Logica e Reti Logiche

Anno Accademico: 2024-2025

Sessione Autunnale - Secondo Appello

Docente: Francesco Pasquale

22 settembre 2025

Ogni esercizio vale 6 punti. La sufficienza si raggiunge con 18 punti.

Esercizio 1. Dimostrare per induzione che $6^n - 1$ è divisibile per 5, per ogni $n \in \mathbb{N}$.

Esercizio 2. Scrivere la mappa di Karnaugh per la seguente tabella di verità e disegnare il circuito corrispondente

$x_0 \\ x_1$	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
x_1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
x_2	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
x_3	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
\overline{y}																

Esercizio 3. Si considerino le due formule

 $\mathcal{A}: \exists x P(x) \land \exists x Q(x)$ e $\mathcal{B}: \exists x [P(x) \land Q(x)]$

Per ognuna delle quattro affermazioni seguenti, dire se l'affermazione è vera oppure no, motivando opportunamente la risposta:

1. \mathcal{A} implica logicamente \mathcal{B} ;

3. \mathcal{A} e \mathcal{B} sono logicamente equivalenti;

2. \mathcal{B} implies logicamente \mathcal{A} ;

4. $\mathcal{A} \to \mathcal{B}$ è una formula soddisfacibile.

Esercizio 4. Progettare un circuito con tre ingressi, x_0, x_1, x_2 , e un'uscita, y, che implementi la formula seguente

$$y = \overline{x_0}x_2 + \overline{x_1}x_2 + x_0x_1\overline{x_2}$$

usando due Half-Adder e nessun'altra porta logica.

Esercizio 5. Progettare una macchina a stati finiti che prenda in input una sequenza di bit e restituisca in output 1 quando gli ultimi quattro bit letti sono 0110 e restituisca 0 in tutti gli altri casi. Disegnare il diagramma di stato, scrivere la tabella e le equazioni di stato e disegnare lo schema del circuito.