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Abstract

We study logit dynamics [3] for strategic games. At every stage of the game a player is selected
uniformly at random and she plays according to a noisy best-response dynamics where the noise
level is tuned by a parameter β. Such a dynamics defines a family of ergodic Markov chains, indexed
by β, over the set of strategy profiles. Our aim is twofold: On the one hand, we are interested in the
expected social welfare when the strategy profiles are random according to the stationary distribution
of the Markov chain, because we believe it gives a meaningful description of the long-term behavior
of the system. On the other hand, we want to estimate how long it takes, for a system starting at
an arbitrary profile and running the logit dynamics, to get close to the stationary distribution; i.e.,
the mixing time of the chain.

In this paper we study the stationary expected social welfare for the 3-player CK game [5], for 2-
player coordination games (the same class of games studied in [3]), 2-player anti-coordination games,
and for a simple n-player game. For all these games, we give almost-tight upper and lower bounds
on the mixing time of logit dynamics.

1 Introduction

The evolution of a system is determined by its dynamics and complex systems are often described by
looking at the equilibrium states induced by their dynamics. Once the system enters an equilibrium state,
it stays there and thus it can be rightly said that an equilibrium state describes the long-term behavior
of the system. In this paper we are mainly interested in selfish systems whose individual components are
selfish agents. The state of a selfish system is fully described by a vector of strategies, each controlled by
one agent, and each state assigns a payoff to each agent. The agents are selfish in the sense that they
pick their strategy so to maximize their payoff, given the strategies of the other agents. The notion of
a Nash equilibrium is the classical notion of equilibrium for selfish systems and it corresponds to the
equilibrium induced by the best-response dynamics. The observation that selfish systems are described
by their equilibrium states (that is, by the Nash equilibria) has motivated the notion of Price of Anarchy
[14] (and Price of Stability [1]) and the efficiency analysis of selfish systems based on such notions.

The analysis based on Nash equilibria inherits some of the shortcomings of the concept of a Nash
equilibrium. First of all, the best-response dynamics assumes that the selfish agents have complete
knowledge of the current state of the system; that is, of the payoff associated with each possible choice
and of the strategies chosen by the other agents. Instead, in most cases, agents have only an approxi-
mate knowledge of the system state. Moreover, in presence of multiple equilibria, it is not clear which
equilibrium will be reached by the system as it may depend on the initial state of the system. The
notion of Price of Anarchy solves this problem by considering the worst case equilibrium whereas Price
of Stability focuses on the best case equilibrium. Finally, Nash equilibria are hard to compute [6, 4] and
thus for some system it might take very long to enter a Nash equilibrium. In this case using equilibrium
states to describe the system performance is not well justified. Rather, one would like to analyze the
performance of a system by using a dynamics (and its related equilibrium notion) that has the following
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three properties: the dynamics takes into account the fact that the system components might have a
perturbed or noisy knowledge of the system; the equilibrium state exists and is unique for every system;
independently from the starting state, the system enters the equilibrium very quickly.

In this paper, we consider noisy best-response dynamics in which the behavior of the agents is de-
scribed by a parameter β > 0 (β is sometimes called the inverse temperature). The case β = 0 corresponds
to agents picking their strategies completely at random (that is, the agents have no knowledge of the sys-
tem) and the case β =∞ corresponds to the best-response dynamics (in which the agents have full and
complete knowledge of the system). The intermediate values of β correspond to agents that are roughly
guided by the best-response dynamics but can make a sub-optimal response with some probability that
depends on β (and on the associated payoff). We will study a specific noisy best-response dynamics
for which the system evolves according to an ergodic Markov chain for all β > 0. For these systems,
it is natural to look at the stationary distribution (which is the equilibrium state of the Markov chain)
and to analyze the performance of the system at the stationary distribution. We stress that the noisy
best-response dynamics well models agents that only have approximate or noisy knowledge of the system
and that for ergodic Markov chains (such as the ones arising in our study) the stationary distribution is
known to exist and to be unique. Moreover, to justify the use of the stationary distribution for analyzing
the performance of the system, we will study how fast the Markov chain converges to the stationary
distribution.
Related Works and Our Results. Several dynamics, besides the best-response dynamics, and several
notions of equilibrium, besides Nash equilibria, have been considered to describe the evolution of a selfish
system and to analyze its performance. See, for example, [10, 19, 18].
Equilibrium concepts based on the best-response. In case the game does not possess a Pure Nash equilib-
rium, the best-response dynamics will eventually cycle over a set of states (in a Nash equilibrium the set
is a singleton). These states are called sink equilibria [11]. Sink equilibria exist for all games and, in some
context, they seem a better approximation of the real setting than mixed Nash equilibria. Unfortunately,
sink equilibria share two undesirable properties with Nash equilibria: a game can have more that one sink
equilibrium and sink equilibria seem hard to compute [8]. Other notions of equilibrium state associated
with best-response dynamics are the unit-recall equilibria and component-wise unit-recall equilibria (see
[8]). We point out though that the former does not always exist and that the latter imposes too strict
limitations on the players.
No-Regret Dynamics. Another broadly explored set of dynamics are the no-regret dynamics (see, for
example, [10]). The regret of a user is the difference between the long term average cost and average
cost of the best strategy in hindsight. In the no-regret dynamics the regret of every player after t step
is o(t) (sublinear with time). In [9, 13] it is showed that the no-regret dynamics converges to the set
of Correlated Equilibria. Note that the convergence is to the set of Correlated Equilibria and not to a
specific correlated equilibrium.
Our work. In this paper we consider a specific noisy best-response dynamics called the logit dynamics
(see [3]) and we study its mixing time (that is, the time it takes to converge to the stationary distribution)
for various games. Specifically,

• We start by analyzing the logit dynamics for a simple 3-player linear congestion game (the CK
game [5]) which exhibits the worst Price of Anarchy among linear congestion games. We show
that the convergence time to stationarity of the logit dynamics is upper bounded by a constant
independent of β. Moreover, we show that the expected social cost at stationarity is smaller than
the cost of the worst Nash equilibrium for all β.

• We then study the 2 × 2 coordination games studied by [3]. Here we show that, under some
conditions, the expected social welfare at stationarity is better than the social welfare of the worst
Nash equilibrium. We give exponential in β upper and lower bounds on the convergence time to
stationarity for all values of β. We also study anti-coordination games and we show that, under
some conditions, the logit dynamics guarantees each player a utility greater than the one of the
worst Nash equilibrium.

• Finally, we apply our analysis to a simple n-player game, the OR-game, and give upper and lower
bound on the convergence time to stationarity. In particular, we prove that for β = O(log n) the
convergence time is polynomial in n.
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The logit dynamics has been first studied by Blume [3] who showed that, for 2× 2 games, the long-term
behaviour of the Markov chain is concentrated in the risk dominant equilibrium (see [12]) for sufficiently
large β. Ellison [7] studied different noisy best-response dynamics for 2 × 2 games and assumed that
interaction among players were described by a graph; that is, the utility of a player is determined only by
the strategies of the adjacent players. Specifically, Ellison [7] studied interaction modeled by rings and
showed that some large fraction of the players will eventually choose the risk dominant strategy. Similar
results were obtained by Peyton Young [20] for the logit dynamics and for more general families of graphs.
Montanari and Saberi [16] gave bounds on the hitting time of the risk dominant equilibrium states for
the logit dynamics in terms of some graph theoretic properties of the underlying interaction network.
Asadpour and Saberi [2] studied the hitting time for a class of congestion games. We notice that none
of [3, 7, 20] gave any bound on the convergence time to the risk dominant equilibrium. Montanari and
Saberi [16] were the first to do so but their study focuses on the hitting time of a specific configuration.

From a technical point of view, our work follows the lead of [3, 7, 20] and extends their technical
findings by giving bounds on the mixing time of the Markov chain of the logit dynamics. We stress
that previous results only proved that, for sufficiently large β, eventually the system concentrates around
certain states without further quantifying the rate of convergence nor the asymptotic behaviour of the
system for small values of β. Instead, we identify the stationary distribution of the logit dynamics as the
global equilibrium and we evaluate the social welfare at stationarity and the time it takes the system to
reach it (the mixing time) as explicit functions of the inverse temperature β of the system.

We choose to start our study from the class of coordination games considered in [3] for which we give
tight upper and lower bound on the mixing time and then look also at other 2-player games and a simple
n-player game (the OR-game). Despite its game-theoretic simplicity, the analytical study of the mixing
time of the Markov chain associated with the OR-game as a function of β is far from trivial. Also we
notice that the results of [16] cannot be used to derive upper bounds on the mixing time as in [16] the
authors give a tight estimation of the hitting time only for a specific state of the Markov chain. The
mixing time instead is upper bounded by the maximum hitting time.

From a more conceptual point of view, our work tries (similarly to [11, 8, 17]) to introduce a solution
concept that well models the behaviour of selfish agents, is uniquely defined for any game and is quickly
reached by the game. We propose the stationary distribution induced by the logit dynamics as a possible
solution concept and exemplify its use in the analysis of the performance of some 2 × 2 games (as the
ones considered in [3, 7, 20]), in games used to obtain tight bounds on the Price of Anarchy and on a
simple multiplayer game.

Organization of the paper. In Section 2 we formally describe the logit dynamics Markov chain for
a strategic game. We also describe the coupling we will repeatedly use in the proofs of the upper bounds
on mixing times. In Sections 3, 4, and 5 we study the stationary expected social welfare and the mixing
time of the logit dynamics for CK game, coordination and anti-coordination games, and the OR-game
respectively. Finally, in Section 6 we present conclusions and some open problems.
Notation. We write S for the complementary set of a set S, we write |S| for its size. We use bold
symbols for vectors, when x = (x1, . . . , xn) ∈ {0, 1}n we write |x| for the number of 1s in x; i.e.,
|x| = |{i ∈ [n] : xi = 1}|. We use the standard game theoretic notation (x−i, y) to mean the vector
obtained from x by replacing the i-th entry with y, i.e. (x−i, y) = (x1, . . . , xi−1, y, xi+1, . . . , xn). We use
standard Markov chain terminology (see [15]) and review the needed technical facts in Appendix A.

2 The Model and the problem

A strategic game is a triple ([n],S,U), where [n] = {1, . . . , n} is a finite set of players, S = {S1, . . . , Sn}
is a family of non-empty finite sets (Si is the set of strategies for player i), and U = {u1, . . . , un} is a
family of utility functions (or payoffs), where ui : S1 × · · · × Sn → R is the utility function of player i.
Consider the following noisy best-response dynamics, introduced in [3] and known as logit dynamics: At
every time step

1. Select one player i ∈ [n] uniformly at random;
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2. Update the strategy of player i according to the following probability distribution over the set Si
of her strategies. For every y ∈ Si

σi(y |x) =
1

Ti(x)
eβui(x−i,y) (1)

where x ∈ S1×· · ·×Sn is the strategy profile played at the current time step, Ti(x) =
∑
z∈Si e

βui(x−i,z)

is the normalizing factor, and β > 0 is the inverse noise.

From (1) it is easy to see that, for β = 0 player i selects her strategy uniformly at random, for β > 0 the
probability is biased toward strategies promising higher payoffs, and for β →∞ player i chooses her best
response strategy (if more than one best response is available, she chooses uniformly at random one of
them). Moreover observe that probability σi(y |x) does not depend on the strategy xi currently adopted
by player i.
The above dynamics defines an ergodic finite Markov chain with the set of strategy profiles as state
space, and where the transition probability from profile x = (x1, . . . , xn) to profile y = (y1, . . . , yn) is
zero if the two profiles differ at more than one player and it is 1

nσi(yi |x) if the two profiles differ exactly
at player i. More formally, we have the following definition.

Definition 1 (Logit dynamics [3]) Let G = ([n],S,U) be a strategic game and let β > 0 be the inverse
noise. The logit dynamics for G is the Markov chain Mβ = {Xt : t ∈ N} with state space Ω =
S1 × · · · × Sn and transition matrix

P (x,y) =
1
n

n∑
i=1

eβui(x−i,yi)

Ti(x)
I{yj=xj for every j 6=i} (2)

It is easy to see that, if ([n],S,U) is a potential game with exact potential Φ, then the Markov chain
given by (2) is reversible and its stationary distribution is the Gibbs measure

π(x) =
1
Z
eβΦ(x) (3)

where Z =
∑

y∈S1×···×Sn e
βΦ(y) is the normalizing constant (the partition function in physicists’ lan-

guage). Except for the Matching Pennies example in Subsection 2.1, all the games we analyse in this
paper are potential games.
Let W : S1 × · · · × Sn −→ R be a social welfare function (in this paper we assume that W is simply
the sum of all the utility functions W (x) =

∑n
i=1 ui(x), but clearly any other function of interest can be

analysed). We study the stationary expected social welfare, i.e. the expectation of W when the strategy
profiles are random according to the stationary distribution π of the Markov chain,

Eπ [W ] =
∑

x∈S1×···×Sn

W (x)π(x)

Since the Markov chain defined in (2) is irreducible and aperiodic, from every initial profile x the
distribution P t(x, ·) of chain Xt starting at x will eventually converge to π as t tends to infinity. We will
be interested in the mixing time tmix of the chain, i.e. the time needed to have that P t(x, ·) is close to
π for every initial configuration x. More formally, we define

tmix(ε) = min
t∈N

max
x∈Ω

{
‖P t(x, ·)− π‖TV 6 ε

}
where ‖P t(x, ·) − π‖TV = 1

2

∑
y∈Ω |P t(x,y) − π(y)| is the total variation distance, and we set tmix =

tmix(1/4).

2.1 An example: Matching Pennies

As an example consider the classical Matching Pennies game.

H T

H +1, −1 −1, +1
T −1, +1 +1, −1

(4)
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The update probabilities (1) for the logit dynamics are, for every x ∈ {H, T}

σ1(H | (x,H)) = σ1(T | (x, T )) = 1
1+e−2β = σ2(T | (H,x)) = σ2(H | (T, x))

σ1(T | (x,H)) = σ1(H | (x, T )) = 1
1+e2β

= σ2(H | (H,x)) = σ2(T | (T, x))

So the transition matrix (2) is

P =


HH HT TH TT

HH 1/2 b/2 (1− b)/2 0
HT (1− b)/2 1/2 0 b/2
TH b/2 0 1/2 (1− b)/2
TT 0 (1− b)/2 b/2 1/2


Where we named b = 1

1+e−2β for readability sake.
Since every column of the matrix adds up to 1, the uniform distribution π over the set of strategy

profiles is the stationary distribution for the logit dynamics. The expected stationary social welfare is
thus 0 for every inverse noise β.

As for the mixing time, it is easy to see that it is upper bounded by a constant independent of β.
Indeed, a direct calculation shows that, for every x ∈ {HH, HT, TH, TT} and for every β > 0 it holds
that

‖P 3(x, ·)− π‖tv 6
7
16

<
1
2

2.2 Coupling

Throughout the paper we will use the path-coupling technique (see Theorem 20 in the Appendix) to give
upper bounds on mixing times. Since we will use the same coupling idea in several proofs, we describe
it here and we will refer to this description when we will need it.

For a game ([n],S,U) let us define the Hamming graph G = (Ω, E) of the game where Ω = S1×· · ·×Sn
is the set of strategy profiles, and two profiles x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Ω are adjacent if they
differ only for the strategy of one player, i.e.

{x,y} ∈ E ⇐⇒ |{j ∈ [n] : xj 6= yj}| = 1 (5)

For every edge {x,y} ∈ E we define a coupling (X,Y ) of the two probability distributions P (x, ·) and
P (y, ·) where P is the transition matrix defined in (2). The coupling proceeds as follows: Pick i ∈ [n]
uniformly at random. If i = j then, since x−i = y−i, it holds that σi(· |x) = σi(· |y), hence we can set
the same value for X and Y according to distribution σi(· |x). More formally, for every z1, z2 ∈ Si we
set

Px,y (X = (x−i, z1) and Y = (y−i, z2)) =

{
0 if z1 6= z2

σi(z |x) = σi(z |y) if z1 = z2 =: z

If i 6= j then we cannot always use the same strategy for player i because σi(z |x) and σi(z |y) may be
different, so we use a standard way to couple them: consider two copies IX , IY of the interval [0, 1].
Intuition box. We want to partition the two intervals IX and IY in little sub-intervals labeled with the
strategies for player i, in a way that, for every z ∈ Si, the sum of the lengths of sub-intervals of IX
labeled z is σi(z |x), and the sum of the lengths of sub-intervals of IY labeled z is σi(z |y). Indeed,
in this way if we name JX(z) the union of the sub-intervals of IX with label z and JY (z) the union
of the the sub-intervals of IY with label z, and if U is a random variable uniform over [0, 1], we have
that P (U ∈ JX(z)) = σi(z |x) and P (U ∈ JY (z)) = σi(z |y). Moreover, we want JX(·) and JY (·) to
“overlap” as much as possible, so that both X and Y have the same strategy for player i as many times
as possible.

Order the strategies for player i arbitrarily, say Si = {z1, . . . , z|Si|}. For k = 1, . . . , |Si|, label with zk an
interval of length min{σi(zk |x), σi(zk |y)} on the leftmost side (not yet labeled) of both IX and IY . If
σi(zk |x) > σi(zk |y) then label with zk also an interval of length σi(zk |x)− σi(zk |y) on the rightmost
side (not yet labeled) of IX , otherwise (if σi(zk |x) < σi(zk |y)) label with zk also an interval of length
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σi(zk |y) − σi(zk |x) on the rightmost side (not yet labeled) of IY . At the end of this procedure, both
the intervals IX and IY are partitioned into sub-intervals labeled with the strategies of Si. Let us name
hX : IX → Si and hY : IY → Si the functions that for a point s ∈ [0, 1] return the labels hX(s) and
hY (s) of the sub-intervals at which s belongs to in IX and IY respectively. Moreover, observe that there
is a point r ∈ (0, 1) such that hX(s) = hY (s) for every s 6 r and hX(s) 6= hY (s) for every s > r.

Now let U be a uniform random variable over the interval [0, 1], and define (X,Y ) = (hX(U), hY (U)).
By construction we have that (X,Y ) is a coupling of P (x, ·) and P (y, ·).

3 Warm up: A 3-player congestion game

In this section we study the CK game, a simple 3-player linear congestion game introduced in [5] that
exhibits the worst Price of Anarchy of the average social welfare among linear congestion games with 3
or more players. This game has two equilibria: one with social welfare −6 (which is also optimal) and
one with social welfare −15. As we shall see briefly, the stationary expected social welfare of the logit
dynamics is always larger than the social welfare of the worst Nash equilibrium and, for large enough β,
players spend most of the time in the best Nash equilibrium. Moreover, we will show that the mixing
time of the logit dynamics is bounded by a constant independent of β; that is, the stationary distribution
guarantees a good social welfare and it is quickly reached by the system.

Let us now describe the CK game. We have 3 players and 6 facilities divided into two sets: G =
{g1, g2, g3} and H = {h1, h2, h3}. Player i ∈ {0, 1, 2} has two strategies: Strategy “0” consists in selecting
facilities (gi, hi); Strategy “1” consists in selecting facilities (gi+1, hi−1, hi+1) (index arithmetic is modulo
3). The cost of a facility is the number of players choosing such facility, and the welfare of a player is
minus the sum of the costs of the facilities she selected. It easy to see that this game has two pure Nash
equilibria: when every player plays strategy 0 (each player pays 2, which is optimal), and when every
player plays strategy 1 (each player pays 5). The game is a congestion game, and thus a potential game
with following potential function:

Φ(x) =
∑

j∈G∪H

Lx(j)∑
i=1

i

where Lx(j) is the number of players using facility j in configuration x.

Stationary expected social welfare. The logit dynamics for this game gives the following update
probabilities (see Equation 1)

σi(0 | |x−i| = 0) = 1
1+e−4β σi(1 | |x−i| = 0) = 1

1+e4β

σi(0 | |x−i| = 1) = 1
1+e−2β σi(1 | |x−i| = 1) = 1

1+e2β

σi(0 | |x−i| = 2) = 1
2 σi(1 | |x−i| = 2) = 1

2

It is easy to check that the following distribution is stationary for the logit dynamics:

π[(0, 0, 0)] = e−6β

Z(β)

π[(0, 0, 1)] = π[(0, 1, 0)] = π[(1, 0, 0)] = e−10β

Z(β)

π[(0, 1, 1)] = π[(1, 1, 0)] = π[(1, 0, 1)] = π[(1, 1, 1)] = e−12β

Z(β)

where Z(β) = e−6β + 3e−10β + 4e−12β . Let k be the number of players playing strategy 1; the social
welfare is −6 when k = 0, it is −13 if k = 1, it is −16 if k = 2, and −15 when k = 3. Thus the stationary
expected social welfare is

Eπ [W ] = −6e−6β + 39e−10β + (48 + 15)e−12β

e−6β + 3e−10β + 4e−12β
= −3[2 + 13e−4β + 21e−6β ]

1 + 3e−4β + 4e−6β
.

For β = 0, we have Eπ [W ] = −27/2 which is better than the social welfare of the worst Nash equilibrium.
As β tends to ∞, Eπ [W ] approaches the optimal social welfare. Furthermore, we observe that Eπ [W ]
increases with β and thus we can conclude that the long-term behavior of the logit dynamics gives a
better social welfare than the worst Nash equilibrium for any β > 0.
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Mixing time. Now we study the mixing time of the logit dynamics and we show that it is bounded
by a constant for any β > 0.

Theorem 2 (Mixing time) There exists a constant τ such that the mixing time tmix of the logit dy-
namics of the CK game is upper bounded by τ for every β > 0.

Proof. Observe that σi(0 |x) > 1/2 for every player i, every profile x, and every inverse temperature
β. Hence, if Xt and Yt are two copies of the Logit dynamics Markov chain starting in states x and y
respectively, we can define a coupling of the two chains with the following properties: At every step we
choose the same player in both chains, and such player chooses strategy 0 in both chains with probability
at least 1/2.

Now consider the probability that after three steps the two chains have coupled. It is at least as large
as the probability that we choose three different players and all of them play strategy 0 at their turn, i.e.

Px,y (X3 = Y3) >
1
2
· 1

3
· 1

6
=

1
36

Since this bound holds for every starting pair (x,y), we have that the probability the two chains have
not yet coupled after 3t steps is

Px,y (X3t 6= Y3t) 6
(

1− 1
36

)t
6 e−t/36

The thesis follows from the well-known upper bound on the total variation distance by coupling time
(e.g., see Theorem 5.2 in [15]). �

4 Two player games

In this section we analyse the performance of the logit dynamics for 2× 2 coordination games (the same
class studied in [3]) and 2× 2 anti-coordination games .

4.1 Coordination games

Coordination Games are two-player games in which the players have an advantage in selecting the same
strategy. They are often used to model the spread of a new technology [20]: two players have to decide
whether to adopt or not a new technology. We assume that the players would prefer choosing the same
technology and that choosing the new technology is risk dominant.

We analyse the mixing time of the logit dynamics for 2 × 2 coordination games and compute the
stationary expected social welfare of the game as a function of β. We show that, for large enough β,
players will spend most of the time in the risk dominant equilibrium and the expected utility is better
than the one associated with the worst Nash equilibrium.

We denote by 0 the NEW strategy and by 1 the OLD strategy. The game is formally described by the
following payoff matrix

0 1
0 (a, a) (c, d)
1 (d, c) (b, b)

(6)

We assume that a > d and b > c (meaning that they prefer to coordinate) and that a − d > b − c
(meaning that strategy 0 is the risk dominant strategy for each player). Notice that we do not make any
assumption on the relation between a and b. It is easy to see that this game is a potential game and the
following function is an exact potential for it:

Φ(0, 0) = a− d Φ(0, 1) = Φ(1, 0) = 0 Φ(1, 1) = b− c.

This game has two pure Nash equilibria: (0, 0), where each player has utility a, and (1, 1), where each
player has utility b. As d+ c < a+ b, the social welfare is maximized in correspondence of one the two
equilibria and the Price of Anarchy is equal to max{b/a, a/b}.
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Stationary expected social welfare. The logit dynamics for the game defined by the payoffs in
Table 6 gives the following update probabilities for any strategy x ∈ {0, 1} (see Equation (1))

σ1(0 | (x, 0)) = σ2(0 | (0, x)) = 1
1+e−(a−d)β σ1(1 | (x, 0)) = σ2(1 | (0, x)) = 1

1+e(a−d)β

σ1(0 | (x, 1)) = σ2(0 | (1, x)) = 1
1+e(b−c)β

σ1(1 | (x, 1)) = σ2(1 | (1, x)) = 1
1+e−(b−c)β .

Theorem 3 (Expected social welfare) The stationary expected social welfare Eπ [W ] of the logit dy-
namics for the coordination game is

Eπ [W ] = 2 · a+ be−((a−d)−(b−c))β + (c+ d)e−(a−d)β

1 + e−((a−d)−(b−c))β + 2e−(a−d)β
.

Proof. The stationary distribution π of the logit dynamics is

π(0, 0) =
e(a−d)β

Z(β)
π(1, 1) =

e(b−c)β

Z(β)
π(0, 1) = π(1, 0) =

1
Z(β)

where Z(β) = e(a−d)β + e(b−c)β + 2. Observe that the probability that at the stationary distribution the
players are in one of the two states that are not Nash equilibria, (0, 1) or (1, 0), is 1

2 for β = 0, (that is
when players randomly select their strategies) and it goes down to 0 as β increases.

We compute the expected utility Eπ [ui] of player i at the stationary distribution from which we
obtain the expected social welfare Eπ [W ] as Eπ [W ] = 2 ·Eπ [ui].

Eπ [ui] =
∑

x∈{0,1}2 ui(x)π(x)

= ae(a−d)β+be(b−c)β+c+d
e(a−d)β+e(b−c)β+2

= a+be−(a−d−b+c)β+(c+d)e−(a−d)β

1+e−(a−d−b+c)β+2e−(a−d)β

(7)

�
The following observation 4 gives conditions on β and the players’ utility for which the expected

social welfare Eπ [W ] obtained by the logit dynamics is better than the social welfare SWN of the worst
Nash Equilibrium.

Observation 4 For the coordination game described in Table 6, we have

• if a > b and b 6 max{a+c+d
3 , c+d2 } then Eπ [W ] > SWN for all β;

• if a > b and b > max{a+c+d
3 , c+d2 } then Eπ [W ] > SWN for all sufficiently large β;

• if a < b and a 6 max{ b+c+d3 , c+d2 } then Eπ [W ] > SWN for all β;

• if a < b and a > max{ b+c+d3 , c+d2 } then Eπ [W ] > SWN for all sufficiently large β;

• if a = b then Eπ [W ] < SWN for any β, a, c and d.

Proof. We consider first the case a > b in which case the worst Nash Equilibrium is (1, 1) with social
welfare 2b. It is easy to see that if b 6 a+c+d

3 or b 6 c+d
2 , then Eπ [ui] > b and thus Eπ [W ] > SWN .

Otherwise, we observe that
(a− b)− (2b− c− d)e−(a−d)β

1 + e−(a−d−b+c)β + 2e−(a−d)β
> 0

for
β >

1
a− d

log
2b− c− d
a− b

.

Consider now the case a < b; that is when the social welfare of the risk dominant equilibrium (0, 0) is
lower than at equilibrium (1, 1). In this case, the expected utility of the players goes down to the utility
of the worst Nash equilibrium, as β grows. However, as before, we can see that when 3a 6 b+ c+ d or
2a 6 c+ d then Eπ [ui] is always greater than a. Moreover, the condition holds for β > 1

b−c log 2a−c−d
b−a .

Finally, consider the case a = b. In this case, it is easy to see that for any β we have that Eπ [ui] < a
(since we are assuming a > d and b > c). Then the expected social welfare obtained by our dynamics is
always worse than the social welfare of the Nash Equilibrium. �
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Mixing time. Now we study the mixing time of the logit dynamics for coordination games and we
show that it is exponential in β.

Theorem 5 (Mixing Time) The mixing time of the logit dynamics with parameter β for the coordi-
nation game of Table 6 is Θ

(
e(b−c)β).

Proof. Upper bound: We apply the Path Coupling technique (see Theorem 20 in Appendix A) with the
Hamming graph defined in (5) and all the edge-weights set to 1. Let x and y be two profiles differing
only for the player j and consider the coupling defined in Section 2.2 for this pair of profiles. Now we
bound the expected distance of the two coupled chains after one step.

We denote by bi(x,y) the probability that both chains perform the same update given that player i
has been selected for strategy update. Clearly, bj(x,y) = 1. For i 6= j, we have

bi(x,y) = min{σi(0 | x), σi(0 | y)}+ min{σi(1 | x), σi(1 | y)}

=
1

1 + e(a−d)β
+

1
1 + e(b−c)β (8)

For sake of compact notation we set

p =
1

1 + e(a−d)β
and q =

1
1 + e(b−c)β

and thus bi(x,y) = p + q. To compute Ex,y [ρ(X1, Y1)], we observe that the logit dynamics chooses
player j with probability 1/2. In this case, we have bj(x,y) = 1 and thus the coupling updates both
chains in the same way, resulting in X1 = Y1. Similarly, player i 6= j is chosen for strategy update with
probability 1/2. In this case, with probability bi(x,y) the coupling performs the same update in both
chains resulting in ρ(X1, Y1) = 1. Instead with probability 1 − bi(x,y), the coupling performs different
updates on the chains resulting in ρ(X1, Y1) = 2. Therefore we have,

Ex,y [ρ(X1, Y1)] =
1
2
bi(x,y) + 2 · 1

2
(1− bi(x,y))

= 1− 1
2
bi(x,y) = 1− 1

2
(p+ q) 6 e−

1
2 (p+q).

From Theorem 20, with α = 1
2 (p+ q) and diam(Ω) = 2, it follows that

tmix(ε) 6
2 (log 2 + log(1/ε))

p+ q
=

1
p+ q

log
4
ε2

(9)

Lower bound: We use the relaxation time bound (see Theorem 22 in Appendix A). The transition matrix
of the logit dynamics is

P =


00 01 10 11

00 1− p p/2 p/2 0

01 1−p
2

p+q
2 0 1−q

2

10 1−p
2 0 p+q

2
1−q

2

11 0 q/2 q/2 1− q


It is easy to see that the second largest eigenvalue of P is λ? = (1−p)+(1−q)

2 , hence the relaxation time is
trel = 1/(1− λ?) = 2

p+q , and for the mixing time we have

tmix(ε) > (trel − 1) log
1
2ε

=
2− (p+ q)
p+ q

log
1
2ε

>
1

p+ q
log

1
2ε

(10)

In the last inequality we used that p and q are both smaller than 1/2. The theorem follows by observing
that

1
p+ q

=
1

1
1+e(a−d)β

+ 1
1+e(b−c)β

= Θ
(
e(b−c)β

)

9
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We observe that the upper bound on the mixing time obtained using the relaxation time (see Theo-

rem 22 in Appendix A) is not tight, hence in the above proof we had to resort to the path coupling for
the upper bound.

4.2 Anti-coordination games

Anti-coordination games are two-player games in which the players have an advantage in selecting differ-
ent strategies. They model many settings where there is a common and exclusive resource: two players
have to decide whether to use the resource or to drop it. If they both try to use it, then a deadlock
occurs and this is bad for both players. Moreover, they prefer to use the resource.

We analyze the mixing time of the logit dynamics for 2× 2 anti-coordination games and we compute
the expected social welfare of the game as a function of β. It turns out that the stationary expected
social welfare is fair (every player has the same expected utility) whereas Nash equilibria are unfair.
Moreover, the stationary expected social welfare tends to the social welfare of the Nash equilibria.

We denote by 0 the USE strategy and by 1 the DROP strategy. The game is formally described in the
following payoff matrix

0 1
0 (a, a) (d, c)
1 (c, d) (b, b)

(11)

We assume that c > a and d > b (meaning that players prefer not to choose the same strategy), and that
c − a > d − b (meaning that strategy 0 is the risk dominant action for each player). Notice that we do
not make any assumption of the relation between c and d. It is easy to see that the following function
is an exact potential for this game:

Φ(0, 0) = a− c Φ(0, 1) = Φ(1, 0) = 0 Φ(1, 1) = b− d.

This game has two pure Nash equilibria: (0, 1) and (1, 0). Note that Nash Equilibria are unfair, as one
player has utility max{c, d} and the other min{c, d}.

Stationary expected social welfare. The logit dynamics for the game defined by the payoffs in
Table 11 gives the following update probabilities for any strategy x ∈ {0, 1} (see Equation (1))

σ1(0 | (x, 0)) = σ2(0 | (0, x)) = 1
1+e(c−a)β

σ1(1 | (x, 0)) = σ2(1 | (0, x)) = 1
1+e−(c−a)β

σ1(0 | (x, 1)) = σ2(0 | (1, x)) = 1
1+e−(d−b)β σ1(1 | (x, 1)) = σ2(1 | (1, x)) = 1

1+e(d−b)β
.

Theorem 6 (Expected social welfare) The stationary expected social welfare Eπ [W ] of the logit dy-
namics for the anti-coordination game is

Eπ [W ] = 2 ·Eπ [ui] = 2 · c+ d+ ae(a−c)β + be(b−d)β

2 + e(a−c)β + e(b−d)β

Proof. The stationary distribution of this Markov chain is

π(0, 0) = e(a−c)β

Z(β)

π(1, 1) = e(b−d)β

Z(β)

π(0, 1) = π(1, 0) = 2
Z(β)

where Z(β) = e(a−c)β + e(b−d)β + 2. Observe that the probability that at the stationary distribution the
players are in one of the two states that are not Nash equilibria, (0, 0) or (1, 1) is 1

2 for β = 0, that is
when players select randomly the strategy to play and it goes down to 0 as β increases. The expected
utility is the same for every player i ∈ {0, 1}

Eπ [ui] =
∑

x∈{0,1}2
ui(x)π(x) =

c+ d+ ae(a−c)β + be(b−d)β

2 + e(a−c)β + e(b−d)β
(12)
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Observe that Eπ [ui] 6 c+d

2 and thus Eπ [W ] 6 c+ d. In other words, for all β, the stationary expected
social welfare is worse than the one guaranteed by a Nash equilibrium. On the other hand, for sufficiently
large β we have that Eπ [ui] > min{c, d}. That is, in the logit dynamics each player expects to gain more
than in the worst Nash equilibrium.

Now we study the mixing time of the logit dynamics and we show that it is exponential in β. The
proof is similar to the one of Theorem 5 and it is omitted.

Theorem 7 (Mixing time) The mixing time of the logit dynamics with parameter β for the anti-
coordination game in Table 11 is Θ(e(d−b)β).

5 A simple n-players game: OR-game

In this section we consider the following simple n-player potential game that we here call OR-game.
Despite its simplicity, the analysis of the mixing time is far from trivial. For the upper bound we use the
path coupling techniques on the Hamming graph with carefully chosen edge weights. Every player has
two strategies, say {0, 1}, and each player pays the OR of the strategies of all players (including herself).
More formally, the utility function of player i ∈ [n] is

ui(x) =
{

0, if x = 0;
−1, otherwise.

Notice that the OR-game has 2n − n Nash equilibria. The only profiles that are not Nash equilibria are
the n profiles with exactly one player playing 1. Nash equilibrium 0 has social welfare 0, while all the
others have social welfare −n.

In Theorem 8 we show that the stationary expected social welfare is always better than the social
welfare of the worst Nash equilibrium, and it is significantly better for large β. Unfortunately, in
Theorem 9 we show that, if β is large enough to guarantee a good stationary expected social welfare,
then the time needed to get close to the stationary distribution is exponential in n. Finally, in Theorem 10
we give upper bounds on the mixing time showing that, if β is relatively small then the mixing time is
polynomial in n, while for large β the upper bound is exponential in n and it is almost-tight with the
lower bound.

Theorem 8 (Expected social welfare) The stationary expected social welfare of the logit dynamics
for the OR-game is Eπ [W ] = −αn where α = α(n, β) = (2n−1)e−β

1+(2n−1)e−β
.

Proof. Observe that the OR-game is a potential game with exact potential Φ where Φ(0) = 0 and
Φ(x) = −1 for every x 6= 0. Hence, the stationary distribution is

π(x) =

{
1/Z, if x = 0;

e−β/Z, if x 6= 0;

where the normalizing factor is Z = 1 + (2n − 1)e−β . The expected social welfare is thus

Eπ [W ] =
∑

x∈{0,1}n
W (x)π(x) = −n · (2n − 1)e−β

1 + (2n − 1)e−β
.

�
In the next theorem we show that the mixing time can be polynomial in n only if β 6 c log n for some
constant c.

Theorem 9 (Lower bound on mixing time) The mixing time of the logit dynamics for the OR-
game is

1. Ω(eβ) if β < log(2n − 1);

2. Ω(2n) if β > log(2n − 1).

11



Proof. Consider the set S ⊆ {0, 1}n containing only the state 0 = (0, . . . , 0) and observe that π(0) 6 1/2
for β 6 log(2n − 1). The bottleneck ratio is

Φ(0) =
1

π(0)

∑
y∈{0,1}n

π(0)P (0,y) =
∑

y∈{0,1}n : |y|=1

P (0,y) = n · 1
n

1
1 + eβ

Hence the mixing time is

tmix >
1

Φ(0)
= 1 + eβ

When β > log(2n− 1) consider the set R ⊆ {0, 1}n containing all states except state 0, and observe that

π(R) =
1
Z

(2n − 1)e−β =
(2n − 1)e−β

1 + (2n − 1)e−β

and it is less than 1/2 for β > log(2n − 1). It holds that

Q(R,R) =
∑
x∈R

π(x)P (x,0) =
∑

x∈{0,1}n : |x|=1

π(x)P (x,0) = n
e−β

Z

1
n

1
1 + e−β

The bottleneck ratio is

Φ(R) =
Q(R,R)
π(R)

=
Z

(2n − 1)e−β
e−β

Z

1
1 + e−β

=
1

(2n − 1)(1 + e−β)
<

1
2n − 1

Hence the mixing time is

tmix >
1

Φ(R)
> 2n − 1

�

In the next theorem we give upper bounds on the mixing time depending on the value of β. The theorem
shows that, if β 6 c log n for some constant c, the mixing time is effectively polynomial in n with degree
depending on c. The use of the path coupling technique in the proof of the theorem requires a careful
choice of the edge-weights.

Theorem 10 (Upper bound on mixing time) The mixing time of the logit dynamics for the OR-
game is

1. O(n log n) if β < (1− ε) log n, for an arbitrary small constant ε > 0;

2. O(nc+3 log n) if β 6 c log n, where c > 1 is an arbitrary constant.

Moreover the mixing time is O(n5/22n) for every β.

Proof. We apply the path coupling technique (see Theorem 20 in Appendix A) with the Hamming graph
defined in (5). Let x,y ∈ {0, 1}n be two profiles differing at only one player j ∈ [n], without loss of
generality let us assume |x| = k − 1 and |y| = k for some k = 1, . . . , n. We set the weight of edge {x,y}
depending only on k, i.e. `({x,y}) = δk where δk > 1 will be chosen later. Consider the coupling defined
in Subsection 2.2.

Now we evaluate the expected distance after one step Ex,y [ρ(X1, Y1)] of the two coupled chains
(Xt, Yt) starting at (x,y). Let i be the player chosen for the update. Observe that if i = j, i.e. if we
update the player where x and y are different (this holds with probability 1/n), then the distance after
one step is zero, otherwise we distinguish four cases depending on the value of k.
Case k = 1: In this case profile x is all zeros and profile y has only one 1 and the length of edge {x,y}
is `(x,y) = δ1. When choosing a player i 6= j (this happens with probability (n− 1)/n), at the next step
the two chains will be at distance δ1 (if in both chains player i chooses strategy 0, and this holds with
probability min{σi(0 |x), σi(0 |y)}), or at distance δ2 (if in both chains player i chooses strategy 1, and
this holds with probability min{σi(1 |x), σi(1 |y)}), or at distance δ1 + δ2 (if player i chooses strategy
0 in chain X1 and strategy 1 in chain Y1, and this holds with the remaining probability). Notice that,
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from the definition of the coupling, it will never happen that player i chooses strategy 1 in chain X1 and
strategy 0 in chain Y1, indeed we have that

min{σi(0 |x), σi(0 |y)} = σi(0 |y) =
1
2

and min{σi(1 |x), σi(1 |y)} = σi(1 |x) =
1

1 + eβ
(13)

Hence the expected distance after one step is

Ex,y [ρ(X1, Y1)] =
n− 1
n

(
1
2
δ1 +

1
1 + eβ

δ2 +
(

1− 1
2
− 1

1 + eβ

)
(δ1 + δ2)

)
=

n− 1
n

(
δ1

1 + e−β
+
δ2
2

)
(14)

Case k = 2: In this case we have xj = 0 and yj = 1, there is another player h ∈ [n] \ {j} where
xh = yh = 1, and for all the other players i ∈ [n] \ {j, h} it holds xi = yi = 0. Hence the length of edge
{x,y} is `(x,y) = δ2.

When player h is chosen (this holds with probability 1/n) we have that σh(s |x) and σh(s |y) for
s = 0, 1 are the same as in (13). At the next step the two chains will be at distance δ2 (if player h stays
at strategy 1 in both chains), or at distance δ1 (if player h chooses strategy 0 in both chains), or at
distance δ1 + δ2 (if player h stays at strategy 0 in chain X1 and chooses strategy 1 in chain Y1).

When a player i /∈ {h, j} is chosen (this holds with probability (n − 2)/n) we have that σi(0,x) =
σi(1,x) = σi(0,y) = σi(1,y) = 1/2. Thus in this case the two coupled chains always perform the same
choice at player i, and at the next step they will be at distance δ2 (if player i stays at strategy 0 in both
chains) or at distance δ3 (if player i chooses strategy 1 in both chains).
Hence the expected distance after one step is

Ex,y [ρ(X1, Y1)] =
1
n

(
1
2
δ1 +

1
1 + eβ

δ2 +
(

1− 1
2
− 1

1 + eβ

)
(δ1 + δ2)

)
+
n− 2
n

(
1
2
δ2 +

1
2
δ3

)
=

1
2n

(
2

1 + e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)
(15)

Case 3 6 k 6 n− 1: When a player i 6= j is chosen such that xi = yi = 1 (this holds with probability
(k − 1)/n) then at the next step the two chains will be at distance δk (if i stays at strategy 1) or at
distance δk−1 (if i moves to strategy 0). When a player i 6= j is chosen such that xi = yi = 0 (this holds
with probability (n − k)/n) then at the next step the two chains will be at distance δk (if i chooses to
stay at strategy 0) or at distance δk+1 (if i chooses to move to strategy 0). Hence the expected distance
after one step is

Ex,y [ρ(X1, Y1)] =
k − 1
n

(
1
2
δk +

1
2
δk−1

)
+
n− k
n

(
1
2
δk +

1
2
δk+1

)
=

1
2n

((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) (16)

Case k = n: When a player i 6= j is chosen, then at the next step the two chains will be at distance δn
or at distance δn−1. Hence the expected distance after one step is

Ex,y [ρ(X1, Y1)] =
n− 1
n

(
1
2
δn +

1
2
δn−1

)
=
n− 1

2n
(δn + δn−1) (17)

In order to apply Theorem 20 we now have to show that it is possible to choose the edge weights δ1, . . . , δn
and a parameter α > 0 such that

n−1
n

(
δ1

1+e−β
+ δ2

2

)
6 δ1e

−α

1
2n

(
2

1+e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)
6 δ2e

−α

1
2n ((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) 6 δke

−α k = 3, . . . , n− 1
n−1
2n (δn + δn−1) 6 δne

−α

(18)
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For different values of β, we make different choices for α and for the weights δk. For clarity’s sake we
split the proof in three different lemmas. We denote by δmax the largest δk.

In Lemma 11 we show that Inequalities (18) are satisfied for every value of β by choosing the weights
as follows

δk =


1
2 [(n− 1)δ2 + 1], if k = 1;
n−k
k δk+1 + 1, if 2 6 k 6 n− 1;

1, if k = n;

and by setting α = 1/(2nδmax). Since the diameter of the Hamming graph is
∑n
i=1 δi 6 nδmax, from

Theorem 20 and Corollary 16 in the appendix, we obtain tmix = O(n5/22n).
In Lemma 12 we show that, if β < (1−ε) log n for an arbitrarily small constant ε > 0, Inequalities (18)

are satisfied for every value of β by choosing weights δ1 = n1−ε, δ2 = 4/3, δ3 = · · · = δn = 1 and α = 1/n.
This gives tmix = O(n log n).

In Lemma 13 we show that, Inequalities (18) are satisfied by choosing weights as follows

δk =


1+e−β

2

[
a1
b1
δ2 + 1

]
, if k = 1;

ak
bk
δk+1 + 1, if 2 6 k 6 n− 1;

1, if k = n;

where a1 = n− 1 and b1 = ne−β + 1 and, for every k = 2, . . . , n− 1

ak = (n− k)bk−1 bk = (n+ 1)bk−1 − (k − 1)ak−1

and by setting α = 1/(2nδmax). From Corollary 19 it follows that, if β 6 c log n for a constant c ∈ N,
we have that δmax = O(nc+2). Since the diameter of the Hamming graph is

∑n
i=1 δi 6 nδmax, from

Theorem 20 in Appendix A it follows that tmix = O(nc+3 log n). �

5.1 Technical lemmas

In this section we prove the technical lemmas needed for completing the proof of Theorem 10.

Lemma 11 Let δ1, . . . , δn be as follows

δk =


1
2 [(n− 1)δ2 + 1], if k = 1;
n−k
k δk+1 + 1, if 2 6 k 6 n− 1;

1, if k = n;
(19)

and let α = 1/(2nδmax) where δmax = max{δk : k = 1, . . . , n}. Then Inequalities (18) are satisfied for
every β > 0.

Proof. Observe that, for every k = 1, . . . , n, the right-hand side of the k-th inequality in (18) is

δke
−α = δke

−1/(2nδmax) > δk

(
1− 1

2nδmax

)
= δk −

δk
2nδmax

> δk −
1

2n
(20)

Now we check that the left-hand side is at most δk − 1/(2n).

First inequality (k = 1): n−1
n

(
δ1

1+e−β
+ δ2

2

)
6 δ1e−α

From the definition of δ1 in (19) we have that

δ2 =
2δ1 − 1
n− 1

Hence the left-hand side is

n− 1
n

(
δ1

1 + e−β
+
δ2
2

)
6
n− 1
n

(
δ1 +

δ2
2

)
=
n− 1
n

(
δ1 +

2δ1 − 1
2(n− 1)

)
=

1
2n

(2nδ1 − 1) = δ1 −
1

2n
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Second inequality (k = 2): 1
2n

(
2

1+e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)
6 δ2e−α

From the definition of δ2 in (19) we have that

δ3 =
2

n− 2
(δ2 − 1)

Hence the left-hand side of the second inequality is

1
2n

(
2

1 + e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)
6

1
2n

(2δ1 + (n− 1)δ2 + (n− 2)δ3)

=
1

2n
((n− 1)δ2 + 1 + (n− 1)δ2 + 2(δ2 − 1))

=
1

2n
(2nδ2 − 1) = δ2 −

1
2n

Other inequalities (k = 3, . . . , n− 1): 1
2n ((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) 6 δke−α

From the definition of δk in (19) we have that

δk+1 =
k

n− k
(δk − 1)

Hence the left-hand side is

1
2n

((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) =
1

2n
((n− 1)δk + (n− k + 1)δk + (k − 1) + kδk − k)

=
1

2n
(2nδk − 1) = δk −

1
2n

Last inequality (k = n): n−1
2n (δn + δn−1) 6 δne−α

Since δn = 1 and δn−1 = 1
n−1δn + 1 = n

n−1 , the left-hand side of the last inequality is

n− 1
2n

(δn + δn−1) =
n− 1

2n
(1 +

n

n− 1
) = 1− 1

2n

�

Lemma 12 Let δ1, . . . , δn be as follows

δ1 = n1−ε, δ2 = 4/3, δ3 = · · · = δn = 1

where ε > 0 is an arbitrary small constant and let α = 1/n. Then Inequalities (18) are satisfied for every
β 6 (1− ε) log n.

Proof. We check that all the inequalities in (18) are satisfied.

First inequality (k = 1): n−1
n

(
δ1

1+e−β
+ δ2

2

)
6 δ1e−α

For the left-hand side we have

n− 1
n

(
δ1

1 + e−β
+
δ2
2

)
=

(
1− 1

n

)(
n1−ε

1 + e−β
+

2
3

)
6

(
1− 1

n

)(
n1−ε

1 + 1
n1−ε

+
2
3

)
=
(

1− 1
n

)(
n2(1−ε)

n1−ε + 1
+

2
3

)
=

(
1− 1

n

)(
(n1−ε + 1)(n1−ε − 1) + 1

n1−ε + 1
+

2
3

)
=
(

1− 1
n

)(
n1−ε +

1
n1−ε + 1

− 1
3

)
.

For the right-hand side we have

δ1e
−α = n1−εe−1/n > n1−ε

(
1− 1

n

)
.

15



Hence the left-hand side is smaller than the right-hand one (for n sufficiently large).

Second inequality (k = 2): 1
2n

(
2

1+e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)
6 δ2e−α

For the left-hand side we have

1
2n

(
2

1 + e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)
=

1
2n

(
2

1 + e−β
n1−ε + (n− 1)

4
3

+ (n− 2)
)

6
1

2n

(
2n1−ε +

7
3
n

)
=

7
6

+
1
nε

And for the right-hand side we have

δ2e
−α =

4
3
e−1/n >

4
3

(
1− 1

n

)
>

4
3
− 1
n

Hence the left-hand side is smaller than the right-hand one (for n sufficiently large).
Third inequality (k = 3): 1

2n ((n− 1)δ3 + 2δ2 + (n− 3)δ4) 6 δ3e−α

For the left-hand side we have

1
2n

((n− 1)δ3 + 2δ2 + (n− 3)δ4) =
1

2n

(
(n− 1) + 2

4
3

+ (n− 3)
)

=
1

2n
(2n− 3) 6

n− 1
n

And for the right-hand side we have

δ3e
−α = e−1/n >

(
1− 1

n

)
Hence the left-hand side is smaller than the right-hand one.
Other inequalities (k > 4): 1

2n ((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) 6 δke−α

Since δk = δk−1 = δk+1 = 1 the left-hand side is equal to n−1
n and the right-hand side is e−1/n > n−1

n �

Lemma 13 Let δ1, . . . , δn be as follows

δk =


1+e−β

2

[
a1
b1
δ2 + 1

]
, if k = 1;

ak
bk
δk+1 + 1, if 2 6 k 6 n− 1;

1, if k = n;

(21)

where a1 = n− 1 and b1 = ne−β + 1 and for every k = 2, . . . , n− 1

ak = (n− k)bk−1 bk = (n+ 1)bk−1 − (k − 1)ak−1

and let α = 1/(2nδmax) where δmax = max{δk : k = 1, . . . , n}. Then Inequalities (18) are satisfied for
every β > 0.

Proof. Observe that, as in Equation (20), for every k = 1, . . . , n, the right-hand side of the k-th inequality
in (18) is

δke
−α > δk −

1
2n

Now we check that the left-hand side is at most δk − 1/(2n).

First inequality (k = 1): n−1
n

(
δ1

1+e−β
+ δ2

2

)
6 δ1e−α

From the definition of δ1 in (21) we have that

δ2 =
ne−β + 1
n− 1

(
2δ1

1 + e−β
− 1
)

16



Hence the left-hand side is

n− 1
n

(
δ1

1 + e−β
+
δ2
2

)
=

n− 1
n

[
δ1

1 + e−β
+
ne−β + 1
n− 1

(
δ1

1 + e−β
− 1

2

)]
=

n− 1
n

δ1
1 + e−β

(
1 +

ne−β + 1
n− 1

)
− ne−β + 1

2n

6 δ1 −
1

2n

Second inequality (k = 2): 1
2n

(
2

1+e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)
6 δ2e−α

From the definition of δ2 in (21) we have that

δ3 =
b2
a2

(δ2 − 1) =
(n+ 1)b1 − a1

(n− 2)b1
(δ2 − 1)

Hence the left-hand side is

1
2n

(
2

1 + e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)
=

1
2n

[(
a1

b1
δ2 + 1

)
+ (n− 1)δ2 +

(n+ 1)b1 − a1

b1
(δ2 − 1)

]
= δ2 −

1
2n

nb1 − a1

b1
= δ2 −

1
2n

(
n− n− 1

ne−β + 1

)
6 δ2 −

1
2n

For the next inequalities we need the following claim.

Claim 14 For every k > 2, it holds that bk > kbk−1.

Proof. We proceed by induction on k. The base case k = 2 follows from

b2 = (n+ 1)(ne−β + 1)− (n− 1) = (n+ 1)ne−β + 2 > 2(ne−β + 1) = 2b1.

Now suppose the claim holds for k − 1, that is bk−1 > (k − 1)bk−2. Then

bk = (n+ 1)bk−1 − (k − 1)ak−1

= (n+ 1)bk−1 − (k − 1)(n− k + 1)bk−2

> [(n+ 1)− (n− k + 1)] bk−1 = kbk−1

�

Other inequalities (k = 3, . . . , n− 1): 1
2n ((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) 6 δke−α

From the definition of δk in (21) we have that

δk+1 =
bk
ak

(δk − 1) =
(n+ 1)bk−1 − (k − 1)ak−1

(n− k)bk−1
(δk − 1)

Hence the left-hand side is

1
2n

((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) =
1

2n

[
(n− 1)δk + (k − 1)

(
ak−1

bk−1
δk + 1

)
+

(n+ 1)bk−1 − (k − 1)ak−1

bk−1
(δk − 1)

]
= δk −

1
2n

(n− k + 2)bk−1 − (k − 1)ak−1

bk−1

= δk −
1

2n

(
(n− k + 2)− (k − 1)(n− k + 1)

bk−2

bk−1

)
6 δ2 −

1
2n
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where the inequality follows from the above claim.
Last inequality (k = n): n−1

2n (δn + δn−1) 6 δne−α

Since δn = 1 and δn−1 = an−1
bn−1

δn + 1 = an−1
bn−1

+ 1, the left-hand side of the last inequality is

n− 1
2n

(δn + δn−1) =
n− 1

2n

(
2 +

an−1

bn−1

)
=
n− 1

2n

(
2 +

bn−2

bn−1

)
6

n− 1
2n

(
2 +

1
n− 1

)
= 1− 1

2n

where the inequality follows from the above claim. �

Observation 15 Let δ1, . . . , δn be defined recursively as follows: δn = 1 and

δk = γkδk+1 + 1

where γk > 0 for every k = 1, . . . , n− 1. Let δmax = max{δk : k = 1, . . . , n}. Then

δmax 6 nmax

{
j∏
i=h

γi : 1 6 h 6 j 6 n− 1

}
Proof. The observation follows from the fact that, for k = 1, . . . , n− 1, we have

δk = 1 +
n−1∑
j=k

j∏
i=k

γi

�

Corollary 16 Let δ1, . . . , δn be defined as in Lemma 11. Then δmax 6 c
√
n2n for a suitable constant c.

Proof. By Observation 15 and the definition of δ1, . . . , δn, it holds that

δmax 6 nmax

{
j∏
i=h

n− i
i

: 1 6 h 6 j 6 n

}

6 n

bn/2c∏
i=1

n− i
i
6 n

(
n

bn/2c

)
6 c
√
n2n

for a suitable constant c. �

Lemma 17 Let δ1, . . . , δn be defined as in Lemma 13 and β 6 c log n for a constant c ∈ N and define
γk = ak

bk
. Then 

γk < n ∀ k;

γk < 1 if k > c+ 2;

γc+2 = O(1);

Proof. Let us write γk as
pke
−β + lk

qke−β + rk

where p1 = 0, q1 = n, l1 = n− 1, r1 = 1 and

pk = (n− k)qk−1 qk = (n+ 1)qk−1 − (k − 1)pk−1

lk = (n− k)rk−1 = (n− k)(k − 1)! rk = (n+ 1)rk−1 − (k − 1)lk−1 = k!

Observe that for every k, pk is always less than qk, hence [nqk − pk]e−β > 0; indeed, lk − nrk =
(k − 1)!(n− k − nk) < 0. Hence we have for every k

γk =
pke
−β + lk

qke−β + rk
< n.

18



Moreover, observe that if exists k∗ such that γk∗ < 1, then for every k > k∗ we have γk∗ < 1. Indeed

bk − ak = (k + 1)bk−1 − (k − 1)ak−1

is larger than 1 since bk−1 > ak−1 by hypothesis. In order to complete the proof, we need to show that
γc+3 < 1 and γc+2 = O(1). We need the following claim.

Claim 18 For 1 6 k 6 c+ 2, we have qk > 2−knk.

Proof. We proceed by induction on k, with the base k = 1 being obvious. Suppose the claim holds for
k − 1, that is qk−1 > 2−(k−1)nk−1, then

qk = (n+ 1)qk−1 − (k − 1)pk−1 >
n

2
qk−1 > 2−knk.

�
From the above claim, since e−β > n−c, we have that

(qc+3 − pc+3)e−β = [(n+ 1)qc+2 − (c+ 2)pc+2 − (n− c− 3)qc+2]e−β > 2qc+2e
−β > 2−(c+1)n2.

Indeed, lc+3 − rc+3 = (c+ 2)!(n− 2c− 6) 6 (c+ 2)! · n. Hence, for n sufficiently large we have γc+3 < 1.
Similarly, we have [qc+2 − pc+2]e−β > 2−cn and lc+2 − rc+2 6 (c+ 1)! · n. Hence,

γc+2 6 (c+ 1)! · 2c = O(1).

�

Corollary 19 Let δ1, . . . , δn and c be defined as in Lemma 13. Then δmax = O(nc+2).

Proof. By Observation 15, Lemma 17 and the definition of δ1, . . . , δn it holds that

δmax 6 nmax

{
j∏
i=h

ai
bi

: 1 6 h 6 j 6 n

}

6 n

c+2∏
i=1

ai
bi

= O(nc+2).

�

6 Conclusions and open problems

In this paper we studied strategic games where at every run a player is selected uniformly at random
and she is assumed to choose her strategy for the next run according to a noisy best-response, where the
noise level is tuned by a parameter β. Such dynamics defines a family of ergodic Markov chains, indexed
by β, over the set of strategy profiles. We study the long-term behavior of the system by analysing the
expected social welfare when the strategy profiles are random according to the stationary distribution of
such chains and we compare it with the social welfare at Nash equilibria.

In order for such analysis to be meaningful we are also interested in the mixing time of the chains, i.e.
how long it takes, for a chain starting at an arbitrary profile, to get close to its stationary distribution.
The analysis of the mixing time is usually far from trivial even for very simple games.

We study several examples of applications of this approach to games with two and three players and
to a simple n-players game. We started by showing that the social welfare at stationarity for the 3-player
linear congestion game that attains the maximum Price of Anarchy is larger than the social welfare of
the worst Nash equilibrium. This result is made significant by the fact that, for all β, the logit dynamics
converges at the stationary distribution in constant time. For 2-player coordination and anti-coordination
games the mixing time turns out to be exponential in β and we give conditions for the expected social
welfare at stationarity to be smaller than the social welfare of the worst Nash equilibrium. In the n-player
OR-game, the mixing time is O(n log n) for β up to log n; if β < c log n with c > 1 constant, the mixing
time is polynomial in n with the degree depending on constant c; finally, for large β the mixing time is
exponential in n.

We leave several open questions for further investigation. For example, we would like to close gaps
between upper and lower bounds for the mixing time of the OR-game. Moreover, we would like to
investigate logit dynamics for notable classes of n-player games.
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Appendix

A Markov Chains’ Summary

We summarize the main tools we use to bound the mixing time of Markov chains (for a complete
description of such tools see, for example, Chapters 7.2, 12.2 and 14.2 of [15]).
For an irreducible and aperiodic Markov chain M with finite state space Ω, transition matrix P , and
stationary distribution π, the mixing time is defined as

tmix(ε) = min
{
t ∈ N : max{‖P t(x, ·)− π‖TV : x ∈ Ω} 6 ε

}
where P t(x, ·) is the distribution at time t of the chain starting at x, ‖P t(x, ·)−π‖TV = 1

2

∑
y∈Ω |P t(x, y)−

π(y)| is the total variation distance, and ε > 0 is a constant smaller than 1/2. For convenience, it is
usually set to ε = 1/4 or ε = 1/2e. If not explicitly specified, when we write tmix we mean tmix(1/4).

Theorem 20 (Path coupling) Let M = {Xt : t ∈ N} be an irreducible and aperiodic Markov chain
with finite state space Ω and transition matrix P . Let G = (Ω, E) be a connected graph, let ` : E → R
be a function assign weights to edges such that `(e) > 1 for every edge e ∈ E, and let ρ : Ω×Ω→ R be
the corresponding path distance, i.e. ρ(x, y) is the length of the (weighted) shortest path in G between x
and y.
Suppose that for every edge {x, y} ∈ E a coupling (X,Y ) of distributions P (x, ·) and P (y, ·) exists such
that Ex,y [ρ(X,Y )] 6 `({x, y})e−α for some α > 0. Then the mixing time tmix(ε) of M is

tmix(ε) 6
log(diam(G)) + log(1/ε)

α

where diam(G) is the (weighted) diameter of G.

Theorem 21 (Bottleneck ratio) LetM = {Xt : t ∈ N} be an irreducible and aperiodic Markov chain
with finite state space Ω, transition matrix P and stationary distribution π. Let S ⊆ Ω be any set with
π(S) 6 1/2. Then the mixing time is

tmix(ε) >
1− 2ε
2Φ(S)

where

Φ(S) =
Q(S, S)
π(S)

and Q(S, S) =
∑

x∈S, y∈S

π(x)P (x, y).

For a reversible transition matrix P of a Markov chain with finite state space Ω, the relaxation time
trel is defined as

trel =
1

1− λ?

where λ? is the largest absolute value of an eigenvalue other than 1,

λ? = max{|λ| : λ is an eigenvalue of P, λ 6= 1} .

Notice that all the eigenvalues have absolute value at most 1, λ = 1 is an eigenvalue, and for irreducible
and aperiodic chains, −1 is not an eigenvalue. Hence trel is positive and finite.

We have the following theorem.

Theorem 22 (Relaxation time) Let P be the transition matrix of a reversible, irreducible, and ape-
riodic Markov chain with state space Ω and stationary distribution π. Then

(trel − 1) log
(

1
2ε

)
6 tmix(ε) 6 log

(
1

επmin

)
trel

where πmin = minx∈Ω π(x).
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