Logica e Reti Logiche
(Episodio 16: Cenni agli Hardware Description
Languages)

Francesco Pasquale

18 dicembre 2025

In questo corso abbiamo parlato di circuiti disegnandone lo schema, oppure descri-
vendone le specifiche funzionali tramite formule o tabelle di verita. Una formula (o una
tabella di verita) pero non descrive un circuito, nel senso che non ci dice come deve essere
costruito, ma ne specifica soltanto la funzione; infatti abbiamo visto che data una for-
mula ci sono tanti (infiniti, a voler essere precisi) circuiti equivalenti. L’unico modo che
abbiamo visto finora per descrivere esattamente come deve essere costruito un circuito e
stato disegnarne lo schema. Potete immaginare che questo puo andar bene per circuiti
con poche porte logiche, ma per circuiti piu grandi abbiamo bisogno di qualche strumento
piu efficace.

I linguaggi per la descrizione dell’hardware (HDL - Hardware Description Languages)
servono a descrivere un circuito come puotrebbe farlo un disegno, usando pero sempli-
cemente del testo. Avere il circuito descritto come testo in un formato standard, che
quindi puo essere facilmente letto da un programma, ¢ utile da un lato per avvalersi di
programmi in grado di simulare il comportamento del circuito e consentirci quindi di
verificare se il circuito svolge esattamente le funzioni che ci si aspetta prima di costruirlo
fisicamente, da un altro lato ¢ utile anche per avvalersi di programmi che dalla descrizione
di un circuito producono automaticamente lo schema (sintesi del circuito).

1 HDL - Verilog

Consideriamo per esempio il semplice circuito combinatorio in Figura

a

b >

Figura 1: Un circuito combinatorio

Esercizio 1. Avete davanti il disegno del circuito in Figura [I] e dovete descriverlo a
parole (senza poter mostrare il disegno) a un vostro collega facendo in modo che disegni
esattamente lo stesso circuito. Come glie lo descrivereste?



I linguaggi per la descrizione dell’hardware sono dei veri e propri linguaggi di pro-
grammazione che possono anche essere usati per scrivere ed eseguire programmi di ogni
tipo. La loro funzione principale tuttavia e quella appunto di “descrivere” I’hardware. I
linguaggi di questo tipo piu diffusi sono essenzialmente due, VHDL e Verilog, che diffe-
riscono per la sintassi utilizzata. Per gli esempi in questo episodio usero Verilog, di cui
potete trovare un compilatore libero qui: https://github.com/steveicarus/iverilog.

In un HDL, ogni blocchetto hardware ¢ chiamato modulo. Alcuni moduli, come le
porte AND, OR, NOT e altre, sono incorporate nella sintassi del linguaggio. A partire da
quei moduli possiamo descrivere circuiti pitt complessi. Per esempio, in Verilog possiamo
descrivere il circuito in Figura[I] con il codice in Listing

1 module example(a,b,c,y);
2 input a,b,c;
output y;

wire wl,w2;

7 not (wl,b);

8 and (w2,a,wl) ;
9 xor (y,c,w2);
endmodule

Listing 1: II circuito in Figura [l| descritto in Verilog

Osservate che alla Linea 1 abbiamo definito il nome del nostro modulo, “example”,
inserendo come parametri le variabili che indicano gli input e 'output del circuito, e alle
Linee 2 e 3 abbiamo specificato quali dei parametri indicano gli input e quale 'output.

Nel circuito in Figura [I| 'output della porta NOT € uno degli input della porta AND e
I'output della porta AND ¢ uno degli input della porta XOR. Per specificare cio senza am-
biguita alla Linea 5 definiamo due nuove variabili, w1l e w2, di tipo WIRE, che serviranno
a indicare rispettivamente ’output della porta NOT e 'output della porta AND.

Infine, nelle Linee 7, 8 e 9 specifichiamo quali sono gli input e gli output delle tre
porte logiche del circuito. Si noti che il primo dei parametri indica sempre 'output della
porta, i successivi parametri gli input.

Esercizio 2. Scrivere un modulo Verilog per il circuito seguente

) T i)

Y

Una volta definito un modulo, possiamo poi richiamarlo per costruire altri moduli piu
complessi. Per esempio, nel Listing [2| definiamo prima un HALF ADDER e poi definiamo
un FULL ADDER costruendolo con due HALF ADDER e una porta OR.


https://github.com/steveicarus/iverilog

16
17

18

module half_adder (a,b,sum, carry);
input a,b;
output sum, carry ;

xor (sum,a,b);
and (carry ,a,b);
endmodule

module full_adder (a,b,cin ,sum,cout);
input a,b,cin;
output sum, cout;

wire sl,cl,c2;

), .sum(sl), .carry(cl));

half_adder hal (cin), .b(a
(b), .sum(sum), .carry(c2));

(.a(ci
half_adder ha2(.a(sl), .b
or(cout ,cl,c2);
endmodule

(
b

Listing 2: Full Adder

Si noti che quando abbiamo istanziato i due half adder, alle Linee 15 e 16, abbiamo
anche specificato a cosa sono collegate le loro porte di input e output (a,b,sum,carry),
usando la notazione .nome_porta(espressione).

Esercizio 3. Disegnare il circuito corrispondente al modulo “mycirc” descritto nel se-
guente codice HDL

1 module blocco (x0, x1, y);
2 input x0, x1;

3 output y;
1

5 wire wl;

7 not (wl, x0);
8 and(y, wl, x1);
9 endmodule

12 module mycirc(inl, in2, in3, outl, out2);
13 input inl, in2, in3;
14 output outl, out2;

16 wire wl, w2;

17

18 blocco bl(.x0(inl), .x1(in2), .y(wl));
19 blocco b2 (.x0(wl), .x1(in3), .y(outl));
20

21 not (w2, in3);

22 or(out2, inl, w2);

23 endmodule

Listing 3: Un circuito descritto in HDL

Le variabili che usiamo all’interno del codice possono anche essere vettori. Per esem-
pio, possiamo descrivere in HDL un MULTIPLEXER 2:1 come in Figura

3



1 module mux2tol(x, s, y);
2 input [1:0]x;

s 3 input s;

4 output y;

6 wire [1:0]a;
7 wire n;

Zo 8

X

¥
©
=

—

&g
&

y
13 endmodule

Figura 2: MULTIPLEXER 2:1

Il modo di descrivere i circuiti che abbiamo visto finora si chiama structural: specifica
esattamente come e la struttura di un circuito. Gli HDL consentono anche di descrivere
un circuito in modo behavioral, ossia specificandone la funzione. Per esempio, avremmo
potuto descrivere il multiplexer in Figura (1] anche nel modo seguente.

module mux2tol (x,s,y);
input [1:0]x;
input s;
output y;

assign y = s ? x[1]:x[0];

endmodule

Si noti che con l'istruzione alla Linea 6 stiamo dicendo al programma di assegnare a
y il valore di z[1] se s =1 e il valore di z[0] se s = 0.

Esercizio 4. Descrivere in Verilog un MULTIPLEXER 4:1, sia in modo structural che in
modo behavioral.



	HDL - Verilog

