
L. A. G. 2015. 3rd written exam, 9 - 7, 2015

1. Let P = (1, 1, 2), A = (1,−2, 2) and B = (4, 3, 0). Let L be the line {P + tA | t ∈ R}
and let S be the line {P + sB | s ∈ R}.
(a) Write down a pair of points (Q,R) with Q ∈ L and R ∈ S such that: d(P,Q) = d(P,R)
and the area of the triangle of vertices P ,Q,R is 30.
(b) Find all pairs of points (Q,R) as in (a) (that is Q ∈ L and R ∈ S such that: d(P,Q) =
d(P,R) and the area of the triangle of vertices P ,Q,R is 30).
(c) Find all planes M containing both the lines L and S and such that d(M,P ) = 15.

(a) Since Lt = P + tA, we get d(Lt, P ) =‖ tA ‖= |t| ‖ A ‖= |t|3. For the same reason
d(Ss, P ) = |s|5. From the condition d(Lt, P ) = d(Ss, P ) we get |s| = 3

5 |t|. Taking, for
example t > 0 and s > 0, we get

s =
3

5
t

The area, say a, of the triangle is 1
2 ‖ tA × sB ‖= 1

2 |t||s| ‖ A × B ‖= 1
2 |t||s|

√
221.

Substituting the previous expression for s we get a = t2( 3
√
221
5 ). Imposing a = 30 we get

|t| = 21/25
2211/4

. Since t is assumed to be positive t = 21/25
2211/4

. Consequently s = 21/2

2211/43
.

(b) The pairs are 4 (t and s both positive, with negative, one positive and the other
negative).
(c) Obviously there are no such planes: if a plane M contains the line L, it contains also
the point P , hence d(P,M) = 0.

2. Let V3 the linear space of real polynomials of degree ≤ 3. Let P (x) = x3 +x2− 2x+ 1
and Q(x) = x3 − x2 + 2x + 1.
(a) Write down two different bases of V3 containing both P (x) and Q(x) and such that the
remaining elements of the first basis are not scalar multiples of any element of the second
basis.
(b) Write down a polynomial R(x) ∈ V3 which is not a scalar multiple of P (x) or Q(x),
such that {P (x), Q(x), R(x)} is a linearly dependent set .

(a) For example, {1, x, P (x), Q(x)} and {1+x, x2, P (x), Q(x)}. Indeed the polynomial are
independent if and only if their vectors of coefficients are. In the first case the set of vectors
of coefficients are {(1, 0, 0, 0), (0, 1, 0, 0), (1,−2, 1, 1), (1, 2,−1, 1)} and an easy calculation
shows that they are independent. Similarly for the second set.
(b) For example: R(x) = P (x) + Q(x) = 2 + 2x3.

3. For t varying in R let us consider the matrices

At =


1 0 0 1
0 t + 2 0 0

t + 1 2 1 0
0 0 0 2

 e Bt =


1 0 0 0
1 −1 t + 2 2
0 t + 2 0 0
0 0 0 −(t + 2)





(a) Compute the t’s such that At is not invertible. Compute the t’ s such that Bt is not
invertible.
(b) For t varying in R, compute rk(AtBt).

(c) For a varying in R, let Ca =


1

a + 1
a

a + 1

. Find for which pairs (t, a) the linear system

(AtBt)X = Ca has :
- a unique solution.
- no solution.
- infinitely many solutions.

(a) One computes det(At) = 2(t+2). Therefore A−t is not invertible if and only if t = −2.
Moreover det(Bt) = −(t + 2)3. therefore Bt is not invertible if and only if t = −2.
(b) Since the product of two invertible matrices is invertible, we have that, if t 6= −2, AtBt

is invertible, hence rk(AtBt) = 4. It remains to check the case t = −2, where a direct
calculations shows that rk(A−2B−2) = 2.
(c) By Cramer’s theorem, for t 6= −2 the solution is unique for each a. It remains to
see what happens for t = −2. In this case an easy calculation shows that the system
A−1B−2X = Ca has a solution if and only if a = −1, and in this case they are infinitely
many.

4. Let us consider the quadratic form Q defined by Q(x, y, z, t) = (x + y − z + 2t)2.
(a) Is Q positive, semi positive or indefinite?
(b) Reduce Q to canonical form. That is: find an orthonormal basis B of V 4 and scalars
a, b, c, d such that Q(x, y, z, t) = a(x′)2 + b(y′)2 + c(z′)2 +d(t′)2, where (x′, y′, z′, t′) are the
components of (x, y, z, t) with respect to the basis B.
(c) Find the maximum and the minimum of Q on the unit sphere of V 4 (recall: the unit
sphere of V 4 is the set of unit vectors of V 4).

(a) It is clearly semi-positive, since Q(x, y, z, t) ≥ 0 for all (x, y, z, t) ∈ V 4, but, Q(x, y, z, t)−
0 for all (x, y, z, t) such that x + y − z + 2t = 0.

(b) One can find the canonical form by computing the eigenvalues of the associated ma-
trix and orthonormal bases of the corresponding eigenspaces. However, this particular
quadratic form is so simple that one can find the canonical form immediately. In fact,
knowing what the shape of the canonical form will be (see the textbook, or simply the
text of the present exercise), from the fact that for x + y − z + 2t = 0 (which defines
a subspace W of dimension 3) we infer that three of the four scalars a, b, c, d, say b, c
and d, must vanish. Moreover the orthonormal basis B must be such that the last three
vectors of |calB form a (orthonormal) basis of W . Hence the first vector has to be a ba-
sis of W⊥ = L((1, 1,−1, 2)). whose orthonormal basis is, for example (1/

√
7)(1, 1,−1, 2).

In conclusion: the x′ of the exercise is the first component of the vector of components
of (x, y, z, t) with respect to B, namely (using what we know about orthonormal bases):



x′ = (1/
√

7)(x, y, z, t)(1, 1,−1, 2) = (1/
√

7)(x + y − z + 2t). Form this is follows imme-
diately that the canonical form is Q(x, y, z, t) = 7(x′)2. The basis B will be given by
(1/
√

7)(x, y, z, t)(1, 1,−1, 2) plus an orthonormal basis of W .

(c) Maximum: 7. Minimum: 0.


