reader that the interesting case is β = ω(logn) as for β = O(log n) the mixing time of
the logit dynamics is polynomial in n.

Not to overburden our notation, we will denote distribution πS⋆
d
by πd.

Our proof distinguishes cases depending on the starting profile x of the chain. We start by considering
x ∈ S⋆

d , for constant d, and show (see Theorem 5.7) that the pseudo-mixing time of πd is polynomial.
Finally, in Theorem 5.9, we show that if the dynamics starts from one of the remaining profiles, in
polynomial time it hits either S⋆

d or 1 with high probability.

Starting from S⋆
d . From the definition of pseudo mixing time and by Lemma 3.7, for any S, we can bound

tSπS
(γ) in terms of the total variation distance of two copies of the same Markov chain starting in different

states. Next lemma relates this quantity, for the logit dynamics we are studying, to the hitting time τ0
of profile 0.

Lemma 5.3 For every S ⊆ Ω and for x,y ∈ S we have
∥

∥P t(x, ·)− P t(y, ·)
∥

∥

TV
6 2 ·max

z∈S
Pz (τ0 > t) .

Thus, by the previous lemma and Lemma 3.7, in order to bound t
S⋆
d

πd (γ), it is sufficient to give an upper
bound on Px (τ0 > t), for x ∈ S⋆

d . The next lemma bounds the hitting time of 0 when starting from R.

Lemma 5.4 For β = ω (logn), for every λ > 0 and every x ∈ R, we have

Px

(

τ0 >
(8− λ)n2

λ

)

6
λ

4
.

Next we show that, when starting from x ∈ Sd, the dynamics hits R in polynomial time.

Lemma 5.5 For β = ω (logn), for every d > 0 and for every profile x ∈ Sd,

Px

(

τR 6 n2
)

>
2d

2d+ 1
(1− negl (n)) .

Finally, we have

Lemma 5.6 For β = ω (logn), for every d > 0, for x ∈ S⋆
d and for every λ > 0,

Px

(

τ0 >
8n2

λ

)

6
1

2d+ 1
+

λ

4
.

Proof. We need to consider only x ∈ S⋆
d \R. By Lemma 5.4 and Lemma 5.5, we have

Px

(

τ0 6
8n2

λ

)

> Px

(

τ0 6
8n2

λ
| τR 6 n2

)

Px

(

τR 6 n2
)

> PXτR

(

τ0 6
(8 − λ)n2

λ

)

Px

(

τR 6 n2
)

>

(

1−
λ

4

)

2d

2d+ 1
(1− negl (n)) >

2d

2d+ 1
−

λ

4
.

�

We are now ready to prove an upper bound on the pseudo-mixing time of πd, when starting from a
profile in S⋆

d .

Theorem 5.7 For β = ω (logn), for constant d > 1 and for every λ > 0,

t
S⋆
d

πd (γ) 6
8n2

λ
,

where γ = 2
2d+1 + λ.
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Proof. By Theorem 5.2, we have that πd is (λ/2, 8n2/λ)-metastable for every λ > 0 and sufficiently large
n. Therefore, for every x ∈ S⋆

d and t > 8n2/λ, we have
∥

∥P t(x, ·)− πd

∥

∥

TV
6

λ

2
+maxy∈S⋆

d

∥

∥P t(x, ·)− P t(y, ·)
∥

∥

TV
(by Lemma 3.7)

6
λ

2
+maxz∈S⋆

d
Pz (τ0 > t) (by Lemma 5.3)

6 2
2d+1

+ λ . (by Lemma 5.4 and Corollary 5.6)

�

Starting from outside S⋆
d . Observe that when x = 1, metastable distribution π1 is trivially reached

immediately. Thus, it only remains to analyze x /∈ S⋆
d ∪{1}. For this, it is enough to prove that for such

an x the hitting time of S⋆
d ∪ {1} is polynomial.

Lemma 5.8 For β = ω (logn), for every d > 0 and for every x ∈ Sd, we have

Px

(

τ1 6 n2
)

>
1

3d
(1− negl (n)) .

We can now state the following theorem.

Theorem 5.9 For β = ω (logn), for every d > z > 0 and for every profile x ∈ Sz, we have

Px

(

τS⋆
d∪{1} 6 n2

)

>

(

2z

2z + 1
+

1

3z

)

(1− negl (n)) .

The discussion above concludes the proof of the Theorem 5.1.

Staying arbitrarly close. We observe that, in Theorem 5.7, the distance between the dynamics and
the metastable distribution cannot be made arbitrarily small. We can achieve this at the cost of slightly
reducing the set of starting states from which convergence is proved. Specifically, the next theorem shows
that, for d = ω(1) and arbitrarily small γ > 0, the logit dynamics starting from S⋆

d is within distance γ
from π0 in a number of steps that is polynomial in n and in 1/γ.

Theorem 5.10 For β = ω(logn), d = ω(1) and every γ > 0,

t
S⋆
d

π0
(γ) 6

8n2

γ
.

Proof. Since β = ω(logn), Theorem 5.2 implies that π0 is (γ/2, 8n2/γ)-metastable for every γ > 0 and
sufficiently large n. Therefore, for every x ∈ S⋆

d and t > 8n2/γ, we have

‖P t(x, ·)− π0‖TV 6
γ
2 +Px (τ0 > t) (by Lemma 3.8)

6 1
2d+1 + 3

4γ (by Lemma 5.4 and Corollary 5.6)

6 γ . (since d = ω(1))

�

5.2 Games without risk dominant strategies

In this section we study the case of graphical coordination games without risk dominant strategies (that
is, ∆ = δ) played on a ring by n players. Next theorem identifies a class of metastable distributions.

Theorem 5.11 For every ε > 0 and for every 0 6 d 6 n, distribution µd = d
nπ0 +

(

1− d
n

)

π1 is
(ε, εe2∆β)-metastable.

Proof. We notice that

‖µdP − µd‖TV =
1

2

∑

x

|(µdP )(x)− µd(x)| =
1

2

∑

x

∣

∣

∣

∣

∣

∑

y

µd(y)P (y,x) − µd(x)

∣

∣

∣

∣

∣

= d
∑

x∈Ωn−1

P (0,x) + (1− d)
∑

x∈Ω1

P (1,x) =
1

1 + e2∆β
.
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Thus µ is
(

1
1+e2∆β , 1

)

-metastable. The Theorem follows from Lemma 3.2. �

The main and quite surprising result in this section is that for every starting profile x ∈ Sd the
dynamics starting in x converges in polynomial time to µd, for d = 1, . . . , n. In order to prove this
result, we define τ0,1 = min{τ0, τ1} and prove that this quantity is polynomial in n with very high
probability; then we show that the dynamics starting at x ∈ Sd after τ0,1 steps is distributed as a
metastable distribution very close to µd. We formalize these arguments in two technical lemmas.

Lemma 5.12 If β = ω (logn), then for every x ∈ Ω, Px

(

τ0,1 6 n5
)

> 1− o(1).

Lemma 5.13 For every d, x ∈ Sd and β = ω(logn), the random variable Xτ0,1 given that X0 = x, has

distribution νx =
(

d
n + λx

)

π0 +
(

1− d
n − λx

)

π1, with |λx| = o(1).

The pseudo mixing time of distributions µd, for d = 0, 1, . . . , n, is given by the next Theorem.

Theorem 5.14 If β = ω (logn), for every d and every γ > 0

tSd
µd
(γ) 6 n5.

Proof. From Lemma 5.12, for every x ∈ Ω we have

∥

∥

∥Pn5

(x, ·) − µd

∥

∥

∥

TV
= max

A⊂Ω
|Px (Xn5 ∈ A)− µd(A)|

= o(1) + max
A⊂Ω

∣

∣Px

(

Xn5 ∈ A | τ0,1 6 n5
)

− µd(A)
∣

∣

= o(1) +
∥

∥Px

(

Xn5 | τ0,1 6 n5
)

− µd

∥

∥

TV

6 o(1) +
∥

∥Px

(

Xn5 | τ0,1 6 n5
)

− νx
∥

∥

TV
+ ‖νx − µd‖TV ,

where the last inequality follows from the triangle inequality of the total variation distance. Moreover,
from Lemma 5.13, for every x ∈ Sd, we have

‖νx − µd‖TV = ‖P τ0,1(x, ·)− µd‖TV = o(1) .

Finally, from Theorem 5.11 we have that µx is (o(1), n5)-metastable and thus,

∥

∥Px

(

Xn5 | τ0,1 6 n5
)

− νx
∥

∥

TV
=

∥

∥

∥
P τ0,1(x, ·)Pn5−τ0,1 − νx

∥

∥

∥

TV

=
∥

∥

∥νxP
n5−τ0,1 − νx

∥

∥

∥

TV
= o(1) .

�

5.3 Proofs from Section 5.1.2

5.3.1 Proof of Lemma 5.3

Proof of Lemma 5.3. Consider the following partial order � over Ω: for profiles x,y ∈ Ω, x � y iff for
every 0 6 i 6 n− 1, we have that xi > yi. That is, if x � y then x can be obtained from y by changing
0’s into 1’s. We note that, in according to this order, 0 is the unique maximum.

We next show that for every two profiles x,y ∈ Ω there exists a monotone (w.r.t. (Ω,�)) coupling
(X1, Y1) of two copies of the logit dynamics for the graphical coordination game on the ring for which
X0 = x and Y0 = y. The Lemma then follows from Theorem A.1 and Lemma A.2.

The coupling proceeds as follows: first, pick a player i uniformly at random; then, update the
strategies xi and yi of player i in the two chains, by setting

(xi, yi) =



















(0, 0), with probability min{σi(0 | x), σi(0 | y)} ;

(1, 1), with probability min{σi(1 | x), σi(1 | y)} ;

(0, 1), with probability σi(0 | x)−min{σi(0 | x), σi(0 | y)} ;

(1, 0), with probability σi(1 | x)−min{σi(1 | x), σi(1 | y)} .
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See Equation 1, for the definition of σi. Next we observe that if i is chosen for update, then the marginal
distributions of xi and yi agree with σi(· | x) and σi(· | y), respectively. Indeed, for b ∈ {0, 1}, the
probability that xi = b is

min {σi(b | x), σi(b | y)} + σi(b | x)−min{σi(b | x), σi(b | y)} = σi(b | x) ,

and the probability that yi = b is

min{σi(b | x), σi(b | y)}+ σi(1− b | x)−min{σi(1− b | x), σi(1− b | y)}

= min{σi(b | x), σi(b | y) + (1 − σi(b | x))− (1−max{σi(b | x), σi(b | y)}) = σi(b | y) .

The coupling described above is monotone w.r.t. (Ω,�). Indeed, suppose x � y and that the player i
was selected for update. Since x � y, the number of neighbors of i playing 0 in x is less or equal than
in y and thus σi(0 | x) 6 σi(0 | y). Thus, the coupling either sets xi = yi or xi = 1 and yi = 0. In both
cases, X1 � Y1. �

5.3.2 Proof of Lemma 5.4

Lemma 5.4 gives an upper bound on the hitting time, τ0, of 0, for a dynamics starting from a profile
x ∈ R (profiles in R are those in which at least two adjacent players play 0). For convenience, we rename
players so that x0 = x1 = 0. Intuitively, for β = ω(logn), each of player 0 and 1 changes her strategy
with very low probability. Moreover, player 2, when selected for update, plays 0 with high probability.
Similarly, after player 2 has played 0, we have that each of player 0, 1 and 2 changes her strategy with
very low probability and player 3, when selected for update, plays 0 with high probability. This process
repeats until every player is playing 0. In the following, we estimate the number of steps sufficient to
have all players playing strategy 0 with high probability.

For sake of compactness, we will denote the strategy of player i at time step t by X i
t . We start with

a simple observation that lower bounds the probability that a player picks strategy 0 when selected for
update, given that at least one of their neighbors is playing 0.

Observation 5.15 For every player i, if i is selected for update at time t, then, for b ∈ {−1, 1}

P
(

X i
t = 0 | X i+b

t = 0
)

>

(

1−
1

1 + e(∆−δ)β

)

.

We start by evaluating the probability that the dynamics selects players 2, . . . , n− 1 at least once in
this order before time t. To this aim, we set ρ1 = 0 and, for i = 2, . . . , n − 1, we define ρi as the first
time player i is selected for update after time step ρi−1. Thus, at time ρi player i is selected for update
and players 2, . . . , i− 1 have been selected at least once in this order. In particular, ρn−1 is the first time
step at which every player i, i > 3, has been selected at least once after his left neighbor. Obviously,
ρi > ρi−1 for i = 2, . . . , n− 1. The next lemma lower bounds the probability that ρn−1 6 t.

Lemma 5.16 For every x ∈ R and every t > 0, we have

Px (ρn−1 6 t) > 1−
n2

t
.

Proof. Every player i has probability 1
n of being selected at any given time step. Therefore, E [ρ2] =

E [ρ2 − ρ1] = n and E [ρi − ρi−1] = n, for i = 3, . . . , n− 1. Thus, by linearity of expectation,

E [ρn−1] =

n−1
∑

i=2

E [ρi − ρi−1] 6 n2 .

The lemma follows from the Markov inequality. �

Suppose now that t > ρn−1. The next lemma shows that, for all players i, the probability that X i
t = 0

is high.

Lemma 5.17 For every starting profile x ∈ R, for every player i and for every time step t > 0, we have

Px

(

X i
t = 0 | ρn−1 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)t

.
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We prove the lemma first for i > 2. Then we deal with players 0 and 1.
Fix player i > 2, time step t and set si+1 = t. Starting from time step t and going backward to time

step 0, we identify, the sequence of time steps si > si−1 > . . . > s2 > 0 such that, for j = i, i−1, . . . , 2, sj
is the last time player j has been selected before time sj+1. We remark that, since t > ρn−1 > ρi we have
that players 2, . . . , i are selected at least once in this order and thus all the sij are well defined. Strictly
speaking, the sequence si, . . . , s2 depends on i and t and thus a more precise, and more cumbersome,
notation would have been si,j,t. Since player i and time step t will be clear from the context, we drop i
and t.

In order to lower bound the probability that X i
t = 0 for i > 2, we first bound it in terms of the the

probability that player 2 plays 0 at time s2 and then we evaluate this last quantity. The next lemma is
the first step.

Lemma 5.18 For every x ∈ R, every player 2 6 i 6 n− 1 and every time step t, we have

Px

(

X i
t = 0 | ρn−1 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)i−2

Px

(

X2
s2 = 0 | ρn−1 6 t

)

.

Proof. For every fixed i, si is the last time the player i is selected for update before t and thus X i
t = X i

si .
Hence, for i = 2 the lemma obviously holds. For i > 2 and j = 2, . . . , i, we observe that, since
t > ρn−1 > ρi, player j has been selected for update at time sj and sj is the last time that player j is
selected for update before time sj+1 and thus Xj

s
j+1

= Xj
sj .

From Observation 5.15, we have

Px

(

Xj
sj = 0 | ρn−1 6 t

)

> Px

(

Xj
sj = 0 | Xj−1

sj = 0, ρn−1 6 t
)

·Px

(

Xj−1
sj = 0 | ρn−1 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)

Px

(

Xj−1
sj−1

= 0 | ρn−1 6 t
)

,

and the lemma follows. �

We now bound the probability that player 2 plays 0 at time step s2. If player 1 has not been selected
for update before time s2, then X1

s2 = X1
0 = 0, and, from Observation 5.15, we have

Px

(

X2
s2 = 0 | ρn−1 6 t

)

> Px

(

X2
s2 = 0 | X1

s2 = 0, ρn−1 6 t
)

>

(

1−
1

1 + e(∆−δ)β

)

.

It remains to consider the case when player 1 has been selected for update at least once before time s2.
For fixed player i and time step t we define a new sequence of time steps r0 > r1, . . . > 0 in the following
way. We set r0 = s2, and, starting from time step s2 and going backward to time step 0, rj , for j > 0,
is the last time player j mod 2 has been selected before time rj−1. For the last element in the sequence,
rk, it holds that player (k + 1) mod 2 is not selected before time step rk.

Since r1 is the last time player 1 has been selected for update before r0 = s2, we have X1
s2 = X1

r1
and, by Observation 5.15,

Px

(

X2
s2 = 0 | ρn−1 6 t

)

> Px

(

X2
s2 = 0 | X1

s2 = 0, ρn−1 6 t
)

·Px

(

X1
s2 = 0 | ρn−1 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)

·Px

(

X1
r1 = 0 | ρn−1 6 t

)

.
(9)

Finally, we bound Px

(

X1
r1 = 0 | ρn−1 6 t

)

.

Lemma 5.19 For every starting profile x ∈ R and for every time step t, for every fixed player i, let
r0, . . . , rk be defined as above. If k > 0, we have

Px

(

X1
r1 = 0 | ρn−1 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)k

.
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Proof. For sake of compactness, in this proof we denote the parity of integer a with P(a) = a mod 2.
Thus, the definition of sequence rj gives that player P(j) has been selected for update at time rj and

Px

(

XP(j)
rj = 0 | ρn−1 6 t

)

> Px

(

XP(j)
rj = 0 | XP(j+1)

rj = 0, ρn−1 6 t
)

·Px

(

XP(j+1)
rj = 0 | ρn−1 6 t

)

.

If j 6= k player P(j + 1) has not been selected for update between time rj+1 and time rj and by
Observation 5.15

Px

(

XP(j)
rj = 0 | ρn−1 6 t

)

> Px

(

XP(j)
rj = 0 | XP(j+1)

rj = 0, ρn−1 6 t
)

·Px

(

XP(j+1)
rj+1

= 0 | ρn−1 6 t
)

>

(

1−
1

1 + e(∆−δ)β

)

Px

(

XP(j+1)
rj+1

= 0 | ρn−1 6 t
)

.

If j = k, instead, player P(k + 1) has not been selected for update before time rk and thus X
P(k+1)
rk =

X
P(k+1)
0 = 0. By Observation 5.15, we have

Px

(

XP(k)
rk

= 0 | ρn−1 6 t
)

> Px

(

XP(k)
rk

= 0 | XP(k+1)
rk

= 0, ρn−1 6 t
)

>

(

1−
1

1 + e(∆−δ)β

)

.

�

Thus, for every player i > 2 and for every time step t > 0, we have

Px

(

X i
t = 0 | ρn−1 6 t

)

>

(

1− 1
1+e(∆−δ)β

)i−2

Px

(

X2
s2 = 0 | ρn−1 6 t

)

(from Lemma 5.18)

>

(

1− 1
1+e(∆−δ)β

)i−1

Px

(

X1
r1 = 0 | ρn−1 6 t

)

(from Equation 9)

>

(

1− 1
1+e(∆−δ)β

)i−1+k

(from Equation 5.19)

>

(

1− 1
1+e(∆−δ)β

)t

, (since i− 1 + k 6 t)

where k is the index of the last term in the sequence r0, r1, . . . previously defined.
This ends the proof of Lemma 5.17 for player i > 2. The cases i = 0, 1 can be proved in similar way.

Clearly, if player i has never been selected for update before time t, we have that X i
t = 0 with probability

1. If player i has been selected at least once we have to distinguish the cases i = 0 and i = 1. If i = 1,
we define r0 = t + 1 and we identify a sequence of time step r1 > r2 > . . . > 0 as above: we have that
X1

t = X1
r1 and from Lemma 5.19 follows that

Px

(

X i
t = 0 | ρn−1 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)k

>

(

1−
1

1 + e(∆−δ)β

)t

,

where k is the last index of the sequence r1, r2, . . . . Finally, the probability that player 0 plays the
strategy 0 at time t, given that she was selected for update at least once, can be handled similarly to the
probability that player 2 plays the strategy 0 at time s2. This concludes the proof of Lemma 5.17.

The following lemma gives the probability that the hitting time of the profile 0 is less or equal to t,
given that ρn−1 6 t.

Lemma 5.20 For every x ∈ R and every t > 0, we have

Px (τ0 6 t | ρn−1 6 t) >

(

1−
1

1 + e(∆−δ)β

)nt

.

Proof. To prove our lemma we will show a bound on the probability that, conditioned on ρn−1 6 t, all
players are playing 0 at time t.
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Let f be the permutation that sort players in order of last selection for update: i.e., f(0) is the last
player that is selected for update, f(1) is the next to last one, and so on. We have

Px (τ0 6 t | ρn−1 6 t) > Px





n−1
⋂

j=0

X
f(j)
t = 0 | ρn−1 6 t





=

n−1
∏

j=0

Px



X
f(j)
t = 0 |

n−1
⋂

i=j+1

X
f(i)
t = 0, ρn−1 6 t





>

n−1
∏

j=0

Px

(

X
f(j)
t = 0 | ρn−1 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)nt

,

where the last inequality follows from Lemma 5.17. �

Now we are ready to prove Lemma 5.4.
Proof of Lemma 5.4. From Lemma 5.16 and Lemma 5.20, we have that for every x ∈ R and every t > 0

Px (τ0 6 t) > Px (ρn−1 6 t)Px (τ0 6 t | ρn−1 6 t)

>

(

1−
n2

t

)(

1−
1

1 + e(∆−δ)β

)nt

.

Thus for every λ > 0, we have for t = (8−λ)n2

λ

Px (τ0 6 t) >

(

1−
λ

8− λ

)



1−
1

1 + (8−λ)n3

λ log( 8
8−λ )





(8−λ)n3

λ

>
8
(

1− λ
4

)

8− λ

8− λ

8
= 1−

λ

4
,

where the first inequality follows from the fact that, since β = ω(logn), for n large enough, we have

β >
log

(

(8−λ)n3

λ

)

−log log( 8
8−λ )

∆−δ , whereas the second inequality follows from the well known approximation

1− a > e−
a

1−a . �

5.3.3 Proof of Lemma 5.5

Let θ⋆ be the first time at which all players have been selected at least once. The following lemma
directly follows from coupon collector argument; we include a proof for completeness.

Lemma 5.21 For every t > 0,
Px (θ

⋆ 6 t) > 1− ne−t/n.

Proof. The logit dynamics at each time step selects a player for update uniformly and independently of
the previous selections. Thus the probability that i players are never selected for update in t steps is
(

1− i
n

)t
and

Px (θ
⋆ > t) 6

n−1
∑

i=1

(

1−
i

n

)t

6

n−1
∑

i=1

e−
it
n 6 ne−t/n.

�

We define players playing 0 in profile x as the zero-players of x and their neighbors as border-players ;
we also define l(x) > d+ 1 as the number of border-players in x.

Let τ⋆ be the first time step at which a border-player is selected for update before one of its neighboring
zero-players; if this event does not occur then τ⋆ = +∞. The next lemma bounds the probability that
τ⋆ is finite given that all players have been selected at least once within time t.

22



Lemma 5.22 For every x ∈ Sd \R and every t > 0

Px (τ
⋆ 6 t | θ⋆ 6 t) >

2d

2d+ 1
.

Proof. Observe that if θ⋆ 6 t, then τ⋆ > t is equivalent to say that τ⋆ is infinite: thus we will consider
Px (τ

⋆ is finite | θ⋆ 6 t).
The proof proceeds by induction on d. Let d = 1 and denote by i the one zero-player. Notice that

τ⋆ is finite if and only if one of the two neighbors of i is selected for update before i is selected. Since
we are conditioning on θ⋆ 6 t, all players are selected at least once by time t and thus the probability of
this event is 2

3 = 2d
2d+1 .

Suppose now that the claim holds for d − 1 and let x ∈ Sd \ R. Denote by Tx the set of all the
zero-players in x and their border-players and let i be the first player in Tx to be selected for update
(notice that i is well defined since θ⋆ 6 t). Observe that, if i is a border-player, then τ⋆ is finite and this

happens with probability l(x)
l(x)+d . If i is a zero-player, we consider the subset Tx ⊂ Tx of the remaining

d− 1 zero-players and their border-players. τ⋆ is finite only if at least one border-player in Tx is selected
before one of its neighboring zero-players. Notice though that Tx = Ty, for y ∈ Sd−1 \ R such that
yi = 1 and y−i = x−i. Thus, by inductive hypothesis, Py (τ

⋆ is finite | θ⋆ 6 t) > 2d−2
2j−1 . Finally,

Px (τ
⋆ is finite | θ⋆ 6 t) =

l(x)

l(x) + d
+

d

l(x) + d
·Py (τ

⋆ is finite | θ⋆ 6 t)

>
l(x)

l(x) + d
+

d

l(x) + d
·
2d− 2

2d− 1

= 1−
d

(l(x) + d)(2d− 1)

> 1−
1

2d+ 1
,

where the last inequality follows from l(x) > d+ 1. �

Now we are ready to prove Lemma 5.5.
Proof of Lemma 5.5. Suppose τ⋆ is finite and let i be the border-player selected for update at time τ⋆.
Then, at time τ⋆, i has at least one neighbor playing 0 and thus i plays 0 with probability

Px

(

X i
τ⋆ = 0 | τ⋆ 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)

.

Moreover, if i plays strategy 0, then at time τ⋆ the dynamics hits a profile in R. Thus, for a finite t > 0,
we have

Px (τR 6 t) > Px

(

X i
τ⋆ = 0 ∧ τ⋆ 6 t

)

= Px

(

X i
τ⋆ = 0 | τ⋆ 6 t

)

Px (τ
⋆ 6 t)

> Px

(

X i
τ⋆ = 0 | τ⋆ 6 t

)

Px (τ
⋆ 6 t | θ⋆ 6 t)Px (θ

⋆ 6 t)

>

(

1−
1

1 + e(∆−δ)β

)

2d

2d+ 1

(

1− ne−t/n
)

,

where the last inequality follows from Lemma 5.21 and Lemma 5.22. Finally, the lemma follows since
β = ω(logn) and by taking t = n2. �

5.3.4 Proof of Lemma 5.8

This proof is very similar to the proof of Lemma 5.5: in particular, we refer to notation defined in
Section 5.3.3. If all zero-players are selected before both neighboring border-players, we set τ⋆ be the
time step at which the last zero-players is selected, otherwise we set τ⋆ be infinity.

Lemma 5.23 For every x ∈ Sd \R

Px (τ
⋆
6 t | θ⋆ 6 t) >

1

3d
.
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Proof. Observe that if θ⋆ 6 t, then τ⋆ > t is equivalent to say that τ⋆ is infinite: thus we will consider
Px (τ

⋆ is finite | θ⋆ 6 t).
The proof proceeds by induction on d. For the base case, we denote by i the only zero-player and τ⋆

is finite if and only if i is selected for update before her neighbors. Since we are conditioning on θ⋆ 6 t,
we know that all players have been selected at least once and thus the probability of this event is 1

3 .
Suppose that the claim holds for d − 1 and let x ∈ Sd \ R. Denote by Tx the set of all the zero-

players in x along with their border-players and let i be the first player in Tx to be selected for update
(notice that i is well defined since θ⋆ 6 t and thus all players has been selected at least once). Observe

that, if i is a border-player, then τ⋆ is infinite and this happens with probability l(x)
l(x)+j . Otherwise, we

consider the subset Tx ⊂ Tx of the remaining d − 1 zero-players and their border-players. τ⋆ will be
finite only if all zero-players in Tx are selected before their border-players. However, Tx = Ty, where
y ∈ Sd−1 \ R is the profile obtained from x by setting yi = 1. By inductive hypothesis the probability
Py (τ

⋆ is finite | θ⋆ 6 t) > 1
3d−1 . Thus, we have

Px (τ
⋆ is finite | θ⋆ 6 t) =

d

l(x) + d
·Py (τ

⋆ is finite | θ⋆ 6 t)

>
1

3
·

1

3d−1
.

�

Now we prove Lemma 5.8.
Proof of Lemma 5.8. Notice that if τ⋆ is finite, every time a player is selected for update she have both
neighbors that are playing 0 and thus

Px (Xτ⋆ = 1 | τ⋆ 6 t) >

(

1−
1

1 + e2δβ

)t

>

(

1−
t

e2δβ

)

,

where the last inequality follows from the approximations 1− a 6 e−x and 1− a > e−
x

1−x .
Obviously, if Xτ⋆ = 1, then τ1 6 τ⋆. Thus, for a finite t > 0, we have

Px (τ1 6 t) > Px (Xτ⋆ = 1 ∧ τ⋆ 6 t)

= Px (Xτ⋆ = 1 | τ⋆ 6 t)Px (τ
⋆
6 t)

> Px (Xτ⋆ = 1 | τ⋆ 6 t)Px (τ
⋆ 6 t | θ⋆ 6 t)Px (θ

⋆ 6 t)

>

(

1−
t

e2δβ

)

1

3z

(

1− ne−t/n
)

,

where the last inequality follows from Lemma 5.21 and Lemma 5.23. Finally, the lemma follows since
β = ω(logn) and by taking t = n2. �

5.4 Proofs from Section 5.2

We say that a profile x has a zero-block of size l starting at player i if xi = xi+1 = . . . = xi+l−1 = 0 and
xi−1 = xi+l = 1. Players i and i+ h− 1 are the border players of the block. A similar definition is given
for one-blocks. Notice that every profile x 6= 0,1 has the same number of zero-blocks and one-blocks and
this number is called the level of x and is denoted by ℓ(x). We set ℓ(0) = ℓ(1) = 0.

The following observation gives the level structure of the potential function (note that we are studying
the case ∆ = δ).

Observation 5.24 For every profile x, the potential of x is Φ(x) = (n−2ℓ(x))∆, regardless of the sizes
of the zero-blocks and one-blocks.

Moreover, for a profile x, we defines s0(x) as the number of zero-blocks of size 1, s1(x) as the number of
one-blocks of size 1 and set s(x) = s0(x) + s1(x).
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5.4.1 Proof of Lemma 5.12

We would like to study how long it takes for the logit dynamics to reach 0 or 1. Starting from profile
x at level i > 1, the logit dynamics needs to go down i levels to hit a profile at level 0; and to go down
one level, it is necessary for one monochromatic block (that is, either a zero-block or a one-block) to
disappear. We next show that we do not have to wait too long for this to happen.

Our first step bounds the time τi needed to go from level i+1 to level i. Consider a profile x at level
i+1 and number arbitrarily the 2(i+1) monochromatic blocks of x and denote by kj(x) the size of the
j-th monochromatic block. We define τi,j in the following way. Suppose that the dynamics reaches level
i for the first time after t steps and suppose that this happens because the j-th monochromatic block
disappears. Then we set τi,j = t and τi,j′ = +∞ for all j′ 6= j. Obviously, for any starting profile x we
have that

Ex [τi] = Ex

[

min
j

τi,j

]

6 max
j

Ex [τi,j | τi,j < τi,j′ for all j
′ 6= j] .

For sake of compactness of notation we define

γi,l = max
16j62(i+1)

max
x : ℓ(x)=i+1

kj(x)=l

Ex [τi,j | τi,j < τi,j′ for all j
′ 6= j] ,

set γi = maxl γi,l and observe that Ex [τi] 6 γi. It is also easy to see that γi,l is non-decreasing with l.
Next we bound γi in terms of γi+1.

Lemma 5.25 For every i > 0
γi 6 n2bi

where bi = n+ n−4(i+1)+s(x⋆)
1+e2∆β γi+1.

Proof.
We next bound γi,l by distinguishing cases depending on the size l. For each case, we let x and j be

the profile and the monochromatic block that attains the maximum γi,l.

l = 1:

• if the unique player of the j-th monochromatic block is selected for update and she changes her

strategy then τi,j = 1. This happens with probability 1
n ·

(

1− 1
1+e2∆β

)

.

• if a neighbor v of the unique player of the j-th monochromatic block is selected for update and she
changes her strategy then the dynamics reaches a profile y at same level i + 1 and the size of the
j-th block increases to 2. If v belongs to a monochromatic block of size 1, this has probability 0 (we
are conditioning on τi,j < τi,j′ for all j

′ 6= j); otherwise, the probability is at most 1/2 · 2/n = 1/n.

• if we select for update a player that is not at the borders of a monochromatic block and she changes

her strategy, then the dynamics reaches a profile y at level i+2. This has probability n−4(i+1)+s(x)
1+e2∆β

of occurring.

• in the remaining cases neither the level nor the length of the j-th monochromatic block changes.

Hence, by observing that γi,2 > γi,1 we have

γi,1 6
1

n

(

1−
1

1 + e2∆β

)

+
1

n
(1 + γi,2) +

n− 4(i+ 1) + s(x)

n

1

1 + e2∆β
(1 + γi+1)

+

(

n− 2

n
−

n− 4(i+ 1) + s(x)− 1

n

1

1 + e2∆β

)

(1 + γi,1).

By simple calculations and using that n− 4(i+ 1) + s(x) > 0, we obtain

γi,1 6

(

1

2
+

1

4e2∆β + 2

)(

n+ γi,2 +
n− 4(i+ 1) + s(x)

1 + e2∆β
γi+1

)

.
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Since
(

1
2 + 1

4e2∆β+2

)

6 2
3 for β = ω(logn), we have

γi,1 6
2

3
(γi,2 + bi) . (10)

1 < l < n− 2i− 1:

• if a player at the borders of the j-th monochromatic block is selected for update (there are two of
these players) and she changes her strategy (this happens with probability 1/2), then the dynamics
reaches a profile y at same level i+1 and the length of the j-th monochromatic block decreases to
l− 1;

• if a neighbor v of the border players of the j-th monochromatic block is selected for update and
she changes her strategy, then the number of monochromatic blocks does not change (and thus we
are at still at level i+ 1) but the j-th monochromatic block increases in size.

Notice that, in this case, player v does not belong to a monochromatic block of size 1, since we
are conditioning on the fact that the j-th monochromatic block is the first to disappear (τi,j <
τi,j′ ∀j′ 6= j). Therefore the two neighbors of v are playing two different strategies and thus v
adopts any of the two with probability 1/2. Since there are two players adjacent to the border
players of block j, this case happens with probability at most 1/n.

• if a player v that is not at the borders of a monochromatic block is selected for update and she
changes her strategy then the two new adjacent monochromatic blocks are created and the level
increases 1. Notice that there are n−4(i+1)+s(x⋆) such player v and each has probability 1

1+e2∆β

of changing her strategy.

• in the remaining cases neither the level nor the length of the j-th monochromatic block changes.

Hence,

γi,l 6
1

n
(1 + γi,l−1) +

1

n
(1 + γi,l+1) +

n− 4(i+ 1) + s(x)

n

1

1 + e2∆β
(1 + γi+1)

+

(

n− 2

n
−

n− 4(i+ 1) + s(x)

n

1

1 + e2∆β

)

(1 + γi,l).

By simple calculations, similar to the ones for the case l = 1, we obtain

γi,l 6
1

2
(γi,l−1 + γi,l+1 + bi) .

From the previous inequality and Equation 10, a simple induction on l shows that, for every 1 6 l <
n− 2i− 1, we have

γi,l 6
1

l + 2

(

(l + 1)γi,l+1 +
l(l + 3)

2
bi

)

. (11)

Moreover, from Equation 11, a simple inductive argument shows that, for every h > 1,

γi,l 6
l+ 1

l + h+ 1
γi,l+h +

l+ 1

2
bi

l+h−1
∑

j=l

j(j + 3)

(j + 1)(j + 2)

6
l+ 1

l + h+ 1
γi,l+h +

l+ 1

2
hbi . (12)

l = n− 2i− 1: in this case all blocks other than the j-th have size 1 and thus every time we select one
of these players, she changes her strategy with probability 0 (we are conditioning on j being the first
monochromatic block to disappear). This means that that the size of the j-th monochromatic block
cannot increase. Reasoning similar to the ones used in the previous cases, we obtain that

γi,n−2i−1 6 γi,n−2i−2 + bi .
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By using Equation 11, we have

γi,n−2i−1 6
(n− 2i− 2)(n− 2i+ 1) + 2(n− 2i)

2
bi 6

n2

2
bi .

Finally, for every l > 1, by using Equation 12 with h = n− 2i− 1− l, we have

γi,l 6
l + 1

n− 2i
γi,n−2i−1 +

(l + 1)(n− 2i− 1− l)

2
bi 6 n2bi .

�

Corollary 5.26 If β = ω(logn), then for every i > 0, γi = O(n3) .

Proof. Note that b⌊n/2⌋−1 = n and thus, by using Lemma 5.25, γ⌊n/2⌋−1 6 n3. Moreover, for 0 6 i <
⌊n/2⌋ − 1, since n− 4(i+ 1) + s(x) 6 n, we have

γi 6 n3

(

1 +
1

1 + e2∆β
γi+1

)

6 n3



1 +

⌊n/2⌋−i−1
∑

j=1

(

n3

1 + e2∆β

)j


 . (13)

The corollary follows by observing that, if β = ω
(

logn
∆

)

, then the summation in Equation 13 is o(1). �

The above corollary gives a polynomial bound to the time that the dynamics take to go from a profile
at level i+ 1 to a profile at level i. Lemma 5.12 easily follows.
Proof of Lemma 5.12. Obviously, for every x at level 1 6 k 6 n/2,

Ex [τ0,1] 6

k−1
∑

i=0

max
y : ℓ(y)=i+1

Ey [τi] 6

k−1
∑

i=0

γi = O(n4) .

The lemma follows from the Markov inequality. �

5.4.2 Proof of Lemma 5.13

Proof of Lemma 5.13. For a profile x, we denote by px the probability that the logit dynamics starting
from x at step τ0,1 is in profile 0; in other words, px = Px (τ0 < τ1). Trivially, p0 = 1 and p1 = 0.

Clearly, at time τ0,1 the dynamics is either in the state 0 (this happens with probability px) or in
the state 1 (this happens with probability 1 - px). Thus, the state of the dynamics at time τ0,1 when
starting from profile x is distributed according to the probability distribution

νx = pxπ0 + (1− px)π1.

We next show that for β = ω(logn) and x ∈ Sd, px = d
n + λx, for some λx = o(1). By the definition of

Markov chains we know that

px = P (x,x) · px +
∑

y∈N(x)

P (x,y) · py

We then partition the neighborhoodN(x) of profile x of level i in 5 subsets, N1(x), N2(x), N3(x), N4(x), N5(x)
such that, for two profiles y1,y2 in the same subsets it holds that P (x,y1) = P (x,y2).

• N1(x) is the set of profiles y obtained from x by changing the strategy of a player of a zero-block
of size 1. Observe that |N1(x)| = s0(x). Moreover, for every y ∈ N1(x), y is at level i − 1, has
|x|0 − 1 players playing 0 and P (x,y) = 1

n · (1− 1
1+e2∆β ).

• N2(x) is the set of profiles y obtained from x by changing the strategy of a player of a one-block
of size 1. Observe that |N2(x)| = s1(x). Moreover, for every y ∈ N2(x), y is at level i − 1, has
|x|0 + 1 players playing 0 and P (x,y) = 1

n · (1− 1
1+e2∆β ).

• N3(x) is the set of profiles y obtained from x by changing the strategy of a border player of a zero-
block of size greater than 1. Observe that |N3(x)| = 2(i− s0(x)). Moreover, for every y ∈ N3(x),
y is at level i, and has |x|0 − 1 players playing 0 and P (x,y) = 1/2n.
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• N4(x) is the set of profiles y obtained from x by changing the strategy of a border player of a one-
block of size greater than 1. Observe that |N4(x)| = 2(i− s1(x)). Moreover, for every y ∈ N4(x),
y is at level i, and has |x|0 + 1 players playing 0 and P (x,y) = 1/2n.

• N5(x) is the set of all the profiles y ∈ N(x) that do not belong to any of the previous 4 subsets.
Observe that |N5(x)| = n − 4i + s(x). Moreover, for every y ∈ N5(x), y is at level i + 1, and
P (x,y) = 1

n · 1
1+e2∆β .

Moreover, we have that

P (x,x) =
s(x)

n

1

1 + e2∆β
+

2i− s(x)

n
+

n− 4i+ s(x)

n

(

1−
1

1 + e2∆β

)

.

Then, we have

px =
1

n

(

1−
1

1 + e2∆β

)





∑

y∈N1(x)

py +
∑

y∈N2(x)

py



+
1

2n





∑

y∈N3(x)

py +
∑

y∈N4(x)

py





+
1

n

1

1 + e2∆β

∑

y∈N5(x)

py

+

(

s(x)

n

1

1 + e2∆β
+

2i− s(x)

n
+

n− 4i+ s(x)

n

(

1−
1

1 + e2∆β

))

px

=
1

n





∑

y∈N1(x)

py +
∑

y∈N2(x)

py



+
1

2n





∑

y∈N3(x)

py +
∑

y∈N4(x)

py



+
n− 2i

n
· px +

c

1 + e2∆β
, (14)

where

c =
1

n





∑

y∈N5(x)

py −
∑

y∈N1(x)∪N2(x)

py − (n− 4i)px



 .

We notice that, since 1 6 i 6 n/2 and |N1(x)| + |N2(x)|, |N5(x)| 6 n, we have |c| 6 2 and thus the last
term in Equation 14 is negligible in n (since β = ω(logn)). Hence we have that the following condition
holds for every level i > 1 and every profile x at level i:

px =
1

2i





∑

y∈N1(x)

py +
∑

y∈N2(x)

py



+
1

4i





∑

y∈N3(x)

py +
∑

y∈N4(x)

py



 + ηx ,

where ηx is negligible in n. This gives us a linear system of equations in which the number of equations
is the same that the number of variables.

Next we find a solution to a “modified” version of above system, where we omit the negligible part
in every equation, and then we show that this solution cannot be very different from the solution of the
“original” system.

We build the solution for the “modified” system inductively on the level i: for every profile x ∈ Sd at
level 0 (this is only possible for d = 0 or d = n), we have, as discussed above, px = d

n . Now, we assume

that for every profile x ∈ Sd at level i− 1, px = d
n is a solution for the system. For x ∈ Sd at level i, we

can rewrite the “modified” condition as follows:

px =
s0(x)

2i
·
d− 1

n
+

s1(x)

2i
·
d+ 1

n
+

1

4i





∑

y∈N3(x)

py +
∑

y∈N4(x)

py



 . (15)

Equation 15 gives another linear system of equations. This system has a unique solution: indeed, it
has the same number of equations and variables and the matrix of coefficients is a diagonally dominant
matrix (since |N3(x) ∪ N4(x)| 6 4i) and thus it is nonsingular. Moreover, if we set, for every profile x

at level i, px = |x|0
n , then the right hand side of the Equation 15 becomes

s0(x)

2i

d− 1

n
+

s1(x)

2i

d+ 1

n
+

i− s0(x)

2i

d− 1

n
+

i− s1(x)

2i

d+ 1

n
=

d

n
,
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and hence the system is satisfied by this assignment. Summarizing, we have found that the “modified”

system has a unique solution px = |x|0
n for every profile x. Now, let p⋆x = px+λx be the assignment that

satisfies all “original” conditions: since, as n grows unbounded, these conditions approach the “modified”
ones, we have that p⋆x has to approach to px and thus we have that |λx| = o(1) for every profile x. �

6 The OR game

The OR-game is a toy n-player game where every player has two strategies, say {0, 1}, and each player
pays the OR of the strategies of all players (including herself). More formally, the utility of player i ∈ [n]
is ui(0) = 0 and ui(x) = −1 for every x 6= 0.

In [3] we showed that the mixing time of the logit dynamics for the OR-game is roughly eβ for
β = O(log n) and it is roughly 2n for larger β. Here we study the metastability properties of the
OR game to highlight the distinguishing features of our quantitative notion of metastability based on
distributions. Namely, we show that if we start the logit dynamics at a profile where at least one player
is playing 1, then after O(logn) time steps the distribution of the chain is close to uniform, and it stays
close to uniform for exponential time. Hence, even if there is no small set of the state space where
the chain stays close for a long time, we can still say that the chain is “metastable” meaning that the
“distribution” of the chain stays close to some well-defined distribution for a long time.

6.1 Ehrenfest urns

We first need two simple lemmas that will be used in the proof of Theorem 6.4.
The Ehrenfest urn is the Markov chain with state space Ω = {0, 1, . . . , n} that, when at state k, moves

to state k − 1 or k + 1 with probability k/n and (n − k)/n respectively (see, for example, Section 2.3
in [25] for a detailed description). The next lemma gives an upper bound on the probability that the
Ehrenfest urn starting at state k hits state 0 within time step t.

Lemma 6.1 Let {Zt} be the Ehrenfest urn over {0, 1, . . . , n} and let τ0 be the first time the chain hits
state 0. Then for every k > 1 it holds that

Pk (τ0 < n logn+ cn) 6
c′

n

for suitable positive constants c and c′.

Proof. First observe that for any t > 3 the probability of hitting 0 before time t for the chain starting
at 1 is only O(1/n) larger than for the chain starting at 2, which in turn is only O(1/n) larger than for
the chain starting at 3. Indeed, by conditioning on the first step of the chain, we have

P1 (τ0 < t) = P1 (τ0 < t |Z1 = 0)P1 (Z1 = 0) +P1 (τ0 < t |Z1 = 2)P1 (Z1 = 2)

=
1

n
+

n− 1

n
P2 (τ0 < t− 1) 6

1

n
+P2 (τ0 < t)

P2 (τ0 < t) = P2 (τ0 < t |Z1 = 1)P2 (Z1 = 1) +P2 (τ0 < t |Z1 = 3)P2 (Z1 = 3)

=
2

n
P1 (τ0 < t− 1) +

n− 2

n
P3 (τ0 < t− 1)

6
2

n

(

1

n
+P2 (τ0 < t)

)

+
n− 2

n
P3 (τ0 < t)

Hence,

P2 (τ0 < t) 6
2

n− 2
+P3 (τ0 < t) 6

3

n
+P3 (τ0 < t)

P1 (τ0 < t) 6
4

n
+P3 (τ0 < t)
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Moreover observe that the probability that the chain starting at k hits state 0 before time t is
decreasing in k, in particular, for every k > 3 it holds that Pk (τ0 < t) 6 P3 (τ0 < t). Now we show that
P3 (τ0 < n logn+ cn) = O(1/n) and this will complete the proof.

Let us consider a path P of length t starting at state 3 and ending at state 0. Observe that any such
path must contain the sub-path going from state 3 to state 0 whose probability is 6/n3. Moreover, for
all the other t− 3 moves we have that if the chain crosses an edge (i, i+1) from left to right then it must
cross the same edge from right to left (and viceversa). The probability for any such pair of moves is

n− i

n
·
i+ 1

n
6

e1/n

4

for every i. Hence, for any path P of length t going from 3 to 0, the probability that the chain follows
exactly path P is3

P3 ((X1, . . . , Xt) = P) 6
6

n3
·

(

e2/n

4

)(t−3)/2

=
6

n3
·

23

e3/n
·

(

e1/n

2

)t

6
48

n3
·

(

e1/n

2

)t

Let ℓ and r be the number of left and right moves respectively in path P then ℓ + r = t and ℓ − r = 3.
Hence the total number of paths of length t going from 3 to 0 is less than

(

t

ℓ

)

=

(

t
t−3
2

)

6 2t

Thus, the probability that starting from 3 the chain hits 0 for the first time exactly at time t is

P3 (τ0 = t) 6

(

t
t−3
2

)

48

n3
·

(

e1/n

2

)t

6
48

n3
et/n

Finally, the probability that the hitting time of 0 is less than t is

P3 (τ0 < t) 6

t−1
∑

i=3

P3 (τ0 = i)

6
48

n3

t−1
∑

i=3

ei/n =
48

n3
·
et/n − 1

e1/n − 1
6

48ec

n

In the last inequality we used that e1/n − 1 > 1/n and t = n logn+ cn. �

In the proof of Theorem 6.4 we will be dealing with the lazy version of the Ehrenfest urn. The next
lemma, which is folklore, allows us to use the bound we achieved in Lemma 6.1 for the non-lazy chain.

Lemma 6.2 Let {Xt} be an irreducible Markov chain with finite state space Ω and transition matrix P
and let {X̂t} be its lazy version, i.e. the Markov chain with the same state space and transition matrix
P̂ = P+I

2 where I is the Ω×Ω identity matrix. Let τa and τ̂a be the hitting time of state a ∈ Ω in chains

{Xt} and {X̂t} respectively. Then, for every starting state b ∈ Ω and for every time t ∈ N it holds that

Pb (τ̂a 6 t) 6 Pb (τa 6 t)

6.2 OR game metastability

The next lemma shows that, if we start from the uniform distribution, the distribution of the logit
dynamics stays ε-close to uniform for ε2n time steps.

Lemma 6.3 Let P be the transition matrix of the logit dynamics for the n-player OR-game, let U be
the uniform distribution over {0, 1}n. Then U is (ε, ε2n)-metastable.

3Notice that such probability is zero if t− 3 is odd
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Proof. Observe that, by starting from the stationary distribution, the probability of being in y ∈ {0, 1}n

after one step of the chain is

UP (y) =
∑

x∈{0,1}n

U(x)P (x,y) =
1

2n

∑

x∈{0,1}n

P (x,y) =















2−n if |y| > 2

2−n
(

n−1
n + 1

n
2

1+eβ

)

if |y| = 1

2−n
(

2
1+e−β

)

if y = 0

Hence, the total variation distance between the uniform distribution and the distribution of the chain
after one step is

‖UP − U‖ =
1

2

∑

y∈{0,1}n

|UP (y)− U(y)| = 2−n e
β − 1

eβ + 1
6 2−n

Thus, the uniform distribution is (2−n, 1)-metastable and the thesis follows from Lemma 3.2. �

In the next theorem we show that, if the chain starts from a state containing at least one 1, then
after O(log n) time steps the distribution of the chain is ε-close to the uniform distribution, and it stays
ε-close to uniform for exponential time.

Theorem 6.4 Let P be the transition matrix of the logit dynamics for the n-player OR-game, let U be
the uniform distribution over {0, 1}n, let x ∈ {0, 1}n with |x| = k > 1 be the starting state of the chain,
and let ε > 0, then it holds that

‖P t(x, ·)− U‖ 6 ε

for every time t such that n log(3n/ε) 6 t 6 ε2n−1.

Proof. Let {Xt} be the Markov chain starting at x and let {Yt} be a lazy random walk on the n-cube
starting at the uniform distribution, so that Xt is distributed according to P t(x, ·) and Yt is uniformly
distributed over {0, 1}n. Consider the following coupling (Xt, Yt): when chain {Xt} is at state y ∈ {0, 1}n

then choose a position i ∈ [n] u.a.r. and

• If |y| > 2 then4, choose an action a ∈ {0, 1} u.a.r. and update both chains Xt and Yt in position i
with action a;

• If |y| = 1 then

– if Xt has 0 in position i than proceed as in the previous case;

– if Xt has 1 in position i then

∗ update both chains at 0 in position i with probability 1/2;

∗ update both chains at 1 in position i with probability 1/(1 + eβ);

∗ update chain Xt at 0 and chain Yt at 1 in position i with probability
1/(1 + e−β)− 1/2.

• If |y| = 0 then

– update both chains at 0 in position i with probability 1/2;

– update both chains at 1 in position i with probability 1/(1 + eβ);

– update chain Xt at 0 and chain Yt at 1 in position i with probability
1/(1 + e−β)− 1/2.

By construction we have that (Xt, Yt) is a coupling of P
t(x, ·) and U , hence ‖P t(x, ·)−U‖ 6 Px,U (Xt 6= Yt).

Moreover observe that, if at time t all players have been selected at least once and chain Xt has not
yet hit profile 0 = (0, · · · , 0) ∈ {0, 1}n, then the two random variables Xt and Yt have the same value.
Hence

‖P t(x, ·)− U‖ 6 Px,U (Xt 6= Yt)

6 Px,U (τ0 6 t ∪ η < t)

6 Px,U (τ0 6 t) +Px,U (η < t)

4With |y| we mean the number of 1’s in profile y
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where τ0 is the hitting time of 0 for chain Xt, and η is the first time all players have been selected at
least once.

From the coupon collector’s argument it follows that for every t > n log(3n/ε)

Px,U (η < t) 6 ε/3 (16)

As for the second term observe that Px,U (τ0 6 t) 6 Pk (ρ0 6 t) where ρ0 is the hitting time of state 0
for the lazy Ehrenfest urn. More formally, consider the equivalence relation over Ω = {0, 1}n such that
two profiles x and y are equivalent if they have the same number of 1’s and let {Zt} be the projection
of chain {Xt} over the quotient space Ω# = {0, 1, . . . , n} of such equivalence relation. Then {Zt} is a
Markov chain with state space Ω# and transition matrix

P#(i, i− 1) =
i

2n
; P#(i, i) =

1

2
; P#(i, i+ 1) =

n− i

2n
; for i = 2, . . . , n (17)

and

P#(1, 0) =
1

n(1 + e−β)
6

1

n
P#(1, 1) =

n− 1

2n
+

1

n(1 + eβ)
P#(1, 2) =

n− 1

2n

The hitting time τ0 of state 0 ∈ Ω for chain {Xt} coincide with the hitting time ρ̂0 of state 0 ∈ Ω# for
the projection Zt.

Observe that, from the transition probabilities in (17), chain {Zt} is almost the lazy Ehrenfest urn,
the only difference being at states 1 and 0. Moreover, the transition from state 1 to state 0 in the Zt

holds with probability smaller than the probability of the same transition in the Ehrenfest urn. From
Lemmas 6.1 and 6.2 it follows that

Px,U (τ0 6 n logn+ n log(3/ε)) 6 c/n (18)

for a suitable constant c = c(ε). Hence, for t = n logn+ n log(3/ε), by combining (16) and (18) it holds
that

‖P t(x, ·)− U‖ 6
ε

3
+

c

n
6

ε

2

for n sufficiently large.
Since from Lemma 6.3 we have that the uniform distribution is (ε/2, ε2n−1)-metastable, the thesis

follows by applying Lemma 3.4. �

7 Conclusions and open problems

Logit dynamics is a clean and tractable dynamics that well models the behaviour of limited-rationality
players in a strategic game. The stationary distribution of the induced Markov chain is the natural
long-term equilibrium concept for games under logit dynamics. However, when the mixing time is long,
the behavior of the Markov chain in the transient phase becomes important and it is worth looking for
“regularities” at a time-scale shorter than mixing time. Such regularities have been previously explored,
for some classes of Markov chains, by means of “metastable states”. We believe that a more general and
useful concept is that of “metastable distributions”.

In this paper we defined a quantitative notion of metastable distribution and we analyzed the metasta-
bility properties of the logit dynamics for some classes of coordination games. We showed that, even
when the mixing time is exponential, it is possible to find some distributions that well-approximate the
distribution of the chain for a time-window of polynomial size. Such metastable distributions can be
found even in the case of the OR-game, where no partition of the state space in metastable states exists.
A natural open question is whether the metastability properties for coordination games we observed in
this paper hold in general for potential games.

In the case of the Ising model on the complete graph, we showed that when β > c logn/n the
two degenerate distributions are metastable for poly(n) time and they are quickly reached from a large
fraction of the state space. It would be interesting to investigate the metastability properties when 1/n <
β < logn/n. Indeed, in that range the mixing time is exponential but the distributions concentrated in
the two extremal states are not metastable.
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[28] Enzo Olivieri and Maria Eulália Vares. Large deviation and metastability. Cambridge University
Press, 2005.

[29] H. Peyton Young. Individual Strategy and Social Structure: An Evolutionary Theory of Institutions.
Princeton University Press, 1998.

[30] H. Peyton Young. The diffusion of innovations in social networks. Economics Working Paper Archive
number 437, Johns Hopkins University, Department of Economics, 2000.

34



Appendix

A Markov chain summary

In this section we recall some basic facts about Markov chains. Fore a more detailed description and for
notation conventions we refer the reader to [25].

Consider a Markov chain M with finite state space Ω and transition matrix P . It is a classical result
that if M is irreducible and aperiodic5 (i.e., ergodic) there exists an unique stationary distribution; that
is, a distribution π on Ω such that π · P = π.
The total variation distance ‖µ− ν‖TV between two probability distributions µ and ν on Ω is defined as

‖µ− ν‖TV = max
A⊂Ω

|µ(A)− ν(A)| =
1

2

∑

x∈Ω

|µ(x) − ν(x)| .

An irreducible and aperiodic Markov chain M converges to its stationary distribution π; specifically,
there exists 0 < α < 1 such that

d(t) 6 αt,

where
d(t) = max

x∈Ω

∥

∥P t(x, ·) − π
∥

∥

TV

and P t(x, ·) is the distribution at time t of the Markov chain starting at x. For 0 < ε < 1/2, the mixing
time is defined as

tmix(ε) = min{t ∈ N : d(t) 6 ε}.

It is usual to set ε = 1/4 or ε = 1/2e. If not explicitly specified, when we write tmix we mean tmix(1/4).
Observe that tmix(ε) 6 ⌈log2 ε

−1⌉tmix.

Coupling. A coupling of two probability distributions µ and ν on Ω is a pair of random variables
(X,Y ) defined on Ω × Ω such that the marginal distribution of X is µ and the marginal distribution
of Y is ν. A coupling of a Markov chain M with transition matrix P is a process (Xt, Yt)

∞
t=0 with the

property that both Xt and Yt are Markov chains with transition matrix P . When the two coupled chains
start at (X0, Y0) = (x, y), we write Px,y (·) and Ex,y [·] for the probability and the expectation on the
space where the two chains are both defined.
We denote by τcouple the first time the two chains meet; that is,

τcouple = min{t : Xt = Yt} .

We will consider only couplings of Markov chains with the property that for s > τcouple, it holds
Xs = Ys. The following theorem establish the importance of this tool (see, for example, Theorem 5.2 in
[25]).

Theorem A.1 (Coupling) Let M be a Markov chain with finite state space Ω and transition matrix
P . For each pair of states x, y ∈ Ω consider a coupling (Xt, Yt) of M with starting states X0 = x and
Y0 = y. Then

∥

∥P t(x, ·)− P t(y, ·)
∥

∥

TV
6 Px,y (τcouple > t) .

Consider a partial order � over the states in Ω. A coupling of a Markov chain is said to be monotone
w.r.t. (Ω,�) if, for every t > 0, Xt � Yt ⇒ Xt+1 � Yt+1. For a state z ∈ Ω, the hitting time τz of z is
the first time the chain is in state z, τz = inf{t : Xt = z}. The following theorem holds.

Lemma A.2 Let M be a Markov chain with finite state space Ω and transition matrix P . Let � be a
partial order over Ω. For each pair of states x, y ∈ Ω consider a coupling (Xt, Yt) of M with starting
states X0 = x and Y0 = y that is monotone w.r.t. (Ω,�). Moreover, suppose the ordered set (Ω,�) has
an unique maximum at z. Then

Px,y (τcouple > t) 6 2 ·max{Px (τz > t) ,Py (τz > t)} .

5Roughly speaking, a finite-state Markov chain is irreducible and aperiodic if there is a time t such that, for all pairs of

states x, y, the probability to be in y after t steps, starting from x, is positive.
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