
D
RA
FT

Logica e Reti Logiche
(Episodio 18: Codifica di numeri frazionari e caratteri)

Francesco Pasquale

8 gennaio 2026

Nell’Episodio 10 abbiamo visto come possiamo rappresentare con sequenze di bit sia
numeri positivi che numeri negativi utilizzando la codifica in complemento a due, che è
molto comoda per far eseguire somme e sottrazioni a un circuito.

Come possiamo rappresentare invece i numeri frazionari con sequenze di bit? e i
caratteri alfabetici e gli altri simboli?

1 Un primo tentativo

Sappiamo che le sequenze distinte di n bit sono 2n, quindi ognuna di queste potrà rap-
presentare uno di 2n “oggetti” diversi. Abbiamo visto che se gli “oggetti” in questione
sono i numeri interi senza segno, con la codifica binaria standard usiamo quelle sequenze
di bit per indicare i numeri da 0 a 2n − 1. Se gli oggetti che vogliamo rappresentare sono
i numeri interi positivi e negativi, allora con la codifica in complemento a due a n bit
indichiamo i numeri interi da −2n−1 a 2n−1 − 1.

Per codificare i numeri frazionari, una prima idea potrebbe essere quella di usare una
parte dei bit per la parte intera e una parte dei bit per la parte frazionaria. Per esempio,
se abbiamo n = 8 bit e ne usiamo 4 per la parte intera e 4 per la parte frazionaria, allora
la sequenza di bit 01101100 rappresenterebbe il numero

0 · 23 + 1 · 22 + 1 · 21 + 0 · 20 + 1 · 2−1 + 1 · 2−2 + 0 · 2−3 + 0 · 2−4 = (6.75)10 (1)

Questo tipo di codifica dei numeri frazionari si chiama a virgola fissa.

Esercizio 1. Quando abbiamo definito la codifica binaria dei numeri interi abbiamo
visto un metodo che ci consente di scrivere in binario un numero espresso in decimale (si
prendono i resti della divisione per due, letti in ordine inverso).

Trovare un metodo analogo per codificare in binario un numero compreso fra zero e
uno.

Si può anche usare la codifica a virgola fissa in complemento a due per codificare
numeri frazionari positivi e negativi.

Esercizio 2. Quali sono gli intervalli di numeri rappresentabili dai seguenti sistemi
numerici?1

1Potrebbe essere utile ricordare che, se p è un numero reale diverso da 1, allora per ogni n ⩾ 1 si ha

che
∑n

i=1 p
i = p(1−pn)

1−p . Se non lo ricordate. . . dimostratelo per induzione.



D
RA
FT

1. Numeri in virgola fissa a 32 bit, con 16 bit di parte intera e 16 bit di parte frazionaria.

2. Numeri in complemento a due a 32, bit con 16 bit di parte intera e 16 bit di parte
frazionaria.

L’utilizzo della codifica in virgola fissa non è in genere molto conveniente, perché non
ci permette di lavorare con numeri molto grandi e numeri molto piccoli.

Un modo più saggio di usare i bit che abbiamo a disposizione viene dall’utilizzo
della notazione scientifica: osservate che, se dobbiamo scrivere in decimale numeri co-
me novecentottantasette miliardi oppure sessantaquattro miliardesimi, tipicamente non li
scriveremo cos̀ı:

987000000000 e 0.000000064

ma cos̀ı:
9.87 · 1011 e 6.4 · 10−8

Chiaramente ci sono più modi di scrivere lo stesso numero in notazione scientifica (per
esempio, avrei potuto scrivere il primo numero anche come 98, 7 · 1010). Quando si usa
un’unica cifra prima della virgola, si dice che la notazione scientifica è normalizzata.

Anche in binario possiamo fare la stessa cosa. Per esempio, possiamo scrivere il
numero in (1) in notazione scientifica normalizzata cos̀ı

1.1011 · 22

Esercizio 3. Osservate che quando scriviamo un numero in binario in notazione scienti-
fica normalizzata il numero prima della virgola sarà sempre 1.

Se abbiamo a disposizione n bit quindi, invece che usarne alcuni per la parte intera e
alcuni per quella frazionaria, possiamo decidere di usarne alcuni per l’esponente e alcuni
per la mantissa.

Nella prossima sezione vediamo qual è lo standard attuale che definisce come utilizzare
i bit che abbiamo a disposizione.2.

2 Lo standard IEEE754

Lo standard IEEE-754 per i numeri in virgola mobile a precisione singola prevede 32 bit:
- Il primo bit per il segno (0 positivo, 1 negativo);
- I successivi 8 bit per l’esponente, espresso in codifica ad eccesso (ossia, si aggiunge 127
al numero decimale da codificare in binario);
- I successivi 23 bit per la mantissa, di cui non si memorizza l’uno più significativo.

segno esponente mantissa

Per esempio, supponiamo di dover codificare −76, 28125. È un numero negativo,
quindi il primo bit sarà 1. La parte intera è 76 = 64 + 8 + 4 = 26 + 23 + 22 quindi,

2Per esempio, il tipo di dati float in C segue questo standard

2



D
RA
FT

in binario, 1001100. La parte frazionaria è 0, 28125 = 2−2 + 2−5 quindi, in binario
0.01001. Il valore assoluto del nostro numero in binario perciò è: 1001100.01001 =
1.00110001001× 26. Perciò la mantissa escluso l’uno più significativo è 00110001001, a
cui andremo ad aggiungere tutti gli zeri che servono per arrivare a 23 bit. L’esponente è
6, che in codifica ad eccesso diventa 6 + 127 = 133, ossia 10000101 in binario a otto bit.
Complessivamente quindi la codifica del nostro numero −76, 28125 sarà

11000010100110001001000000000000

che espresso in esadecimale diventa 1100 0010 1001 1000 1001 0000 0000 0000 =
C2989000.

Esercizio 4. Scrivere i numeri seguenti in virgola mobile secondo lo standard IEEE 754
a precisione singola. Scrivere il risultato in esadecimale

(a) −13.5625 (b) 42.3125 (c) −17.15625.

Esercizio 5. Scrivere in decimale i seguenti numeri in virgola mobile in formato IEEE
754 a precisione singola espressi in esadecimale

(a) C0123000 (b) 81C56000 (c) D0B10301.

Esercizio 6. Osservate che codificare lo zero in questo modo sarebbe impossibile.

Alcune sequenze di 32 bit sono riservate a codificare numeri speciali:

• X 00000000 00000000000000000000000 rappresenta lo zero (dove X può essere 0
o 1)

• 0 11111111 00000000000000000000000 rappresenta +∞

• 1 11111111 00000000000000000000000 rappresenta −∞

• Una sequenza in cui i bit dell’esponente sono tutti 1 ma quelli della mantissa non
sono tutti 0 non rappresenta nessun numero (NaN - Not a Number)

Lo standard IEEE754 definisce anche una codifica a 64 bit per i numeri in virgola
mobile.

Esercizio 7. Per numeri in virgola mobile a precisione doppia vengono usati 64 bit: uno
per il segno, 11 per l’esponente e i restanti per la mantissa. Qual è il numero da sommare
all’esponente per ottenere la codifica ad eccesso?

3



D
RA
FT

3 Cenni alla codifica dei caratteri: ASCII, Unicode,

UTF-8

Oltre ai numeri interi e frazionari, abbiamo bisogno di codificare in binario anche tutti gli
altri caratteri. Abbiamo già incontrato in una precedente esercitazione il codice ASCII
(American Standard Code for Information Interchange) che, sviluppato negli anni ses-
santa, è stato il primo standard a imporsi a livello internazionale. La codifica ASCII usa
7 bit (un byte con il primo bit a 0) per codificare 128 caratteri.

La necessità di utilizzare ben più di 128 caratteri ha portato, negli anni, alla defi-
nizione di diversi standard nelle diverse parti del mondo. Per superare le difficoltà di
interazione fra sistemi che utilizzano codifiche diverse, verso la fine degli anni ′80 ha ini-
ziato a prendere forma quello che oggi è uno standard unificante a livello internazionale:
Unicode. Unicode associa ad ogni carattere un numero compreso fra 0 e 1114111 (fra
000000 e 10FFFF, in esadecimale) per un totale di 216 + 220 caratteri utilizzabili, e può
essere implementato con diverse codifiche (ossia non c’è un unico modo di associare il
numero che identifica il carattere a una sequenza di bit).

Le codifiche più utilizzate per implementare Unicode sono le UTF (Unicode Transfor-
mation Format): utf-8, utf-16, utf-32. La utf-32 è una codifica a lunghezza fissa
che usa 32 bit per rappresentare in binario ognuno dei numeri dell’inervallo utilizzato da
Unicode. Quella più diffusa tuttavia è la codifica utf-8, che è una codifica a lunghezza
variabile (alcuni caratteri vengono codificati con 8 bit, altri con 16, altri con 24, altri con
32). I 128 caratteri del codice ASCII vengono codificati in utf-8 con 8 bit (un byte): il
primo bit a 0 e gli stessi 7 bit utilizzati dal codice ASCII

0 - - - - - - -

Quindi utf-8 è retrocompatibile con ASCII : ogni sequenza di bit che si può decodificare
con ASCII, si può decodificare allo stesso modo anche con utf-8. Per i caratteri codificati
con due, tre o quattro byte, il primo byte comincia con una sequenza di 1 lunga quanto
il numero di byte utilizzati per codificare il carattere, gli altri byte cominciano con 10, i
bit che restano sono utilizzati per la codifica binaria del numero che Unicode associa al
carattere da codificare

2 byte 1 1 0 - - - - - 1 0 - - - - - -
3 byte 1 1 1 0 - - - - 1 0 - - - - - - 1 0 - - - - - -
4 byte 1 1 1 1 0 - - - 1 0 - - - - - - 1 0 - - - - - - 1 0 - - - - - -

4


	Un primo tentativo
	Lo standard IEEE754
	Cenni alla codifica dei caratteri: ASCII, Unicode, UTF-8

