
L. A. G. final exam n.1, june 27, 2016 Name:

1. Let P = (1, 0, 0) and, for a varying in R, Aa = (1, a,−1). For a varying in R let us
consider the line of V3: Sa = {P + sAa | s ∈ R }.
Let L be the following line of V3: L = {(9,−3,−1) + t(1, 0,−1) | t ∈ R}.
(a) Find all a ∈ R such that there is a plane containing both Sa and L.
(b) For such values of a write down the parametric equation of the plane.

Solution. Known fact to be used: there is a plane containing both lines if and only if
the two lines are parallel or they meet. It is easy to see that, for all a, they don’t meet
(try to find the intersection point and you’ll see that the system has no solution for all a).
However, the two lines can be parallel: this happens if and only if a = 0. In this case the
plane containing them is

Π = P + tA0 + s((9,−3,−1)− P ) = (1, 0, 0) + t(1, 0,−1) + s(8,−3,−1) t, s ∈ R.

2. Let L be the line of V2 whose cartesian equation is 4x+ 3y = 10.
Moreover let X be the subset of V2 whose elements are the pairs (x, y) such that

2 ‖ (x, y) ‖= d
(
(x, y)), L).

(a) Find the maximum of the norms of elements of X and find all elements of X having
maximal norm. Find the minimum of the norms of elements of X and find all elements of
X having minimal norm.
(b) Draw a rough sketch of X .

Solution. The condition defining X can be written as

d((x, y), O) =
1

2
d((x, y), L)

Therefore X is the ellipse of eccentricity e = 1
2 , with one focus at the origin and the

corresponding directrix equal to the line L. The points of maximal norm and minimal
norm are the two vertices. To find the two vertices one can use the polar equation. We
have d = d(O,L) = 10

5 = 2. The unit normal vector to L is N = 1
5 (4, 3). The focus O is

in the negative half-plane. Therefore the polar equation is

r =
1
22

1 + 1
2cosφ

where φ is the angle between (x, y) and N . The minimum (resp. the maximum) occur for
φ = 0 (resp. φ = π), that is the two vertices, as we know. The minimal norm is 2

3 . The



maximal norm is 2. The point of minimal distance is 2
3N . the point of maximal distance

is −2N .

3. A point moves in V3 with position vector r(t), in such a way that its acceleration
vector a(t) is parallel to the vector r(t) − (1, 2,−1) for all t. Moreover, at the initial
time t = 0 we have that r(0) = (−1, 3, 2) and r′(0) = (1, 1, 1).
Is there a plane containing r(t) for all t? (that is: is the trajectory of the point is contained
in a plane?)
If the answer is no, find an example of such a motion such that the trajectory of the point
is not contained in any plane. If the answer is yes, find the equation of the plane, and
explain why the trajectory is contained in that plane.

Solution. The answer is: yes, the trajectory of the point is contained in a plane. It is a
calculation that we did more than one time (see for example Ex. 10 of Section 14.9, there
are also similar exercises). The condition of the motion is described by the equation

(r− P )′′ × (r− P ) ≡ 0

where P = (1, 2,−1). This can be also written(
(r− P )′ × (r− P )

)′ ≡ 0

that is
(r− P )′ × (r− P ) ≡ constant := u

Therefore, since r(t) − P is always perpendicular to u, the trajectory is contained in the
plane of cartesian equation

(X − P ) · u = 0

The constant vector u can be computed using the initial conditions:
u = (r′(0)− P )× (r(0)− P ).

4. Let V be the linear space of real polynomials of degree ≤ 2, equipped with the inner
product:

(P,Q) = P (0)Q(0) + P ′(0)Q′(0) + P ′′(0)Q′′(0)

Find two polynomials P and Q in V such that x2 = P (x) +Q(x) and satisfying the
following properties:
- P (−1) = 0
- Q is perpendicular to all polynomials F ∈ V such that F (−1) = 0. (Hint: before
embarking on calculations, understand the formula defining the inner product).

Solution. For a polynomial P (x) = a0 + a1x+ a2x
2 we have that P (0) = a0, P ′(0) = a1,

P ′′(0) = 2a2. Therefore, letting Q(x) = b0 + b1x+ b2x
2, we have that

(P (x), Q(x)) = a0b0 + a1b1 + 4a2b2



The exercise asks for the orthogonal decomposition of the polynomial x2 as sum of an
element of W = {P (x) ∈ V | P (−1) = 0} and of an element of W⊥:

x2 = pW (x2) + PW⊥(x2)

Since W is two-dimensional, W⊥ is one-dimensional, hence it is shorter to compute
PW⊥(x2).

First we compute W⊥: a basis of W is, for example {x + 1, x2 + x}. Therefore W⊥

is the linear space of all polynomials Q(x) = a0 + a1x+ a2x
2 perpendicular to both x+ 1

and x2 + x. Using our formula for the inner product, we get the system
{
a0 + a1 = 0
a1 + 4a2 = 0

.

Therefore
W⊥ = L(4− 4x+ x2)

Hence

Q(x) = pW⊥(x2) =
(x2, 4− 4x+ x2)

(4− 4x+ x2, 4− 4x+ x2)
(4− 4x+ x2) =

4

9
(4− 4x+ x2) and

P (x) = x2 −Q(x) =
4

9
(−1 + x+ 2x2)

5. Let U be a linear subspace of V4 Let TU : V4 → V4 be the linear transformation defined
as follows: TU (X) = PU (X) +X (where PU denotes the projection onto U).
(a) Find eigenvalues and eigenspaces of TU . Is TU diagonalizable?
(b) Compute the null-space and range of TU .
(c) Now let let U = L((1, 0, 1, 1), (1, 1,−1,−1)). . Find (if possible) a basis B of V4 such
that the representing matrix mB

B(TU ) is diagonal.

Solution. (a) For X ∈ U , we have that TU (X) = PU (X)+X = X+X = 2X. Therefore 2
is an eigenvalue and U is contained in the eigenspace of 2. For X ∈ U⊥, TU (X) = PU (X)+
X = O+X = X. Therefore 1 is an eigenvalue and U⊥ is contained in the eigenspace of 1.
Putting absis of U and a basis of U⊥ together we find that TU is diagonalizable and that
2 and 1 are the only eigenvalues of TU
(b) The nullspace of T is {O}: in fact, if it was bigger that that, 0 would be an eigenvalue,
which we know is not true. Therefore, by the nullity plus rank theorem, TU (V4) = V4.
(c) One has to find a basis of U⊥ (it is a two-dimensional linear subspace). Putting together
with the basis of U we have a basis B of V4 such that mB

B(TU ) = diag(2, 2, 1, 1).


