Alcuni esercizi risolti di geometria di R?> e R?

NOTA: questi esercizi sono mutuati dal materiale didattico di un altro corso in cui, purtroppo, si usa la
notazione ”orizzontale” per i vettori. Trascrivendoli, passate alla notazione verticale. Inoltre mancano
esercizi su circonferenze e sfere, che saranno presenti in altri files.

1. Let A=(1,-1,-1) and B(1,2,3).
(a) Find a vector C parallel to A and a vector D perpendicular to A such that

2A-B=C+D

(b) Find all vectors parallel to A whose norm is 9.

Solution. (a) What is required in the ortogonal decomposition of the vectore 24 — B in a vector parallel to

A and a vector perperdicular to A. Hence

(2A—-B)- A
A-A

ja=20 1

C = :

and 1
D=(2A-B)-C= g(—77 —2,-5)

(b) We look for all ¢ € R such that || cA ||= 9. But || c¢A ||=|c| || A ||= |¢|]v/3. Therefore |c¢| = % = 3V3.

Hence there are two solutions ¢ = 3v/3 and ¢ = —3v/3. In conclusion, there are two vectors as requested:

3V3A=3V3(1,-1,—-1) and  —3vV3A=-3V3(1,-1,-1)

2. Let P=(1,2,—1) and Q = (0,1,—2). Which of the following points belong to the line containing P
and Q7
() P+Q; (b)) @+(-1,2,1); (c) P+(3,3,3); (d) P—2Q; () @+(5,5,5);  (f) P+(1,3,1)

Solution. We know that a point R belongs to the line containing P and @ if and only if R — P is a scalar
multiple of @ — P. Equivalently, this can be expressed as: R — @ is a scalar multiple of @ — P. Since
Q — P = (—1,—1,—1) this is even easier to check ( the scalar multiples of that vector are the vectors whose
coordinates are equal). Hence: (a) NO; (b) NO; (c¢) YES; (d) NO; (e) YES; (f) NO.

3. Let L={(1,2)+t(3,—4)} and O = (0,0,0). Compute d(O, L) and the point of L closest to O.
Solution. d(O, L) = 2. Closest point: (1,2)+ (1/5)(3,—4) = (8/5,6/5).

These solutions are obtained by applying directly the formulas. Closest point: writing the line as {P + tA},
we write O — P = —P = ((—P) - A/(A- A))A+ C = (1/5)(3,—4) + C. We have that the closest point is
P+ (1/5)A and d(O, L) =|| C ||

4. Let L={(-1,-1,-1)+#(1,1,0)} and S = {(1,4,—1) +¢(0,1,—1)}. Compute L N S.

Solution. LNS =(1,4,—1)—-2(0,1,-1) = (1,2,1).
This is obtained as follows: a point of the intersection is both of the form P +tA = Q + sB. hence (¢, s) are
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solutions of the system tA+s(—B)=Q — P. Inourcase: ¢t | 1 | +s| =1 | = | 5 |. The solutions are

easily found: t =3, s = —2.

3z 4ty +2z =2
5. For each t € R and a € R consider the system { 3tr —ty+z =a.
6z +ty+2 =t
Determine all pairs (¢, a) such that the system has a unique solution, no solutions, more than one solution.

Solution. Let A(t) be the matrix of coefficients of the system. We find that det A(t) = 3t* + 12¢. Therefore
the system has a unique solution if and only if ¢ # 0, —4. If ¢ = 0: one finds (with gaussian elimination, for
example) that there are solutions (necessarily infinitely many) if and only if @ = 4/3. If t = —4 one finds (in
the same way) that there are solutions if and only if @ = 16. In conclusion: MORE THAN ONE (infinitely
many) solutions: (t,a) = (0,4/3) and (¢,a) = (—4,16). NO solutions for (0,a) with a # 4/3 and for (—4,a)
with a # 16. ONE solution: for every (¢,a) with ¢ # 0, —4.

6. Let P = (1,1,-1), @ = (1,0,1), R = (2,2,—1). (a) Find the cartesian equation of the plane
M containing P, @Q and R. (b) Find the cartesian equations of the planes M’ parallel to M such that
d(Q, M) = 4.

Solution. The equation of the plane M is (X — P) - (Q — P) x (R— P) =0, that is: —2x 4+ 2y + 2z = —1.
A parallel plane M’ has equation as follows: —2x + 2y + z = d, and one has to find the d’s such that
d(Q,M') = 4. We know that d(Q,M') =|(—2)-1+1-1—d|/3 =|—1—d|/3. hence the planes are two, one
for d = —13 and the other for d = 11.

7. Let P=(1,—1)andlet R = L((3,—4)) = {t(3,—4) |t € R}. Find all lines S parallel to L such that the
distance D(P, S) = 10.

Solution. A line parallel to R has cartesian equation of the form 4z + 3y = ¢, with ¢ € R. We have to find

the ¢’s such that the distance from P is equal to 10. We know that the distance is |(4’3|)"((i’5|1‘)*c| = ‘1?‘.
L—c| _

We want — 10 which splits into the two possibilities: 1 — ¢ = 50, and ¢ — 1 = 50. therefore there are
two lines as required: Sy : 4z + 3y = —49 and Sy : 4z + 3y = 51.

8. Let A=(1,1,-1), B=(5,2,—4) and C = (2,2, 3). Find all vectors D of the form zA + yB which are
orthogonal to C.

Solution. xA+ yB = (x + by, x + 2y, —x — 4y). Therefore
(xA4+yB)-C = (z+5y,z+2y,—x —4y) - (2,2,3) =20+ 10y + 22 + 4y — 3z — 12y =z + 2y

Therefore (zA + yB) - C = 0 if and only if # = —2y. This means that the vectors A + yB which are
orthogonal to C are those of the form

—2yA+yB =y(-24+ B) =y(3,0,-2)

Now
| 5(3,0,—2) = [yl || (3,0,—2) ||= |y|V/13.
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Therefore the norm is 10 if and only if |y|+/13 = 10, that is y = 10/4/13 and y = —10/+/13. The final answer
is: there are two vectors as required:, namely

10 —10
Dy = —(3,0,—2 and Dy = ——(3,0,-2).
1= 02 2= 5302

9. In R3, let us consider the plane M = {(0,0,1) +¢(1,0,1) + s(1,—1,0)}, and the line L = {¢(1,1,1)}.
(a) Find all points in L such that their distance from M is equal to v/3. (b) For each such point P find the
cartesian equation of the plane parallel to M containing P.

Solution. (a) A normal vector to the plane is (1,0,1) x (1,—1,0) = (1,1, —1). A point of the line is of the
form ¢(1,1,1) = (¢,¢,t). Its distance form the plane is

|((tat>t) _ (0,0, 1)) ) (1’17*1)| _ ‘t+ 1||
|| (1717_1) H \/g

Hence |t + 1|v/3 = /3, that is |t + 1| = 3, which has the two solutions ¢ = 2 and ¢ = —4. The requested
points are (2,2,2) and (—4, —4, —4).

(b) A cartesian equation of a plane parallel to M is of the form = + y — z = d. Replacing (2,2,2) we find
d = 2 and replacing (—4, —4, —4) we find d = —4.

10. Consider the lines in R3: L = {(2,4,-2) +(1,1,0)} and M = {(-3,7,—4) +(2,-2,1)}.

(a) Show that the intersection of L and M is a point and find it. Let us denote it P.

(b) Find a point @ € L and a point R € M such that || @ — P ||=|| R — P || and the area of the triangle
with vertices P, @, R is 2.

Solution. (a) The intersection point (if any) is a point P such that there are a t € R a s € R such that
P=1(2,4,-2)4+1t(1,1,0) = (=3,7,—4)+s(2,—2,1). Therefore ¢(1,1,0) —s(2,—2,1) = (=5, 3, —2). One finds
easily, for example, that —s = 2. Hence s = —2 so the intersection point is P = (—3,7,—4) — 2(2,—-2,1) =
(1337 72)

(b) We can write L = {(1,3,-2) + s%(l,l,())} and M = {(1,3,-2) + s1(2,—2,1)}. Therefore Q — P =
5(1/v/2(1,1,0)) and || Q@ — P ||= |s|. Moreover R — P = X\(1/3(2,-2,1) and || R — P ||= |\|. Since we
want || @ — P ||=|| R — P ||, we can take s = X\. Moreover the area of the triangle with vertices P, @, R is
1/2 || (@ — P) x (R— P) ||= (1/2)(v/18/3v/2)s? = s%/2. Since the area has to be equal to 4, we can take
s =2 (or s = —2). Therefore Q = (1,3, —2) + 2(1/v/2)(1,1,0) and R = (1,3, —2) +2/3(2,—2,1) are points
satisfying the requests of (b).

11. In R3, let us consider the two straight lines L = {(—2,-5,4) + t(1,1,—1)} and R = {(0,1,3) +
t(—1,3,2)}.

(a) Compute the intersection L N R.

(b) Is there a plane containing both L and R? if the answer is yes, compute its cartesian equation.

Solution. (a) A point P lies in the intersection if and only if there are scalars ¢y and sp such that
(—2,—5,4) + to(1,1,—1) = (0,1,3) + so(—1,3,2) = P. Therefore to(1,1,—1) — so(—1,3,2) = (2,6, —1).
Solving the system we find —so = 1, hence sg = —1. Therefore P = (0,1,3) — (—1,3,2) = (1,—-2,1).

(b) The plane is {(1,-2,1) +¢(1,1,—1) + s(—1,3,2)}. Cartesian equation: 5z —y + 4z = 11.

12. Let A=(1,1,-1), B=(-1,1,1) and C = (1,2,1). Find two vectors D and F such that: C = D+ E,
D is orthogonal to both A and B, and FE is a linear combination of A and B. Is there a unique solution?

Solution. We know that C' can be written in a unique way as the sum of two vectors D and E such that D
is parallel to A x B and F is orthogonal to A x B (hence E belongs to L(A, B)). These are the requested
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vectors D and E, and we know that they are the unique vectors having such properties. We compute:
A x B =(2,0,2). To simplify the computation we can take (1,0, 1) rather than (2,0, 2).

1,2,1)-(1,0,1)

p=! 5 (1,0,1) = (1,0,1), E=(1,2,1)— D =(0,2,0)

Note £ = (0,2,0) = A+ B. Now C =D+ E.
13. Let A=(1,1,1), B =(1,—1,—1) and, for ¢ varying in R, C(¢) = (1,¢,2). Find the values of ¢ such

that one of the three vectors A, B, C(t) can be expressed as a linear combination of the remaining two, and,
for each such value of ¢, write explicitly one such expression.

Solution. A vector of A, B and C(t) can be expressed as a linear combination of the remaining two if and
only if {A, B,C(t)} is a set of linearly dependent vectors. This happens if and only if the triple product

1 1 1
A-(BxC(t)) is zero. The triple product is the determinant det | 1 —1 —1 | = 2t —4, which is zero only
1 ¢ 2

for ¢ = 2. In this case, solving the system xA + yB + 2C(2) = O one easily finds the solutions (—3y,y, 2y),
y € R. For y = 1 one gets (—3,1,2) which means that —3A4 + B + 2C(2) = O. Hence B = 3A — 2C(2)
(check!).

14. Let us consider the two lines in R?: L = {(1,—1) +(1,2)} and S :x +y = —3. How many are the
points P € R? such that { ggg g; i g ? Find explicitly two of them.

Solution. The points are four. In fact the locus of points P whose distance from L ( respectively M) is a
fixed number, say d, is the union of two lines, parallel to L (resp. parallel to M))(one in each half-plane).
Hence the intersection of the two loci is four points. In our specific case, let P = (x,y). We have that

(z-1y+1D-2-D] [2z—y-—3|

d((xvy)vL) =

V5 V5
Moreover (y) - (L1)+ 3] | 3|
z,Y) - ) + T+ Yy +
d((z,y),S) = =
V2 V2
Hence we are looking for points (x,y) such that
[2z—y—3] _
{ \ \/53\ e
zty+3[ _
h = V2
A first case is, for example,
20 —y—3=5
r+y+3=2

hence P = (7/3,—10/3). A second case is, for example,

—2x+y+3=5
T+y+3=2

hence P = (—1,0).

15. Let A= (1,0,—1), B =(1,2,1). Moreover let L be the line L = (1,0,0) +¢(1,—1,1), t € R.
Find (if any) all points @ € L such that the area of the triangle whose vertices are A, B and @ is equal to 4.
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Solution. The area of a triangle whose vertices are the points A,B, and Q is 1 || (B—A) x (Q — A) ||. Since
a point of L is of the form (1,0,0) +¢(1,—1,1) we get

1 1
5 1100.2,2) x (t,—tt 1) [|= 5 || (48 +2,2t, —28) ||= V662 + 4t + 1

Hence we are looking for the t’s such that v/6t2 + 4t =1 = 4, hence t; = *2%‘/974 and to = *2*6‘/974 . The
required points are @1 = (1,0,0) +¢1(1,—1,1) and Q2 = (1,0,0) + t2(1,—1,1)

16. Let L be the line {(1,0,1) + #(1,0,2)}. Moreover let M be the plane passing through the points
(0,1,0), (1,2,-1), (1,1,1). Find (if any) all points P of L such that d(P, M) = 1.

Solution. M = (0,1,0) + s(1,1,—1) +¢(1,0,1). The cartesian equation of M is

((SC,y,Z) - (07 1a0)) ’ ((17 1, *1) X (130; 1)) =0,

hence M : x—2(y—1)—2z=0,or M : ©—2y—z = —2. A normal vector is N = (1,—2,—1) and Q- N = -2
for each @ € M.
Let P = (z,y,z). We have that d(P,M) = %, where @ is any point of M. Therefore
P.-N+2 —2y—z—-2
apan < PN ot
V6 V6

If P € L, we have that P = (z,y,2) = (1 +¢,0,1 4+ 2¢t). Substituting in the formula for the distance we get
d(P,M) = HT?" hence we have to solve the equation: ‘_\f’/_ém = 1. the solutions are —2 + v/6 and /6 — 2.
Plugging these two values of ¢ in the parametric equation of L we get the two points in L whose distance

from M is equal to 1.

17. Let A, B, C be three vectors in R3. Prove or disprove the following assertions:

(a) If A, B and C are linearly independent then the vectors A+2B, A+ B—C, A+ B are linearly independent.
(b) The vectors A + 2B, A+ B — C, A+ B can be linearly independent even if A, B and C are linearly
dependent

(c) The vectors A+2B, A+ B—C, —A+2C are always linearly dependent, regardless of the linear dependence
or independence of A, B, C.

Solution.  (a) is correct. Let z,y,z € R such that O = 2(A+2B)+y(A+ B —-C)+ 2(A+ B) =
r+y+2=0

(r+y+2)A+ 2z +y+2)B—yC. Since A, B and C are independent, this means that { 20 +y+2=0.
y=0

It follows easily that =y = 2 = 0.

(b) is false, because the fact that A, B and C' are dependent means that they are contained in a plane trough

the origin. Hence also all linear combinations of A, B and C' are contained in that plane.

18. Let P = (1,2,1) and let R be the line {(1,5,—1) +¢(1,1,—1)}. Compute the distance between P and
L and find the point of L which is nearest to P.

Solution. Let u = (1,2,1) — (1,5,—1) = (0, —3,2). We have that the projection of u along L((1,1,—1) is
pr(u) = —5/3(1,1, —1). Therefore the nearest point is

H=(1,5-1)—5/3(1,1,—1)
The distance is
| u—opr(u) [|=] (0,-3,2) +5/3(1,1,-1) ||=] 1/3(5, =4, 1) ||= v42/3
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19. Let vy, va,v3 be three mutually orthogonal vectors of R3 with || vy [|= 4, || vo ||=| vs ||= 2. Let
v =(1/2)vi + (1/2)vy — v3. For i =1,2,3 let 6; be the angle between v and v;.

(a) Find 0; for i =1,2,3.

(b) Let w = vi — vy + v3. Write w as the sum of a vector parallel to v and a vector perpendicular to v.

Solution. (a) Since the three vectors are orthogonal, we have that

v IP=IE /2 v [P + 1 @/2)va 1P+ | =vs 1= (1/4) [ va 2 +1/4) [ ve 2+ [ vs [IP=9

Hence || v ||= 3. Therefore costy = it = (A/2viva 2/3. (here we used that vq - vo = vy - vg = 0.
Tvvall Vvl
Similarly, one computes cos 2 = 1/3 and cosf3 = —2/3.

20. Let L be the line of R*: L = L((1,1,2)) and let 7 be the plane of R3: m = L((1,2,0),(0,1,1)).

Find the cartesian equations of all planes of V5 which are parallel to L, perpendicular to m, and such that
their distance from the point P = (1,3,1) is equal to v/3. (Recall that two planes are said to be perpendicular
if and only if and only their normal vectors are perpendicular).

Solution. A normal vector to 7 is (1,2,0) x (0,1,1) = (2,—1,1). A normal vector to a plane parallel to L
has to be perpendicular to (1,1,2). A normal vector to a plane perpendicular to 7w has to be perpendicular
to (2,—1,1). Hence a normal vector to a plane which is both parallel to L and perpendicular to 7 has to be
parallel to (1,1,2) x (2,—1,1) = (3, -3, 3). Hence the cartesian equation of the planes we are looking for is
of the form

r—y+z=d.

Denoting @ a point of our plane (any point), the distance of such a plane from the point P = (1,3,1) is

(P-@Q-N)| _|P-N-d _|-1-d
] TN V3

Therefore we have to impose

| —1-d _
7 =3

yielding d = —4 and d = 2. In conclusion the required planes are two, having as cartesian equations

T—y+z=-4 and rT—y+z=2

21. Let vi = (1,2,2) and vo = (1,0,1).

(a) Find three mutually orthogonal vectors of R?, say {w1, wa, w3} such that L(v;) = L(w1) and Span(vy, va) =}
Span(wi, ws).

(b) Find three mutually orthogonal vectors of R3, say {uy,us,uz} such that Span(vy,va) = Span(u, us),

and the angle between vy and u; is equal to 7/4.

Solution. (a) We take wq = vi. Then we find ws using the formula

Therefore we can take wy = (2, —2,1). Then we can take ws = wy X wo = (6,3, —6).
(b) Clearly we can take us = w3 = (6,3,—6). A convenient way to find u; and up is as follows: we first
normalize vi = w; and way, thus obtaining two orthogonal unit vectors, say w/ and wj, parallel respectively
to vi and wy. At this point, two vectors u; and uy as required are, for example, u; = (1/v/2)w} 4 (1/v/2)w)
and up = (1/v/2)w} — (1/v/2)w} (here (1/+/2) = cos(n/4) = sin(n/4)). Hence

1

1
u = —(1,0,1 and u = ——=(—1,4,1
1 2( ) il 2 3\/5( )

6



22. Let us consider the planes M = {(1,0,2) +¢(1,2,1) 4+ s(0,1,—2)} and
N ={(1,3,0) +¢(1,1,1) + s(1,0,—1)}. Describe and find equations for the set of points P € V3 such that
d(P,M) = d(P,N).

Solution. Letting P = (z,y, z), we are interested in the set defined by the equation

(1) d((x,y,2), M) = d((z,y,2), N)

To find an explicit expression for the left and right hand side, we compute the cartesian equations of the two
planes. They turn out to be

M :b5x—2y—z=4 and N:x—-2y+z=1

Therefore
S5 —2y—2—4 d N) = _9 1
d((w,y,z),M) = | r Y o I and ((%%2)7 ) ‘-/I; y+ z ‘
Ve V30

Therefore (1) becomes
|z — 2y —2z—4] |z —2y+z—1]

V6 V30
which is equivalent to
Sx —2y—z—4 xr—2y+z-—1 Sxr —2y—z—4 r—2y+z—1
= or =—
V6 V30 V6 V30

which is the equation of the union of two planes.



