Geometria. Esame scritto del 26-0602017. Nome e Cognome:

Motivare adeguatamente tutte le risposte.

- 1. Per $a, b \in \mathbf{R}$ si considerino il piano $M_a = \{(\frac{1}{2}, 0, 0) + t(3, 0, -2) + s(a, -5, a) \mid t, s \in \mathbf{R}\}$ e la retta $L_b = \{(1, b, 1) + t(1, 1, 1) \mid t \in \mathbf{R}\}$. Determinare tutte le coppie (a, b) tali che la retta L_b è contenuta nel piano M_a . Per tali coppie (a, b) determinare la retta contenuta in M_a , perpendicolare a L_b e passante per (1, b, 1).
- **2.** In V_4 , munito del prodotto scalare ordinario, si consideri il vettore $\mathbf{v}=(2,1,1,-1)$. Tra tutti i vettori (x,y,z,t) di V_4 tali che $\begin{cases} x+y-z+t=0\\ x+y-z-t=0 \end{cases}$ determinare quello che ha distanza minima da \mathbf{v} .
- 3. Sia P_2 lo spazio lineare dei polinomi reali di grado ≤ 2 . Si consideri la trasformazione lineare $T:P_2\to P_2$ tale che

$$T(x-1) = x^2 + 1$$
, $T(x+1) = x^2 + 2x + 1$, e $T((x+1)^2) = x^2 + x - 1$.

Dati $a, b, c \in \mathbf{R}$ determinare il polinomio $T^{-1}(ax^2 + bx + c)$ in funzione di a, b, c.

4. Sia
$$A = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$
. Verificare che $\lambda = -1$ è un autovalore di A . Determinare

gli altri autovalori di A (non si richiede di calcolare il polinomio caratteristico di A). Determinare (se esiste) una matrice invertibile C tale che $C^{-1}AC$ è una matrice diagonale (non si richiede di calcolare C^{-1}).