Logica e Reti Logiche

Anno Accademico: 2024-2025

Sessione Autunnale - Primo Appello

Docente: Francesco Pasquale

2 settembre 2025

Ogni esercizio vale 6 punti. La sufficienza si raggiunge con 18 punti.

Esercizio 1. Dimostrare per induzione che $9^n + 3$ è divisibile per 4, per ogni $n \ge 0$.

Esercizio 2. Per ognuna delle formule seguenti scrivere una formula equivalente utilizzando soltanto il connettivo \mid 1

$$(1) \neg p \qquad (2) \ p \wedge q \qquad (3) \ p \vee q$$

Esercizio 3. Una delle due formule seguenti è valida, l'altra no:

- 1. $\forall x P(x) \land \neg \exists x Q(x) \longrightarrow \forall x [P(x) \land \neg Q(x)]$
- 2. $\neg \forall x P(x) \land \exists x Q(x) \longrightarrow \exists x \left[\neg P(x) \land Q(x) \right]$

Per la formula valida, dare una dimostrazione usando il metodo dei *tableaux*; per quella non valida, esibire un'interpretazione in cui la formula è falsa.

Esercizio 4. Usando soltanto un DECODER e una porta OR a più ingressi progettare un circuito con quatto input, x_0, x_1, x_2, x_3 , e un output, y, che implementi la seguente funzione $f: \{0,1\}^4 \longrightarrow \{0,1\}$

$$y = f(x_3, x_2, x_1, x_0) = \begin{cases} x_2 \oplus x_3 & \text{se } x_1 = x_0 \\ x_2 x_3 & \text{altrimenti} \end{cases}$$

Disegnare il circuito e spiegare sinteticamente il criterio usato per progettarlo.

Esercizio 5. Scrivere sia in decimale che nello standard IEEE-754 a 32 bit il numero che si ottiene sommando a e b, dove a è il numero che in decimale si scrive 27.25 e b è il numero che nello standard IEEE-754 a 32 bit si scrive COD80000.

¹Si ricorda che con il simbolo | indichiamo il connettivo alternative denial (nand)