L. A. G. test n. 5, may 19, 2016 Name:

1. Let V be the linear space of all real polynomials of degree ≤ 2 .

(a) Let $U = \{f(x) \in V \mid f'(1) + f(0) = 0\}$. Is U a linear subspace of V? If the answer is yes compute the dimension of U and find a basis of U.

(b) If U is a linear subspace, find another basis of U, different from the one found in (a). (c) Let $Z = \{f(x) \in V | (2x+1)f'(x) = f(2x)\}$. Is Z a linear subspace of V? If the answer is yes compute the dimension of Z and find a basis of Z.

Solution. (a) Yes, U is a linear subspace: (i) let $f, g \in U$. Then (f + g)'(1) + (f + g)(0) = f'(1) + f(0) + g'(1) + g(0) = 0 + 0 = 0that is $f + g \in U$. (ii) let $\lambda \in \mathbf{R}$ and $f \in U$. Then $(\lambda f)'(0) + (\lambda f)(0) = \lambda(f'(1) + f(0)) = 0$ that is $\lambda f \in U$.

Let $f(x) = a + bx + cx^2 \in V$. Then f'(1) = b + 2c and f(0) = a. Therefore $f \in U$ if and only if a + b + 2c = 0, that is a = -b - 2c. Therefore

$$U = \{-b - 2c + bx + cx^2 \mid b, c \in \mathbf{R}\}.$$

Letting b = 1 and c = 0 we get -1 + x. Letting b = 0 and c = 1 we get $-2 + x^2$. Therefore dim U = 2 and $\{-1 + x, -2 + x^2\}$ is a basis of U.

(b) One can take two linearly independent linear combinations of the elements of the previous basis, for example $\{-3 + x + x^2, 1 + x - x^2\}$.

(c) Yes, Z is a linear subspace:

(i) let $f, g \in Z$. Then

$$(2x+1)(f+g)'(x) = (2x+1)f'(x) + (2x+1)g'(x) = f(2x) + g(2x) = (f+g)(2x)$$

Therefore $f + g \in Z$. (ii) Let $\lambda \in \mathbf{R}$ and $f \in Z$. Then $(2x + 1)(\lambda f)'(x) = \lambda(2x + 1)f'(x) = (\lambda f)(2x)$. Therefore $\lambda f \in Z$.

Let $f(x) = a + bx + cx^2 \in V$. Then $(2x+1)f'(x) = (2x+1)(b+2cx) = b+2(b+c)x+4cx^2$. Moreover $f(2x) = a + 2bx + 4cx^2$. Therefore $f(x) \in Z$ if and only of

$$\begin{cases} a & =b\\ 2b+2c & =2b\\ 4c & =4c \end{cases}$$

Therefore c = 0 and a = b. Hence $Z = \{a + ax \mid a \in \mathbf{R}\} = L(1 + x)$. Hence dim Z = 1 and $\{1 + x\}$ is a basis.

2. Let V be the space of all real polynomials of degree ≤ 2 , equipped with inner product $(f,g) = \int_{-1}^{1} f(x)g(x)dx$, and let $W = \{f(x) \in V \mid f(1) = 0\}$. Find the polynomial in W which is closest to g(x) = x and compute its distance from g(x).

Solution. Bases of W is easily found: for example: $\{(x - 1, (x - 1)^2\}$: it is enough to find two linearly independent polynomials having x = 1 as zero. Other examples: $\mathcal{B}_a = \{(x - 1), (x - 1)(x - a)\}$, for any $a \in \mathbf{R}$. Otherwise, you can compute a basis as in the previous exercise. Let us choose the basis $\{x - 1, x^2 - 1\}$, which might be easy for calculations (however there are other good choices).

Probably the fastest way to answer consists in computing W^{\perp} first (note that dim $W^{\perp} = 1$). Easy and very fast calculations show that:

$$(x^2, x - 1) = -\frac{2}{3}, \quad (x, x - 1) = \frac{2}{3} \quad (1, x - 1) = -2 \quad (x^2, x^2 - 1) = -\frac{4}{15}$$

 $(x, x^2 - 1) = 0 \quad (1, x^2 - 1) = -\frac{4}{3}$

A polynomial $f(x) = a + bx + cx^2$ belongs to W^{\perp} if and only if

$$\begin{cases} (f(x), x - 1) = 0\\ (f(x), x^2 - 1) = 0 \end{cases}$$

that is, using the above calculations

$$\begin{cases} -2a + \frac{2}{3}b - \frac{2}{3}c = 0\\ -\frac{4}{3}a - \frac{4}{15}c = 0 \end{cases}$$

Solving the system one gets b = -8a and c = -5a. Therefore

$$W^{\perp} = L(1 - 2x - 5x^2)$$

Therefore

$$p_{W^{\perp}}(x) = \frac{(x, 1 - 2x - 5x^2)}{(1 - 2x - 5x^2), (1 - 2x - 5x^2)} (1 - 8x - 5x^2) = \frac{-4}{3}(1 - 2x - 5x^2) = -\frac{1}{6}(1 - 2x - 5x^2)$$

Therefore the distance between x and W is

$$\| -\frac{1}{6}(1 - 2x - 5x^2) \| = \frac{1}{6}\sqrt{8} = \frac{\sqrt{2}}{3}$$

and the closest point is

$$h(x) = x - \left(-\frac{1}{6}(1 - 2x - 5x^2)\right) = \frac{1}{6} + \frac{2}{3}x - \frac{5}{6}x^2 = \frac{1}{6}(1 + 4x - 5x^2)$$