Alcuni esercizi risolti di geometria di \mathbb{R}^2 e \mathbb{R}^3

NOTA: questi esercizi sono mutuati dal materiale didattico di un altro corso in cui, purtroppo, si usa la notazione "orizzontale" per i vettori. Trascrivendoli, passate alla notazione verticale. Inoltre mancano esercizi su circonferenze e sfere, che saranno presenti in altri files.

1. Let A = (1, -1, -1) and B(1, 2, 3).

(a) Find a vector C parallel to A and a vector D perpendicular to A such that

$$2A - B = C + D$$

(b) Find all vectors parallel to A whose norm is 9.

Solution. (a) What is required in the ortogonal decomposition of the vectore 2A - B in a vector parallel to A and a vector perpendicular to A. Hence

$$C = (\frac{(2A - B) \cdot A}{A \cdot A})A = \frac{10}{3}(1, -1, -1)$$

and

$$D = (2A - B) - C = \frac{1}{3}(-7, -2, -5)$$

(b) We look for all $c \in \mathbf{R}$ such that || cA || = 9. But $|| cA || = |c| || A || = |c|\sqrt{3}$. Therefore $|c| = \frac{9}{\sqrt{3}} = 3\sqrt{3}$. Hence there are two solutions $c = 3\sqrt{3}$ and $c = -3\sqrt{3}$. In conclusion, there are two vectors as requested:

$$3\sqrt{3}A = 3\sqrt{3}(1, -1, -1)$$
 and $-3\sqrt{3}A = -3\sqrt{3}(1, -1, -1)$

2. Let P = (1, 2, -1) and Q = (0, 1, -2). Which of the following points belong to the line containing P and Q?

(a) P + Q; (b) Q + (-1, 2, 1); (c) P + (3, 3, 3); (d) P - 2Q; (e) Q + (5, 5, 5); (f) P + (1, 3, 1)

Solution. We know that a point R belongs to the line containing P and Q if and only if R - P is a scalar multiple of Q - P. Equivalently, this can be expressed as: R - Q is a scalar multiple of Q - P. Since Q - P = (-1, -1, -1) this is even easier to check (the scalar multiples of that vector are the vectors whose coordinates are equal). Hence: (a) NO; (b) NO; (c) YES; (d) NO; (e) YES; (f) NO.

3. Let $L = \{(1,2) + t(3,-4)\}$ and O = (0,0,0). Compute d(O,L) and the point of L closest to O.

Solution. d(O, L) = 2. Closest point: (1, 2) + (1/5)(3, -4) = (8/5, 6/5). These solutions are obtained by applying directly the formulas. Closest point: writing the line as $\{P + tA\}$, we write $O - P = -P = ((-P) \cdot A/(A \cdot A))A + C = (1/5)(3, -4) + C$. We have that the closest point is P + (1/5)A and d(O, L) = ||C||.

4. Let $L = \{(-1, -1, -1) + t(1, 1, 0)\}$ and $S = \{(1, 4, -1) + t(0, 1, -1)\}$. Compute $L \cap S$.

Solution. $L \cap S = (1, 4, -1) - 2(0, 1, -1) = (1, 2, 1)$. This is obtained as follows: a point of the intersection is both of the form P + tA = Q + sB. hence (t, s) are solutions of the system tA + s(-B) = Q - P. In our case: $t \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix}$. The solutions are easily found: t = 3, s = -2.

5. For each $t \in \mathbf{R}$ and $a \in \mathbf{R}$ consider the system $\begin{cases} 3x + ty + 2z &= 2\\ 3tx - ty + z &= a\\ 6x + ty + z &= t \end{cases}$

Determine all pairs (t, a) such that the system has a unique solution, no solutions, more than one solution.

Solution. Let $\mathcal{A}(t)$ be the matrix of coefficients of the system. We find that det $\mathcal{A}(t) = 3t^2 + 12t$. Therefore the system has a unique solution if and only if $t \neq 0, -4$. If t = 0: one finds (with gaussian elimination, for example) that there are solutions (necessarily infinitely many) if and only if a = 4/3. If t = -4 one finds (in the same way) that there are solutions if and only if a = 16. In conclusion: MORE THAN ONE (infinitely many) solutions: (t, a) = (0, 4/3) and (t, a) = (-4, 16). NO solutions for (0, a) with $a \neq 4/3$ and for (-4, a)with $a \neq 16$. ONE solution: for every (t, a) with $t \neq 0, -4$.

6. Let P = (1, 1, -1), Q = (1, 0, 1), R = (2, 2, -1). (a) Find the cartesian equation of the plane M containing P, Q and R. (b) Find the cartesian equations of the planes M' parallel to M such that d(Q, M') = 4.

Solution. The equation of the plane M is $(X - P) \cdot (Q - P) \times (R - P) = 0$, that is: -2x + 2y + z = -1. A parallel plane M' has equation as follows: -2x + 2y + z = d, and one has to find the d's such that d(Q, M') = 4. We know that $d(Q, M') = |(-2) \cdot 1 + 1 \cdot 1 - d|/3 = |-1 - d|/3$. hence the planes are two, one for d = -13 and the other for d = 11.

7. Let P = (1, -1) and let $R = L((3, -4)) = \{t(3, -4) \mid t \in \mathbf{R}\}$. Find all lines S parallel to L such that the distance D(P, S) = 10.

Solution. A line parallel to R has cartesian equation of the form 4x + 3y = c, with $c \in \mathbf{R}$. We have to find the c's such that the distance from P is equal to 10. We know that the distance is $\frac{|(4,3)\cdot(1,-1)-c|}{||(4,3)||} = \frac{|1-c|}{5}$. We want $\frac{|1-c|}{5} = 10$ which splits into the two possibilities: 1 - c = 50, and c - 1 = 50. therefore there are two lines as required: $S_1: 4x + 3y = -49$ and $S_2: 4x + 3y = 51$.

8. Let A = (1, 1, -1), B = (5, 2, -4) and C = (2, 2, 3). Find all vectors D of the form xA + yB which are orthogonal to C.

Solution. xA + yB = (x + 5y, x + 2y, -x - 4y). Therefore

$$(xA + yB) \cdot C = (x + 5y, x + 2y, -x - 4y) \cdot (2, 2, 3) = 2x + 10y + 2x + 4y - 3x - 12y = x + 2y$$

Therefore $(xA + yB) \cdot C = 0$ if and only if x = -2y. This means that the vectors xA + yB which are orthogonal to C are those of the form

$$-2yA + yB = y(-2A + B) = y(3, 0, -2)$$

Now

$$|| y(3,0,-2) = |y| || (3,0,-2) || = |y|\sqrt{13}.$$

Therefore the norm is 10 if and only if $|y|\sqrt{13} = 10$, that is $y = 10/\sqrt{13}$ and $y = -10/\sqrt{13}$. The final answer is: there are two vectors as required:, namely

$$D_1 = \frac{10}{\sqrt{13}}(3, 0, -2)$$
 and $D_2 = \frac{-10}{\sqrt{13}}(3, 0, -2).$

9. In \mathbb{R}^3 , let us consider the plane $M = \{(0,0,1) + t(1,0,1) + s(1,-1,0)\}$, and the line $L = \{t(1,1,1)\}$. (a) Find all points in L such that their distance from M is equal to $\sqrt{3}$. (b) For each such point P find the cartesian equation of the plane parallel to M containing P.

Solution. (a) A normal vector to the plane is $(1,0,1) \times (1,-1,0) = (1,1,-1)$. A point of the line is of the form t(1,1,1) = (t,t,t). Its distance form the plane is

$$\frac{|((t,t,t)-(0,0,1))\cdot(1,1,-1)|}{\parallel(1,1,-1)\parallel} = \frac{|t+1|}{\sqrt{3}}|$$

Hence $|t+1|\sqrt{3} = \sqrt{3}$, that is |t+1| = 3, which has the two solutions t = 2 and t = -4. The requested points are (2, 2, 2) and (-4, -4, -4).

(b) A cartesian equation of a plane parallel to M is of the form x + y - z = d. Replacing (2, 2, 2) we find d = 2 and replacing (-4, -4, -4) we find d = -4.

10. Consider the lines in \mathbb{R}^3 : $L = \{(2, 4, -2) + t(1, 1, 0)\}$ and $M = \{(-3, 7, -4) + t(2, -2, 1)\}$.

(a) Show that the intersection of L and M is a point and find it. Let us denote it P.

(b) Find a point $Q \in L$ and a point $R \in M$ such that ||Q - P|| = ||R - P|| and the area of the triangle with vertices P, Q, R is 2.

Solution. (a) The intersection point (if any) is a point P such that there are a $t \in \mathbf{R}$ a $s \in \mathbf{R}$ such that P = (2, 4, -2) + t(1, 1, 0) = (-3, 7, -4) + s(2, -2, 1). Therefore t(1, 1, 0) - s(2, -2, 1) = (-5, 3, -2). One finds easily, for example, that -s = 2. Hence s = -2 so the intersection point is P = (-3, 7, -4) - 2(2, -2, 1) = (1, 3, -2).

(b) We can write $L = \{(1,3,-2) + s\frac{1}{\sqrt{2}}(1,1,0)\}$ and $M = \{(1,3,-2) + s\frac{1}{3}(2,-2,1)\}$. Therefore $Q - P = s(1/\sqrt{2}(1,1,0))$ and || Q - P || = |s|. Moreover $R - P = \lambda(1/3(2,-2,1))$ and $|| R - P || = |\lambda|$. Since we want || Q - P || = || R - P ||, we can take $s = \lambda$. Moreover the area of the triangle with vertices P, Q, R is $1/2 || (Q - P) \times (R - P) || = (1/2)(\sqrt{18}/3\sqrt{2})s^2 = s^2/2$. Since the area has to be equal to 4, we can take s = 2 (or s = -2). Therefore $Q = (1, 3, -2) + 2(1/\sqrt{2})(1, 1, 0)$ and R = (1, 3, -2) + 2/3(2, -2, 1) are points satisfying the requests of (b).

11. In \mathbb{R}^3 , let us consider the two straight lines $L = \{(-2, -5, 4) + t(1, 1, -1)\}$ and $R = \{(0, 1, 3) + t(-1, 3, 2)\}$.

(a) Compute the intersection $L \cap R$.

(b) Is there a plane containing both L and R? if the answer is yes, compute its cartesian equation.

Solution. (a) A point P lies in the intersection if and only if there are scalars t_0 and s_0 such that $(-2, -5, 4) + t_0(1, 1, -1) = (0, 1, 3) + s_0(-1, 3, 2) = P$. Therefore $t_0(1, 1, -1) - s_0(-1, 3, 2) = (2, 6, -1)$. Solving the system we find $-s_0 = 1$, hence $s_0 = -1$. Therefore P = (0, 1, 3) - (-1, 3, 2) = (1, -2, 1). (b) The plane is $\{(1, -2, 1) + t(1, 1, -1) + s(-1, 3, 2)\}$. Cartesian equation: 5x - y + 4z = 11.

12. Let A = (1, 1, -1), B = (-1, 1, 1) and C = (1, 2, 1). Find two vectors D and E such that: C = D + E, D is orthogonal to both A and B, and E is a linear combination of A and B. Is there a unique solution?

Solution. We know that C can be written in a unique way as the sum of two vectors D and E such that D is parallel to $A \times B$ and E is orthogonal to $A \times B$ (hence E belongs to L(A, B)). These are the requested

vectors D and E, and we know that they are the unique vectors having such properties. We compute: $A \times B = (2,0,2)$. To simplify the computation we can take (1,0,1) rather than (2,0,2).

$$D = \frac{(1,2,1) \cdot (1,0,1)}{2} (1,0,1) = (1,0,1), \qquad E = (1,2,1) - D = (0,2,0)$$

Note E = (0, 2, 0) = A + B. Now C = D + E.

13. Let A = (1, 1, 1), B = (1, -1, -1) and, for t varying in **R**, C(t) = (1, t, 2). Find the values of t such that one of the three vectors A, B, C(t) can be expressed as a linear combination of the remaining two, and, for each such value of t, write explicitly one such expression.

Solution. A vector of A, B and C(t) can be expressed as a linear combination of the remaining two if and only if $\{A, B, C(t)\}$ is a set of linearly dependent vectors. This happens if and only if the triple product $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$

 $A \cdot (B \times C(t))$ is zero. The triple product is the determinant det $\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & t & 2 \end{pmatrix} = 2t - 4$, which is zero only for t = 2. In this case, solving the system xA + yB + zC(2) = O one easily finds the solutions (-3y, y, 2y),

for t = 2. In this case, solving the system xA + yB + zC(2) = 0 one easily finds the solutions (-3y, y, 2y), $y \in \mathbf{R}$. For y = 1 one gets (-3, 1, 2) which means that -3A + B + 2C(2) = 0. Hence B = 3A - 2C(2) (check!).

14. Let us consider the two lines in \mathbf{R}^2 : $L = \{(1, -1) + t(1, 2)\}$ and S: x + y = -3. How many are the points $P \in \mathbf{R}^2$ such that $\begin{cases} d(P, L) = \sqrt{5} \\ d(P, S) = \sqrt{2} \end{cases}$? Find explicitly two of them.

Solution. The points are four. In fact the locus of points P whose distance from L (respectively M) is a fixed number, say d, is the union of two lines, parallel to L (resp. parallel to M))(one in each half-plane). Hence the intersection of the two loci is four points. In our specific case, let P = (x, y). We have that

$$d((x,y),L) = \frac{|(x-1,y+1)\cdot(2,-1)|}{\sqrt{5}} = \frac{|2x-y-3|}{\sqrt{5}}$$

Moreover

$$d((x,y),S) = \frac{|(x,y) \cdot (1,1) + 3|}{\sqrt{2}} = \frac{|x+y+3|}{\sqrt{2}}$$

Hence we are looking for points (x, y) such that

$$\begin{cases} \frac{|2x-y-3|}{\sqrt{5}} = \sqrt{5} \\ \frac{|x+y+3|}{\sqrt{2}} = \sqrt{2} \end{cases}$$

A first case is, for example,

$$\begin{cases} 2x - y - 3 = 5\\ x + y + 3 = 2 \end{cases}$$

hence P = (7/3, -10/3). A second case is, for example,

$$\begin{cases} -2x + y + 3 = 5\\ x + y + 3 = 2 \end{cases}$$

hence P = (-1, 0).

15. Let A = (1, 0, -1), B = (1, 2, 1). Moreover let L be the line L = (1, 0, 0) + t(1, -1, 1), $t \in \mathbf{R}$. Find (if any) all points $Q \in L$ such that the area of the triangle whose vertices are A, B and Q is equal to 4. Solution. The area of a triangle whose vertices are the points A, B, and Q is $\frac{1}{2} \parallel (B-A) \times (Q-A) \parallel$. Since a point of L is of the form (1, 0, 0) + t(1, -1, 1) we get

$$\frac{1}{2} \parallel (0,2,2) \times (t,-t,t+1) \parallel = \frac{1}{2} \parallel (4t+2,2t,-2t) \parallel = \sqrt{6t^2 + 4t + 1}$$

Hence we are looking for the t's such that $\sqrt{6t^2 + 4t = 1} = 4$, hence $t_1 = \frac{-2 + \sqrt{94}}{6}$ and $t_2 = \frac{-2 - \sqrt{94}}{6}$. The required points are $Q_1 = (1, 0, 0) + t_1(1, -1, 1)$ and $Q_2 = (1, 0, 0) + t_2(1, -1, 1)$

16. Let L be the line $\{(1,0,1) + t(1,0,2)\}$. Moreover let M be the plane passing through the points (0,1,0), (1,2,-1), (1,1,1). Find (if any) all points P of L such that d(P,M) = 1.

Solution. M = (0, 1, 0) + s(1, 1, -1) + t(1, 0, 1). The cartesian equation of M is

$$((x, y, z) - (0, 1, 0)) \cdot ((1, 1, -1) \times (1, 0, 1)) = 0,$$

hence M: x-2(y-1)-z=0, or M: x-2y-z=-2. A normal vector is N=(1,-2,-1) and $Q \cdot N=-2$ for each $Q \in M$.

Let P = (x, y, z). We have that $d(P, M) = \frac{|P-Q|}{\|N\|}$, where Q is any point of M. Therefore

$$d(P,M) = \frac{|P \cdot N + 2|}{\sqrt{6}} = \frac{|x - 2y - z - 2|}{\sqrt{6}}$$

If $P \in L$, we have that P = (x, y, z) = (1 + t, 0, 1 + 2t). Substituting in the formula for the distance we get $d(P, M) = \frac{|-t-2|}{\sqrt{6}}$. hence we have to solve the equation: $\frac{|-t-2|}{\sqrt{6}} = 1$. the solutions are $-2 + \sqrt{6}$ and $\sqrt{6} - 2$. Plugging these two values of t in the parametric equation of L we get the two points in L whose distance from M is equal to 1.

17. Let A, B, C be three vectors in \mathbb{R}^3 . Prove or disprove the following assertions:

(a) If A, B and C are linearly independent then the vectors A+2B, A+B-C, A+B are linearly independent. (b) The vectors A + 2B, A + B - C, A + B can be linearly independent even if A, B and C are linearly dependent

(c) The vectors A+2B, A+B-C, -A+2C are always linearly dependent, regardless of the linear dependence or independence of A, B, C.

Solution. (a) is correct. Let $x, y, z \in \mathbf{R}$ such that O = x(A+2B) + y(A+B-C) + z(A+B) = (x+y+z)A + (2x+y+z)B - yC. Since A, B and C are independent, this means that $\begin{cases} x+y+z=0\\ 2x+y+z=0\\ y=0 \end{cases}$

It follows easily that x = y = z = 0.

(b) is false, because the fact that A, B and C are dependent means that they are contained in a plane trough the origin. Hence also all linear combinations of A, B and C are contained in that plane.

18. Let P = (1, 2, 1) and let R be the line $\{(1, 5, -1) + t(1, 1, -1)\}$. Compute the distance between P and L and find the point of L which is nearest to P.

Solution. Let $\mathbf{u} = (1, 2, 1) - (1, 5, -1) = (0, -3, 2)$. We have that the projection of \mathbf{u} along L((1, 1, -1)) is $pr(\mathbf{u}) = -5/3(1, 1, -1)$. Therefore the nearest point is

$$H = (1, 5, -1) - \frac{5}{3}(1, 1, -1)$$

The distance is

$$\| \mathbf{u} - \operatorname{pr}(\mathbf{u}) \| = \| (0, -3, 2) + 5/3(1, 1, -1) \| = \| 1/3(5, -4, -1) \| = \sqrt{42}/3$$

19. Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be three mutually orthogonal vectors of \mathbf{R}_3 with $|| \mathbf{v}_1 || = 4$, $|| \mathbf{v}_2 || = || \mathbf{v}_3 || = 2$. Let $\mathbf{v} = (1/2)\mathbf{v}_1 + (1/2)\mathbf{v}_2 - \mathbf{v}_3$. For i = 1, 2, 3 let θ_i be the angle between \mathbf{v} and \mathbf{v}_i . (a) Find θ_i for i = 1, 2, 3.

(b) Let $\mathbf{w} = \mathbf{v}_1 - \mathbf{v}_2 + \mathbf{v}_3$. Write \mathbf{w} as the sum of a vector parallel to \mathbf{v} and a vector perpendicular to \mathbf{v} . Solution. (a) Since the three vectors are orthogonal, we have that

Solution. (a) Since the three vectors are of thogonal, we have that

$$\|\mathbf{v}\|^{2} = \|(1/2)\mathbf{v}_{1}\|^{2} + \|(1/2)\mathbf{v}_{2}\|^{2} + \|-\mathbf{v}_{3}\|^{2} = (1/4)\|\mathbf{v}_{1}\|^{2} + (1/4)\|\mathbf{v}_{2}\|^{2} + \|\mathbf{v}_{3}\|^{2} = 9$$

Hence $\|\mathbf{v}\| = 3$. Therefore $\cos \theta_1 = \frac{\mathbf{v}_1 \cdot \mathbf{v}}{\|\mathbf{v}\| \|\mathbf{v}_1\|} = \frac{(1/2)\mathbf{v}_1 \cdot \mathbf{v}_1}{\|\mathbf{v}\| \|\mathbf{v}_1\|} = 2/3$. (here we used that $\mathbf{v}_1 \cdot \mathbf{v}_2 = \mathbf{v}_1 \cdot \mathbf{v}_3 = 0$. Similarly, one computes $\cos \theta_2 = 1/3$ and $\cos \theta_3 = -2/3$.

20. Let *L* be the line of \mathbf{R}^3 : L = L((1, 1, 2)) and let π be the plane of \mathbf{R}^3 : $\pi = L((1, 2, 0), (0, 1, 1))$. Find the cartesian equations of all planes of \mathcal{V}_3 which are parallel to *L*, perpendicular to π , and such that their distance from the point P = (1, 3, 1) is equal to $\sqrt{3}$. *(Recall that two planes are said to be perpendicular if and only if and only their normal vectors are perpendicular).*

Solution. A normal vector to π is $(1,2,0) \times (0,1,1) = (2,-1,1)$. A normal vector to a plane parallel to L has to be perpendicular to (1,1,2). A normal vector to a plane perpendicular to π has to be perpendicular to (2,-1,1). Hence a normal vector to a plane which is both parallel to L and perpendicular to π has to be parallel to $(1,1,2) \times (2,-1,1) = (3,-3,3)$. Hence the cartesian equation of the planes we are looking for is of the form

$$x - y + z = d.$$

Denoting Q a point of our plane (any point), the distance of such a plane from the point P = (1, 3, 1) is

$$\frac{|(P-Q)\cdot N)|}{\|N\|} = \frac{|P\cdot N-d|}{\|N\|} = \frac{|-1-d|}{\sqrt{3}}$$

Therefore we have to impose

$$\frac{|-1-d|}{\sqrt{3}} = \sqrt{3}$$

yielding d = -4 and d = 2. In conclusion the required planes are two, having as cartesian equations

$$x - y + z = -4$$
 and $x - y + z = 2$

21. Let $\mathbf{v}_1 = (1, 2, 2)$ and $\mathbf{v}_2 = (1, 0, 1)$.

(a) Find three mutually orthogonal vectors of \mathbf{R}^3 , say $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ such that $L(\mathbf{v}_1) = L(\mathbf{w}_1)$ and $Span(\mathbf{v}_1, \mathbf{v}_2) = Span(\mathbf{w}_1, \mathbf{w}_2)$.

(b) Find three mutually orthogonal vectors of \mathbf{R}^3 , say $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ such that $Span(\mathbf{v}_1, \mathbf{v}_2) = Span(\mathbf{u}_1, \mathbf{u}_2)$, and the angle between \mathbf{v}_1 and \mathbf{u}_1 is equal to $\pi/4$.

Solution. (a) We take $\mathbf{w}_1 = \mathbf{v}_1$. Then we find \mathbf{w}_2 using the formula

$$\mathbf{v}_2 - \frac{\mathbf{v}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \frac{1}{3}(2, -2, 1)$$

Therefore we can take $\mathbf{w}_2 = (2, -2, 1)$. Then we can take $\mathbf{w}_3 = \mathbf{w}_1 \times \mathbf{w}_2 = (6, 3, -6)$.

(b) Clearly we can take $\mathbf{u}_3 = \mathbf{w}_3 = (6, 3, -6)$. A convenient way to find \mathbf{u}_1 and \mathbf{u}_2 is as follows: we first normalize $\mathbf{v}_1 = \mathbf{w}_1$ and \mathbf{w}_2 , thus obtaining two orthogonal unit vectors, say \mathbf{w}'_1 and \mathbf{w}'_2 , parallel respectively to \mathbf{v}_1 and \mathbf{w}_2 . At this point, two vectors \mathbf{u}_1 and \mathbf{u}_2 as required are, for example, $\mathbf{u}_1 = (1/\sqrt{2})\mathbf{w}'_1 + (1/\sqrt{2})\mathbf{w}'_2$ and $\mathbf{u}_2 = (1/\sqrt{2})\mathbf{w}'_1 - (1/\sqrt{2})\mathbf{w}'_2$ (here $(1/\sqrt{2}) = \cos(\pi/4) = \sin(\pi/4)$). Hence

$$\mathbf{u}_1 = \frac{1}{\sqrt{2}}(1,0,1)$$
 and $\mathbf{u}_2 = \frac{1}{3\sqrt{2}}(-1,4,1)$

22. Let us consider the planes $M = \{(1,0,2) + t(1,2,1) + s(0,1,-2)\}$ and $N = \{(1,3,0) + t(1,1,1) + s(1,0,-1)\}$. Describe and find equations for the set of points $P \in \mathcal{V}_3$ such that d(P,M) = d(P,N).

Solution. Letting P = (x, y, z), we are interested in the set defined by the equation

(1)
$$d((x, y, z), M) = d((x, y, z), N)$$

To find an explicit expression for the left and right hand side, we compute the cartesian equations of the two planes. They turn out to be

$$M : 5x - 2y - z = 4$$
 and $N : x - 2y + z = 1$

Therefore

$$d((x, y, z), M) = \frac{|5x - 2y - z - 4|}{\sqrt{6}} \quad \text{and} \quad \frac{d((x, y, z), N) = |x - 2y + z - 1|}{\sqrt{30}}$$

Therefore (1) becomes

$$\frac{|5x - 2y - z - 4|}{\sqrt{6}} = \frac{|x - 2y + z - 1|}{\sqrt{30}}$$

which is equivalent to

$$\frac{5x - 2y - z - 4}{\sqrt{6}} = \frac{x - 2y + z - 1}{\sqrt{30}} \quad \text{or} \quad \frac{5x - 2y - z - 4}{\sqrt{6}} = -\frac{x - 2y + z - 1}{\sqrt{30}}$$

which is the equation of the union of two planes.